A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex"

Átírás

1 A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az értékkészlet a komplex számok halmaza, akkor komplex (értékű) sorozatról. A f: N R függvényjelölés helyett gyakoribb az a n jelölés alkalmazása, ahol a n a függvényértékeket jelöli (a n = f(n) n N esetén), melyeket a sorozat tagjainak mondunk. Egy a n valós(!) számsorozatot monoton növekvőnek mondunk, ha a n a n+1 teljesül minden n N-re. Szigorúan monoton növekvő az a n sorozat, ha a n < a n+1 teljesül minden n N- re. Analóg módon értelmezzük a monoton csökkenő, illetve szigorúan monoton csökkenő sorozatok fogalmát.

2 a n = 1 1 n 2 szigorúan monoton növekvő b n = [ 100 n ] monoton csökkenő, korlátos c n = log 2 n, d n = ( 1) n n nem korlátosak k(n) = 5 konstans sorozat t n = 1 n q n = a 1 q n mértani sorozat

3 s n = a 1 + (n 1)d számtani sorozat a 1 = 1, a 2 = 1, a n = a n 1 + a n 2 Fibonacci sorozat Definíció. Egy a n sorozat torlódási pontján olyan a számot értünk, melynek tetszőleges ε > 0 sugarú nyílt környezetében a sorozatnak végtelen sok tagja található. Azt mondjuk, hogy az a n sorozat konvergens és határértéke a, ha a-nak bármely ε > 0 sugarú nyílt környezete a sorozat összes tagját tartalmazza véges sok kivételével, azaz ha bármely ε > 0-hoz létezik olyan n 0 N küszöbszám, hogy minden n > n 0 esetén a n a < ε. Ilyenkor azt is mondjuk, hogy a n konvergál (vagy tart) a-hoz, jelben: a n a, vagy lim a n n = a.

4 a határérték = torlódási pont is a határérték = torlódási pont ha a n korlátos, s csak egyetlen torlódási ponttal rendelkezik, akkor konvergens is, és határértéke az egyetlen torlódási pont lesz konvergens sorozatnak csak egyetlen határértéke van a konvergens sorozatok korlátosak Példák

5 konvergens sorozatra: a n = 1. Ez a sorozat konvergens, s n határértéke 0, hiszen ha tetszőleges ε > 0-t választunk, hozzá lehet találni olyan küszöbindexet, pl. n 0 = bármely n > n 0 esetén valóban a n 0 = 1 n [ ] 1 ε + 1-et, melyre < ε. Nem konvergens viszont, pl. az b n = ( 1) n + 1 n is van. sorozat, hiszen két torlódási pontja

6 Álĺıtás. Valós, monoton növekvő korlátos sorozat konvergál a pontos felső korlátjához. Valós, monoton csökkenő korlátos sorozat konvergál a pontos alsó korlátjához. Bizonyítás. Az a n monoton növekvő korlátos sorozat pontos felső korlátját jelölje a, s tekintsünk egy tetszőleges pozítív ε- t. a ε nem felső korlátja a sorozat elemeinek, ezért van olyan n 0 N, hogy a n0 > a ε. A monotonitás miatt ekkor minden n > n 0 esetén a a n > a ε, tehát a n a < ε. Hasonló érvelés adható monoton csökkenő sorozat esetén is.

7 Műveletek konvergens sorozatokkal Sorozatokkal ugyanazon műveleteket végezhetjük, mint a valós, illetve a komplex számokkal: Az a n és b n sorozatok összegének, szorzatának, illetve ha b n 0, akkor hányadosának nevezzük rendre az a n + b n, a n b n, a n b n sorozatokat. Álĺıtás. Ha a n 0 és b n korlátos, akkor a n b n 0. Ha a n a és b n b, akkor a n + b n a + b.

