Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit."

Átírás

1 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az R R (x, y) x + y R R (x, y) x y összeadás szorzás melyek teljesítik az alábbi axiómákat (melyeket testaxiómáknak nevezünk). A szorzás jelét az alábbi axiómákban kiírjuk, de a továbbiakban nem, kivéve, ha elhagyása félrértéshez vezetne. Az összeadás axiómái: ( x, y R) x + y = y + x, ( x, y, z R) x + (y + z) = (x + y) + z, ( 0 R)( x R) x + 0 = x, ( x R)( x R) x + ( x) = 0 A szorzás axiómái: ( x, y R) x y = y x, ( x, y, z R) x (y z) = (x y) z, ( 1 R, 1 0)( x R) x 1 = x, ( x R, x 0)( x 1 R) x x 1 = 1 Ezek az axiómák rendre az összeadás ill. szorzás kommutativitását, asszociativitását, a 0 ill. 1 létezését, és az additív ill. multiplikatív inverz létezését fejezik ki. Megköveteljük a szorzás disztributivitását az összeadásra nézve, azaz ( x, y, z R) x (y + z) = x y + x z. 2. Rendezési axiómák R-en értelmezve van egy ( R R) (olvasd kisebb vagy egyenlő) rendezési reláció (mely a korábban tárgyalt) négy axiómát teljesíti, továbbá ( x, y, z R) (x y) = x + z y + z, ( x, y R) (0 x 0 y) = 0 x y. E tulajdonságokat az összeadás és a szorzás monotonitásának nevezzük. Ha 0 x de 0 x(x R) akkor ezt 0 < x -szel (vagy x > 0-val) jelöljük, és x -et pozitívnak mondjuk. x R-et negatívnak mondjuk, ha x pozitív. 3. Teljességi axióma R (a rendezésre nézve) teljes, azaz R bármely nemüres felülről korlátos részhalmazának van pontos felső korlátja. Összefoglalva, a valós számok R halmaza tehát egy teljes rendezett test. Megmutatható, hogy létezik ilyen halmaz, és ez bizonyos értelemben egyértelmű. A valós számokat a számegyenesen modellezhetjük. 1

2 2 A testaxiómákat felhasználva igazolható, hogy bármely x, y, z R esetén továbbá ha x + y = x + z, akkor y = z; ha xy = xz, x 0, akkor y = z; ha x + y = x, akkor y = 0; ha xy = x, x 0, akkor y = 1; ha x + y = 0, akkor y = x; ha xy = 1, x 0, akkor y = x 1 ; ( x) = x; ha x 0, akkor ( x 1) 1 = x, 0x = 0; x 0, y 0 xy 0; ( x)y = (xy) = x( y); ( x)( y) = xy. A rendezési és testaxiómákat (rendezett test axiómáit) felhasználva igazolható, hogy bármely x, y, z R esetén A bizonyítással a gyakorlaton foglalkozunk majd. x 0 akkor és csakis akkor, ha x 0, ha x 0, y z, akkor xy yz, ha x 0, y z, akkor xy yz, ha x 0, akkor x 2 > 0, speciálisan 1 > 0, ha 0 < x y, akkor 0 < y 1 x 1, és x 2 y R nevezetes részhalmazai, abszolút érték, távolság Az N = {1, 2, 3, 4... } halmazt a természetes számok halmazának nevezzük. Végiggondolva azt, hogy 2 = 1 + 1, 3 = 2 + 1, 4 = 3 + 1,... adódik, hogy N R-nek az a legszűkebb részhalmaza, melyre teljesül, az, hogy 1 N, ha n N akkor n + 1 N. Az, hogy N a legszűkebb ilyen halmaz azt jelenti, hogy ha egy M N-re is teljesülnek az teljesíti az 1 M, és n M = n + 1 M tulajdonságok, akkor M = N. A Z = {0, ±1, ±2, ±3,... } halmazt az egész számok halmazának nevezzük. A Q = { pq 1 : p, q Z, q 0 } halmazt a racionális számok halmazának nevezzük. Legyen a < b (a, b R). Az ]a, b[ := { x R : a < x < b } [a, b] := { x R : a x b } ]a, b] := { x R : a < x b } [a, b[ := { x R : a x < b } számhalmazokat rendre (véges) nyílt, zárt, balról nyílt jobbról zárt, balról zárt jobbról nyílt intervallumoknak nevezzük. [a, a] := { x R : a x a } = {a} elfajult (egyetlen pontból álló) zárt intervallum. Legyen a, b R. Az ]a, [ := { x R : a < x } [a, [ := { x R : a x } ], b] := { x R : x b } ], b[ := { x R : x < b } ], [ := R