8 Ha a n a és b n b, akkor a n b n ab. Ha a n a, b n b és b n 0, b 0, akkor a n b n a b.

9 Bizonyítás. Jelölje K a b n sorozat egy korlátját: b n K. Tetszőleges ε > 0 esetén a n 0 miatt van olyan n 0, hogy ha n > n 0, akkor a n < ε K. Ezért a n b n = a n b n < ε K K = ε. A második igazolásához is tetszőleges ε > 0-ból indulunk ki. a n és b n konvergenciája miatt ε/2-höz van olyan n 1 és n 2, hogy n > n 1, illetve n > n 2 esetén a n a < ε/2, illetve b n b < ε/2 teljesedik. Ekkor minden n > max{n 1, n 2 } esetén (a n + b n ) (a + b) a n a + b n b < ε/2 + ε/2 = ε.

10 Szorzat esetében a következő átalakítást végezzük el: a n b n ab = a n b n a n b + a n b ab a n b n b + b a n a Az a n sorozat korlátos, hiszen konvergens, tehát a n K valamely K R-ra. a n a miatt létezik olyan n 1, hogy ha n > n 1, akkor a n a < ε/2 b. Másrészt, b n b miatt létezik olyan n 2, hogy ha n > n 2, akkor b n b < ε/2k. Ha n > max{n 1, n 2 }, akkor a fenti becslést is figyelembe véve a n b n ab < ε adódik.

11 A konvergencia monotonitása Álĺıtás. a b. Ha a n a, b n b és a n b n minden n N-re, akkor Bizonyítás. Tegyük fel indirekten, hogy a > b. Legyen ε = a b 2. a n a miatt van olyan n 1, hogy ha n > n 1, akkor a n (a ε, a + ε). Hasonlóan b n b miatt van olyan n 2, hogy ha n > n 2, akkor b n (b ε, b + ε). Ezért, ha n > max{n 1, n 2 } teljesül, akkor b n < b + ε = a + b = a ε < a n. 2 Ez ellentmond álĺıtásunk feltételének.

12 Megjegyzés. Ha a feltételben szigorú egyenlőtlenség teljesül, a következményben mégsem álĺıtható, hogy a < b. Ezt mutatja az a n = 0, b n = n 1 sorozatok példája. Álĺıtás. (Rendőrelv) Ha a n a, b n a, és a n c n b n minden n N-re, akkor c n a. Bizonyítás. Tetszőleges ε > 0 esetén a n a miatt van olyan n 1, hogy ha n > n 1, akkor a n (a ε, a + ε). Hasonlóan b n a miatt van olyan n 2, hogy ha n > n 2, akkor b n (a ε, a + ε). Ezért minden n > max{n 1, n 2 } esetén a n c n b n miatt c n (a ε, a + ε) is teljesül.

13 Valós számsorozat tágabb értelemben vett határértéke Definíció. Azt mondjuk, hogy az a n sorozat tart a végtelenhez, ha bármely K valós számhoz van olyan n 0 N, hogy ha n > n 0, akkor a n > K. Jele: a n, vagy lim a n n =. Hasonlatosan, az a n sorozat tart a mínusz végtelenhez, ha bármely K valós számhoz van olyan n 0 N, hogy ha n > n 0, akkor a n < K. Jele: a n, vagy lim a n n =.

14 A műveletekkel kapcsolatosan majdnem ugyanazon tulajdonságok érvényesek, mint a szűkebben értelmezett konvergencia esetében, pl.: Ha a n, b n, akkor a n + b n. Ha a n, b n, akkor a n + b n. Ha a n, b n, akkor a n b n. Ha a n, b n b > 0, akkor a n b n. Ha a n, és a n 0, akkor 1 a n 0. Ugyanis, adott ε > 0 esetén K = 1 ε -hoz van olyan n 0 N, hogy ha n > n 0, akkor

15 a n > K = 1 ε, azaz 1 a n < ε. Fordítva viszont a n 0-ból következik 1 a n, hasonló érveléssel.

16 Nevezetes határértékek Álĺıtás. Legyen a n = p rn r + p r 1 n r p 1 n + p 0 q s n s + q s 1 n s q 1 n + q 0. Ha r = s, akkor a n p r q r. Ha r < s, akkor a n 0. Ha r > s, akkor p r a n. q s > 0 esetén a n, míg p r q s < 0 esetén

17 Bizonyítás. Példákon keresztül: r = s a n = n2 +3n+1 2n 2 5n Osszuk el a számlálót és a nevezőt is n 2 -el: a n = n + 1 n n A számlálóban és a nevezőben szereplő 1 n i tagok mindegyike 0-hoz tart, s kihasználva a műveletek és a határátmenet sorrendjének felcserélhetőségét, valóban a n 1 2.

18 r < s a n = 3n+1 2n 2 5n Most n 2 -el osztjuk a számlálót, s nevezőt is: 3 n a n = + 1 n 2 2 n 5 Ugyanazon érveléssel a számláló nullához tart, a nevező 2-hez, összességében a n 0. r > s a n = n5 +3n+1 2n 2 5n n 2 -el egyszerűsítve, s kiemelve n 3 -et: a n = n n n n

19 n 3, míg a tört 1 2 hez tart, ezért szorzatuk végtelenhez tart

20 Álĺıtás. Legyen a n = q n, ahol q R konstans. Ha q > 1, akkor a n. Ha q = 1, akkor a n 1. Ha 1 < q < 1, akkor a n 0. Bizonyítás. Ha q > 1, akkor q = 1 + h alakban írható, ahol h > 0. A Bernoulli egyenlőtlenség miatt a n = q n = (1 + h) n 1 + nh, ezért ha adott K esetén n > n 0 = [ K 1 h ] + 1, akkor a n 1 + nh > 1 + K 1 h = K. h Ha 1 < q < 1, q 0, akkor 1 a > 1, ezért 1 a n = 1 q n. Egy előző álĺıtásunk miatt a n 0.

21 Álĺıtás. Az a n = ( n) n sorozat konvergens. Bizonyítás. A) a n szigorúan monoton nő: Alkalmazzuk a számtani és mértani közép közötti egyenlőtlenséget az számokra: n n, n,..., n, 1 (1 + 1 n )... (1 + 1 n ) n n + 1 n + 1

22 n + 1-dik hatványra emelve: azaz ( n) n ( ) n+1 n + 1 a n a n+1 B) a n korlátos: Alkalmazzuk most a számtani és mértani közép közötti egyenlőtlenséget az n, n,..., n, 1 2, 1 2 számokra: n+2 (1 + 1 n )... (1 + 1 n )

23 n + 1-dik hatványra emelve: ( azaz n n n n ) n a n 4 Az a n = (1 + 1 n )n sorozat határértékét e-vel jelöljük: e = lim n (1 + 1 n )n. Belátható, hogy ez a szám másik sorozattal is előálĺıtható:

24 e = lim n ( ! + 1 2! + 1 3! n! ). Bebizonyítható, és az alkalmazásokban gyakran szükséges, hogy ha egy b n sorozat olyan, hogy b n, akkor lim n (1 + 1 ) bn = e. b n 1 mft kamatoztatása 100 % kamattal 1 év alatt: Egy éves tőkésítésnél: 2 mft Féléves tőkésítésnél: ( )2 =2,25 mft Negyedévesnél: ( )4 2,44 mft Havi tőkésítésnél: ( )12 2,61 mft

25 1 )n = a e v/n-es to ke sı te sne l: (1 + n n

26 Bernoulli egyenlőtlenség: Álĺıtás. Bármely n N és h 1 esetén teljesül a egyenlőtlenség. (1 + h) n 1 + nh Bizonyítás. A bizonyítást n szerinti teljes indukcióval végezzük. n = 1 esetén nyilván teljesül az álĺıtás. Tegyük fel, hogy igaz valamely n-re: (1 + h) n 1 + nh. 1 + h 0, ezért vele szorozva az egyenlőtlenséget, kapjuk, hogy (1 + h) n+1 (1 + nh)(1 + h) = 1 + (n + 1)h + nh (n + 1)h. Tehát n + 1 esetén is teljesül az álĺıtás.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