3 3 számhalmazokat (végtelen) nyílt, balról zárt jobbról nyílt stb. intervallumoknak nevezzük. Definíció. Az x := { x ha x 0 x ha x < 0 (x R) számot az x valós szám abszolút értékének nevezzük. Állítás. [az abszolút érték tulajdonságai] Bármely x, y R esetén x 0 és x = 0 x = 0, xy = x y, x + y x + y. Az első tulajdonság nyilvánvaló, a többiek pl. esetszétválasztással bizonyíthatók. További tulajdonságok: x y x y (x, y R), x a a x a és hasonlóan x < a a < x < a. Definíció. Az x, y R számok távolságát a d(x, y) := x y definiálja. Állítás. [a távolság tulajdonságai] Bármely x, y, z R esetén d(x, y) 0 és d(x, y) = 0 x = y, d(x, y) = d(y, x), d(x, y) d(x, z) + d(z, y) nemnegativitás szimmetria háromszög egyenlőtlenség. E tulajdonságok egyszerűen következnek az abszolút érték tulajdonságaiból. 2.2 A teljességi axióma néhány következménye Tétel. Az R bármely nemüres alulról korlátos részhalmazának van pontos alsó korlátja. A bizonyításhoz legyen A R egy nemüres alulról korlátos halmaz, k alsó korláttal, és tekintsük a B := { a : a A } halmazt, akkor ( a) (a A = k a)-ból következik, hogy k a így B felülről korlátos k felső korláttal, és fordítva. A teljességi axióma miatt létezik β := sup B. Könnyű belátni, hogy α := β = inf A az A-nak pontos alsó korlátja: ti. az előzőek alapján alsó korlát, és ha α az A halmaz egy alsó korlátja, akkor α B-nek egy felső korlátja, így β α amiből α = β α. Tétel. A természetes számok halmaza felülről nem korlátos. A bizonyításhoz tegyük fel, hogy N felülről korlátos,így létezik az α := sup N szám, melyre ( n)(n N = n α). Mivel α 1 < α így α 1 nem lehet N felső korlátja, ezért van olyan n 0 N melyre α 1 < n 0 azaz α < n Mivel n N így α nem felső korlátja N-nek, ami ellentmondás. Indirekt bizonyítást végeztünk: feltételeztük, hogy a tétel állítása nem igaz (ez az indirekt feltevés). Helyes következtetésekkel ellentmondást kaptunk, ennek csak az lehet az oka, hogy indirekt feltevésünk nem igaz, így annak tagadása, azaz a tétel állítása igaz.