2010. október 12. Dr. Vincze Szilvia

2010. október 12. Dr. Vincze Szilvia 2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

Analízis I. Vizsgatételsor

Analízis I. Vizsgatételsor Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Sorozatok, sorozatok konvergenciája

Sorozatok, sorozatok konvergenciája Sorozatok, sorozatok konvergenciája Elméleti áttekintés Minden konvergens sorozat korlátos Minden monoton és korlátos sorozat konvergens Legyen a n ) n egy sorozat és ϕ : N N egy szigorúan növekvő függvény

Részletesebben

Analízis ZH konzultáció

Analízis ZH konzultáció Analízis ZH konzultáció 1. Teljes indukció Elméleti segítség: n=1-re bebizonyítani (vagy arra az n-re, ahonnan az állítást igazolni szeretnénk) feltesszük, hogy n-re igaz az állítás -> n+1-re is igaz lesz?

Részletesebben

Gyakorló feladatok az II. konzultáció anyagához

Gyakorló feladatok az II. konzultáció anyagához Gyakorló feladatok az II. konzultáció anyagához 003/004 tanév, I. félév 1. Vizsgáljuk meg a következő sorozatokat korlátosság és monotonitás szempontjából! a n = 5n+1, b n = n + n! 3n 8, c n = 1 ( 1)n

Részletesebben

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

2014. november 5-7. Dr. Vincze Szilvia

2014. november 5-7. Dr. Vincze Szilvia 24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx.

Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx. 1. Archimedesz tétele. Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx. Legyen y > 0, nx > y akkor és csak akkor ha n > b/a. Ekkor elég megmutatni, hogy létezik minden

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Egészrészes feladatok

Egészrészes feladatok Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

konvergensek-e. Amennyiben igen, számítsa ki határértéküket!

konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,

Részletesebben

Analízis Gyakorlattámogató jegyzet

Analízis Gyakorlattámogató jegyzet Analízis Gyakorlattámogató jegyzet Király Balázs. március. Tartalomjegyzék Előszó 7 I. Analízis I. 9. Számhalmazok tulajdonságai.. Gyakorlat.......................................... Házi Feladatok.....................................

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.

Részletesebben

Programtervező informatikus I. évfolyam Analízis 1

Programtervező informatikus I. évfolyam Analízis 1 Programtervező informatikus I. évfolyam Analízis 1 2012-2013. tanév, 2. félév Tételek, definíciók (az alábbi anyag csupán az előadásokon készített jegyzetek mellékletéül szolgál) 1. Mit jelent az asszociativitás

Részletesebben

Határérték. prezentációjából valók ((C)Pearson Education, Inc.) Összeállította: Wettl Ferenc október 11.

Határérték. prezentációjából valók ((C)Pearson Education, Inc.) Összeállította: Wettl Ferenc október 11. Határérték Thomas féle Kalkulus 1 című könyv alapján készült a könyvet használó hallgatóknak. A képek az eredeti könyv szabadon letölthető prezentációjából valók ((C)Pearson Education, Inc.) Összeállította:

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

Pécsi Tudományegyetem Természettudományi Kar Matematika Tanszék. Kalkulus 1. Dr Simon Ilona, PTE TTK

Pécsi Tudományegyetem Természettudományi Kar Matematika Tanszék. Kalkulus 1. Dr Simon Ilona, PTE TTK Pécsi Tudományegyetem Természettudományi Kar Matematika Tanszék Kalkulus Dr Simon Ilona, PTE TTK Pécs, 206 Tartalomjegyzék. Bevezető 4.. Az abszolút érték........................... 4.2. Halmazok, intervallumok,

Részletesebben

SHk rövidítéssel fogunk hivatkozni.