4 4 Következmény.[a valós számok Archimedesi tulajdonsága] Bármely x > 0 és y R számokhoz létezik olyan n N melyre y < nx. Ugyanis y x nem felső korlátja N-nek, így van olyan n N, hogy n > y x amiből nx > y. akkor Tétel. [Cantor féle metszettétel] Ha [a n, b n ] (n N) zárt egymásba skatulyázott intervallumok sorozata, azaz [a 1, b 1 ] [a 2, b 2 ] [a 2, b 2 ]... [a n, b n ]. Röviden: zárt intervallumok egymásba skatulyázott sorozatának metszete nemüres. A bizonyításhoz először jegyezzük meg, hogy n=1 a n b n (n N) mivel [a n, b n ] intervallum, az egymásba skatulyázás pedig azt jelenti, hogy a n a n+1 és b n+1 b n E feltételekből azonnal kapjuk, hogy bármely m, n N esetén a n b m. (n N). Legyen A := { a n : n N }, B := { b m : m N } akkor A felülről korlátos (bármely b m (m N) felső korlátja, B pedig alulról korlátos (bármely a n (n N) alsó korlátja. Így léteznek az α := sup A, β := inf B pontos korlátok. α definíciója miatt a n α b m Ebből látható, hogy α is alsó korlátja B-nek, ezért továbbá β definíciója miatt β b m Ezeket az egyenlőtlenségeket összevetve kapjuk, hogy ami azt jelenti, hogy amint állítottuk. α β, (m, n N). (m N). a n α β b n (n N) [α, β] Definíció. Az x R szám egész kitevős hatványait [a n, b n ] n=1 x 1 := x, x n+1 := x n x (n N) továbbá x 0 := 1, x n := 1 (x 0, n N) xn -nel értelmezzük. A következő tétel szintén a teljességi axióma segítségével igazolható (a bizonyítás megtalálható pl. W. Rudin, A matematikai analízis alapjai c. könyvében, Műszaki Könyvkiadó, 1975). Tétel. [n-edik gyök létezése] Bármely x 0 nemnegatív valós számhoz és n N természetes számhoz pontosan egy olyan y 0 nemnegatív valós szám létezik, melyre y n = x.

5 5 Definíció. Az előző tétel állításában szereplő y 0 számot az x 0 szám n-edik gyökének nevezzük, és n x vagy x 1 n -nel jelöljük. Ha n páros, x 0 akkor n x az egyetlen olyan nempozitív szám melynek n-edik hatványa x így ekkor y n = x y = n x y = n x. Ha n páratlan, akkor negatív számokra is kiterjesztjük az n-edik gyök definícióját: n x := n x ha x < 0. Ezek után lehet a pozitív számok racionális kitevős hatványát értelmezni, az x r := q x p ahol x > 0, r = pq 1, p Z, q N képlettel. Igazolható hogy ez a definíció korrekt (x r független r előállításától) és hogy a hatványozás szokásos tulajdonságai (racionális kitevők eset en) teljesűlnek. 2.3 Topológikus fogalmak, Bolzano-Weierstrass tétel Definíció. Egy a R pont ε > 0 sugarú (nyílt) környezetén a K(a, ε) := { x R : d(x, a) < ε } halmazt értjük. Világos, hogy K(a, ε) éppen az a pontra nézve szimmetrikus 2ε hosszúságú ]a ε, a + ε[ nyílt intervallum. Legyen A R. Az a R pontot az A halmaz belső pontjának nevezzük, ha a-nak van olyan környezete mely (teljesen) A-ban van, azaz ( ε > 0)K(a, ε) A. Az a R pontot az A halmaz izolált pontjának nevezzük, ha a A és a-nak van olyan környezete melyben nincs más A-beli pont, azaz a A (( ε > 0)(K(a, ε) \ {a}) A = ). Az a R pontot az A halmaz torlódási pontjának nevezzük, ha a bármely környezetében van a-tól különböző A-beli pont, azaz ( ε > 0) (K(a, ε) \ {a}) A ). Az a R pontot az A halmaz határpontjának nevezzük, ha a bármely környezetében van A-beli pont, és nem A-beli pont, azaz ( ε > 0) ( K(a, ε) A K(a, ε) A ). A belső pont és az izolált pont mindig pontja a halmaznak, torlódási és határpont lehet halmazpont, vagy nem halmazpont. A R összes belső pontjainak halmazát A belsejének nevezzük és A -rel jelöljük. A R összes határpontjainak halmazát A határának nevezzük és A-rel jelöljük. Az A R halmazt nyíltnak nevezzük, ha minden pontja belső pont. Az A R halmazt zártnak nevezzük, ha komplementere nyílt.

6 6 Példa. Legyen A := { 1 : n N }. Határozzuk meg A belső, izolált, torlódási és határpontjainak n halmazát. Továbbá határozzunk meg A belsejét, határát, döntsük el, hogy nyílt vagy zárt halmaz-e! Megoldás. A-nak nincs belső pontja, minden pontja izolált, egyetlen torlódási pontja 0, egyetlen határpontja 0, A =, A = {0}, az A halmaz sem nem nyílt, sem nem zárt. Állítás. Egy A R halmaz akkor és csakis akkor zárt, ha tartalmazza összes torlódási pontját. Bizonyítás ld. gyakorlat. Tétel. [Bolzano-Weierstrass tétel] Bármely korlátos végtelen számhalmaznak van torlódási pontja. Egy halmazt végesnek mondunk, ha üres, vagy ha elemeinek száma egy természetes szám. Egy halmazt végtelennek mondunk, ha nem véges. Bizonyítás. Tegyük fel, hogy A R korlátos végtelen halmaz, akkor van olyan [a 1, b 1 ] zárt intervallum, hogy A [a 1, b 1 ]. Felezzük meg [a 1, b 1 ]-t és válasszuk ki azt a zárt [a 2, b 2 ]-vel jelölt felét, mely végtelen sok A-beli elemet tartalmaz. Ezután felezzük meg [a 2, b 2 ]-t és válasszuk ki azt a zárt [a 3, b 3 ]-mal jelölt felét, mely végtelen sok A-beli elemet tartalmaz, és így tovább. Az így kapott [a n, b n ] (n N) intervallumsorozat egymásba skatulyázott, ezért Cantor tétele miatt [a n, b n ]. n=1 Mivel az [a n, b n ] intervallum hossza b 1 a 1 2 tetszőleges kicsi, ha n elég nagy, ezért az intervallumok metszete csak n 1 egyetlen pontot tartalmazhat, legyen ez az a pont. Azt állítjuk, hogy a torlódási pontja A-nak. Ugyanis véve egy tetszőleges ε > 0 számot [a n, b n ] K(a, ε) ha n elég nagy. Ugyanis válasszuk n-et olyan nagyra, hogy b n a n < ε legyen, akkor a [a n, b n ] miatt az [a n, b n ] intervallum minden pontjának a-tól való távolsága < ε így az intervallum pontjai K(a, ε)-ban vannak. Mivel minden intervallumban végtelen sok A-beli pont van így K(a, ε) tartalmaz a-tól különböző A-beli pontot.

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Analízis I. Vizsgatételsor

Analízis I. Vizsgatételsor Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS A valós számok halmaza 5 I rész MATEMATIKAI ANALÍZIS 6 A valós számok halmaza A valós számok halmaza 7 I A valós számok halmaza A valós számokra vonatkozó axiómák A matematika lépten-nyomon felhasználja

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx.

Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx. 1. Archimedesz tétele. Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx. Legyen y > 0, nx > y akkor és csak akkor ha n > b/a. Ekkor elég megmutatni, hogy létezik minden

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

harmadik, javított kiadás

harmadik, javított kiadás Lajkó Károly Analízis I. harmadik, javított kiadás Debreceni Egyetem Matematikai és Informatikai Intézet 00 1 c Lajkó Károly lajko @ math.klte.hu Amennyiben hibát talál a jegyzetben, kérjük jelezze a szerzőnek!

Részletesebben

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

Gazdasági Matematika I.