SHk rövidítéssel fogunk hivatkozni. Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,

Részletesebben

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14. Fraktálok Hausdorff távolság Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. március 14. TARTALOMJEGYZÉK 1 of 36 Halmazok távolsága ELSŐ MEGKÖZELÍTÉS Legyen (S, ρ) egy metrikus tér, A, B S, valamint

Részletesebben

Kozma L aszl o Matematikai alapok 2. kieg esz ıtett kiad as Debrecen, 2004

Kozma L aszl o Matematikai alapok 2. kieg esz ıtett kiad as Debrecen, 2004 Kozma László Matematikai alapok 2. kiegészített kiadás Debrecen, 2004 Egyetemi jegyzet, kézirat, 2004 2. kiegészített kiadás Kiadó: Studium 96 Bt., Debrecen Nyomda: Alföldi Nyomda Rt., Debrecen Az összeállítás

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

8. feladatsor: Többváltozós függvények határértéke (megoldás)

8. feladatsor: Többváltozós függvények határértéke (megoldás) Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 07/8 ősz 8. feladatsor: Többváltozós függvények határértéke (megoldás). Számoljuk ki a következő határértékeket: y + 3 a) y

Részletesebben

-ra nézve (szigorú) abszolút maximumhelye (minimumhelye), ha. -ra nézve (szigorú) abszolút minimumhelye, ha minden

-ra nézve (szigorú) abszolút maximumhelye (minimumhelye), ha. -ra nézve (szigorú) abszolút minimumhelye, ha minden Analízis-lexikon abszolút maximumhelye Legyen hogy tetszőleges függvény, és része értelmezési tartományának Azt mondjuk, az -nek -ra nézve (szigorú) abszolút maximumhelye (minimumhelye), ha minden esetén

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Komplex számok. A komplex számok algebrai alakja

Komplex számok. A komplex számok algebrai alakja Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, SZAKDOLGOZAT ELLENPÉLDÁK. TÉMAVEZETŐ: Gémes Margit. Matematika Bsc, tanári szakirány

SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, SZAKDOLGOZAT ELLENPÉLDÁK. TÉMAVEZETŐ: Gémes Margit. Matematika Bsc, tanári szakirány SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, ELLENPÉLDÁK SZAKDOLGOZAT KÉSZÍTETTE: Kovács Dorottya Matematika Bsc, tanári szakirány TÉMAVEZETŐ: Gémes Margit Műszaki gazdasági tanár Analízis tanszék Eötvös

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés Nagyon könnyen megfigyelhetjük, hogy akármilyen két számmal elindítunk egy Fibonacci sorozatot, a sorozat egymást követő tagjainak

Részletesebben

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm 5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény Elemi függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva? = komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

Rekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26

Rekurzív sorozatok. SZTE Bolyai Intézet   nemeth. Rekurzív sorozatok p.1/26 Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Valós függvénytan Elektronikus tananyag

Valós függvénytan Elektronikus tananyag Valós függvénytan Elektronikus tananyag Valós függvénytan: Elektronikus tananyag TÁMOP-4.1.2.A/1-11/1 MSc Tananyagfejlesztés Interdiszciplináris és komplex megközelítésű digitális tananyagfejlesztés a

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Debreceni Egyetem. Kalkulus I. Gselmann Eszter

Debreceni Egyetem. Kalkulus I. Gselmann Eszter Debreceni Egyetem Természettudományi és Technológiai Kar Kalkulus I. Gselmann Eszter Debrecen, 2011 A matematikában a gondolat, ami számít. (Szofja Vasziljevna Kovalevszkaja) Tartalomjegyzék 1. Halmazok,

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN Készült a TÁMOP-4.1.-08//a/KMR-009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék

Részletesebben

Eger, augusztus 31. Liptai Kálmán Eszterházy Károly Főiskola Matematikai és Informatikai Intézet

Eger, augusztus 31. Liptai Kálmán Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tartalomjegyzék Előszó................................. 5. Függvénytani alapismeretek..................... 7. Valós számsorozatok......................... 9 3. Valós számsorok............................