Gazdasági Matematika I. Dr. Lajkó Károly Gazdasági Matematika I. NYÍREGYHÁZI FŐISKOLA GAZDASÁGMÓDSZERTANI TANSZÉK Dr. Lajkó Károly Gazdasági Matematika I. jegyzet az alapképzéshez NYÍREGYHÁZI FŐISKOLA GAZDASÁGMÓDSZERTANI TANSZÉK

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 5. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Számfogalom bővítése Diszkrét matematika I. középszint

Részletesebben

1. előadás: Halmazelmélet, számfogalom, teljes

1. előadás: Halmazelmélet, számfogalom, teljes 1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Debreceni Egyetem. Kalkulus I. Gselmann Eszter

Debreceni Egyetem. Kalkulus I. Gselmann Eszter Debreceni Egyetem Természettudományi és Technológiai Kar Kalkulus I. Gselmann Eszter Debrecen, 2011 A matematikában a gondolat, ami számít. (Szofja Vasziljevna Kovalevszkaja) Tartalomjegyzék 1. Halmazok,

Részletesebben

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

MATEMATIKA I. JEGYZET 1. RÉSZ

MATEMATIKA I. JEGYZET 1. RÉSZ MATEMATIKA I. JEGYZET 1. RÉSZ KÉZI CSABA GÁBOR Date: today. 1 KÉZI CSABA GÁBOR 1. Logikai állítások, műveletek 1.1. Definíció. Matematikai értelemben állításnak nevezünk egy olyan kijelentést, melynek

Részletesebben

Egészrészes feladatok

Egészrészes feladatok Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges

Részletesebben

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Komplex számok. (a, b) + (c, d) := (a + c, b + d) Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)

Részletesebben

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk: 1. Halmazok, relációk, függvények 1.A. Halmazok A halmaz bizonyos jól meghatározott dolgok (tárgyak, fogalmak), a halmaz elemeinek az összessége. Azt, hogy az a elem hozzátartozik az A halmazhoz így jelöljük:

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1 Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

2010. október 12. Dr. Vincze Szilvia

2010. október 12. Dr. Vincze Szilvia 2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

BEVEZETÉS A MAGASABBSZINTŰ MATEMATIKÁBA ÉS ALKALMAZÁSAIBA KÉZI CSABA GÁBOR

BEVEZETÉS A MAGASABBSZINTŰ MATEMATIKÁBA ÉS ALKALMAZÁSAIBA KÉZI CSABA GÁBOR BEVEZETÉS A MAGASABBSZINTŰ MATEMATIKÁBA ÉS ALKALMAZÁSAIBA KÉZI CSABA GÁBOR 1 KÉZI CSABA GÁBOR Előszó Ez a jegyzet egy többrészes sorozat első kötete, mely elsősorban a Debrecen Egyetem Műszaki Karának

Részletesebben

Matematikai logika és halmazelmélet

Matematikai logika és halmazelmélet Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes 1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz

Részletesebben

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy 1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar Metrikus terek, szeparábilitás, kompaktság Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. március 7. Vázlat 1 Szeparábilitás Definíciók A szeparábilitás ekvivalens

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. Gazdasági matematika I. Losonczi László, Pap Gyula Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László, Pap Gyula (DE) Gazdasági matematika I. 1 / 123 Kötelező irodalom: LOSONCZI LÁSZLÓ,

Részletesebben

Bevezetés az analízisbe. Előadás vázlat ősz

Bevezetés az analízisbe. Előadás vázlat ősz Bevezetés az analízisbe Előadás vázlat. 2009. ősz 1. előadás Téma: A matematika nyelvezetének alapvető sajátosságai, logikai műveletek. Bizonyítási módszerek. A valós számok; axiómák. Topologikus és metrikus

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Diszkrét matematika II., 8. előadás. Vektorterek

Diszkrét matematika II., 8. előadás. Vektorterek 1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. Gazdasági matematika I. Losonczi László, Pap Gyula Debreceni Egyetem, Informatikai Kar I. félév Előadó: Hajdu Lajos Losonczi László, Pap Gyula (DE) Gazdasági matematika I. I. félév 1 / 124 Félévközi kötelező

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Programtervező informatikus I. évfolyam Analízis 1

Programtervező informatikus I. évfolyam Analízis 1 Programtervező informatikus I. évfolyam Analízis 1 2012-2013. tanév, 2. félév Tételek, definíciók (az alábbi anyag csupán az előadásokon készített jegyzetek mellékletéül szolgál) 1. Mit jelent az asszociativitás

Részletesebben

Gy ur uk aprilis 11.