Részletesebben

2. Reprezentáció-függvények, Erdős-Fuchs tétel

2. Reprezentáció-függvények, Erdős-Fuchs tétel 2. Reprezentáció-függvények, Erdős-Fuchs tétel A kör-probléma a következőképpen is megközelíthető: Jelölje S a négyzetszámok halmazát. Jelölje r S (n) azt az értéket, ahány féleképpen n felírható két pozitív

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

MATEMATIKA 1. GYAKORLATOK

MATEMATIKA 1. GYAKORLATOK Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA. GYAKORLATOK 0. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright ii A Matematika.

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika

Részletesebben

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma 16. Sorozatok I. Elméleti összefoglaló A sorozat fogalma Sorozatnak nevezzük az olyan függvényt, amelynek értelmezési tartománya a pozitív egész számok halmaza. Számsorozat olyan sorozat, amelynek értékkészlete

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

Kalkulus MIA. Galambos Gábor JGYPK

Kalkulus MIA. Galambos Gábor JGYPK Kalkulus MIA Műszaki informatikus asszisztens http://jgypk.u-szeged.hu/tanszek/szamtech/oktatas/kalkulus.pdf Galambos Gábor JGYPK 2013-2014 Kalkulus MIA 1 A Kalkulus főbb témái: Intervallum, távolság,

Részletesebben

Kalkulus MIA. Galambos Gábor JGYPK

Kalkulus MIA. Galambos Gábor JGYPK Kalkulus MIA Műszaki informatikus asszisztens http://jgypk.u-szeged.hu/tanszek/szamtech/oktatas/kalkulus.pdf Galambos Gábor JGYPK 2013-2014 Kalkulus MIA 1 1 A Kalkulus főbb témái: Intervallum, távolság,

Részletesebben

Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA 1. 2011. Tartalomjegyzék

Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA 1. 2011. Tartalomjegyzék Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA.. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright ii A Matematika. elektronikus

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Matematika 8. osztály

Matematika 8. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály I. rész: Algebra Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék I. rész: Algebra................................

Részletesebben

Centrális határeloszlás-tétel

Centrális határeloszlás-tétel 13. fejezet Centrális határeloszlás-tétel A valószínűségszámítás legfontosabb állításai azok, amelyek független valószínűségi változók normalizált összegeire vonatkoznak. A legfontosabb ilyen tételek a

Részletesebben

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma 16. Sorozatok I. Elméleti összefoglaló A sorozat fogalma Sorozatnak nevezzük az olyan függvényt, amelynek értelmezési tartománya a pozitív egész számok halmaza. Számsorozat olyan sorozat, amelynek értékkészlete

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 1. Bevezetés, függvények, sorozatok, határérték Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, a biomatematika célja 2 Függvénytani alapfogalmak

Részletesebben

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében? Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!

Részletesebben

1. gyakorlat ( ), Bevezető analízis 1., ősz (Besenyei Ádám csoportja)

1. gyakorlat ( ), Bevezető analízis 1., ősz (Besenyei Ádám csoportja) 1. gyakorlat (2016. 09. 12.), Bevezető analízis 1., 2016. ősz A színek jelentése: fekete az előzetes vázlat; piros, ami ehhez képest módosult. 1. Három matematikus bemegy egy kocsmába, és rendel. A nagy

Részletesebben

Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához

Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához ciklus óra óra anyaga, tartalma 1 1. Év eleji szervezési feladatok, bemutatkozás Hatvány, gyök, logaritmus (40 óra) 2. Ismétlés: hatványozás 3. Ismétlés: gyökvonás 4. Értelmezési tartomány vizsgálata 2

Részletesebben

Nagyordó, Omega, Theta, Kisordó

Nagyordó, Omega, Theta, Kisordó A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

1. előadás: Halmazelmélet, számfogalom, teljes

1. előadás: Halmazelmélet, számfogalom, teljes 1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: R) a) log 4 (x ) = 3 b) lg (x 4) = lg (8x 10) c) log x + log 3 = log 15 d) log x 0x log x 5 = e) log 3 (x 1) = log 3 4 f) log 5 x = 4 g) lg

Részletesebben