Gy ur uk aprilis 11. Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Klasszikus algebra előadás. Waldhauser Tamás április 28. Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

2014. szeptember 24. és 26. Dr. Vincze Szilvia

2014. szeptember 24. és 26. Dr. Vincze Szilvia 2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai

Részletesebben

Halmazelméleti alapfogalmak

Halmazelméleti alapfogalmak Halmazelméleti alapfogalmak halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. - halmaz alapfogalom. z azt jelenti, hogy csak példákon keresztül magyarázzuk,

Részletesebben

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm 5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében? Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?

Részletesebben

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 3. Fuzzy aritmetika Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Intervallum-aritmetika 2 Fuzzy intervallumok és fuzzy számok Fuzzy intervallumok LR fuzzy intervallumok

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. 1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Kombinatorika

Részletesebben

Dr. Vincze Szilvia;

Dr. Vincze Szilvia; 2014. szeptember 17. és 19. Dr. Vincze Szilvia; vincze@agr.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia/oktatas/oktatott_targyak/index/index.html 2010/2011-es tanév I. féléves tematika

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Folytonosság H607, EIC 2019-03-07 Wettl Ferenc

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

DiMat II Végtelen halmazok

DiMat II Végtelen halmazok DiMat II Végtelen halmazok Czirbusz Sándor 2014. február 16. 1. fejezet A kiválasztási axióma. Ismétlés. 1. Deníció (Kiválasztási függvény) Legyen {X i, i I} nemüres halmazok egy indexelt családja. Egy

Részletesebben

Bevezetés az algebrába az egész számok

Bevezetés az algebrába az egész számok Bevezetés az algebrába az egész számok Wettl Ferenc V. 15-09-11 Wettl Ferenc Bevezetés az algebrába az egész számok V. 15-09-11 1 / 32 Jelölések 1 Egész számok és sorozataik 2 Oszthatóság 3 Közös osztók

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

4. Fogyasztói preferenciák elmélete

4. Fogyasztói preferenciák elmélete 4. Fogyasztói preferenciák elmélete (ld. Temesi J.: A döntéselmélet alapjai, 47-63) 4.1 Preferencia relációk Mit jelent a fogyasztó választása? Legyen X egy olyan halmaz amelynek az elemei azok a lehetőségek

Részletesebben

Analízis Gyakorlattámogató jegyzet

Analízis Gyakorlattámogató jegyzet Analízis Gyakorlattámogató jegyzet Király Balázs. március. Tartalomjegyzék Előszó 7 I. Analízis I. 9. Számhalmazok tulajdonságai.. Gyakorlat.......................................... Házi Feladatok.....................................

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint

Részletesebben

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14. Fraktálok Hausdorff távolság Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. március 14. TARTALOMJEGYZÉK 1 of 36 Halmazok távolsága ELSŐ MEGKÖZELÍTÉS Legyen (S, ρ) egy metrikus tér, A, B S, valamint

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

2014. november 5-7. Dr. Vincze Szilvia

2014. november 5-7. Dr. Vincze Szilvia 24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével

Részletesebben

1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!

1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet! 1. Részcsoportok A részcsoport fogalma. 2.2.15. Definíció Legyen G csoport. A H G részhalmaz részcsoport, ha maga is csoport G műveleteire nézve. Jele: H G. Az altér fogalmához hasonlít. Példák (1) C +

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet

Részletesebben

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?

Részletesebben

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév Kezdők III. kategória I. forduló

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév Kezdők III. kategória I. forduló Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 016/017-es tanév Kezdők I II. kategória II. forduló Kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy kört

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén

Részletesebben

A SZÁMFOGALOM KIALAKÍTÁSA

A SZÁMFOGALOM KIALAKÍTÁSA A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése

Részletesebben