Nagy Gábor compalg.inf.elte.hu/ nagy ősz
|
|
- Ábel Veres
- 7 évvel ezelőtt
- Látták:
Átírás
1 Diszkrét matematika 1. középszint ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra Tanszék ősz
2 Kombinatorika Diszkrét matematika 1. középszint ősz 2. Polinomiális tétel Példa Mennyi lesz? (x + y + z) 2 = x 2 + y 2 + z 2 + 2xy + 2xz + 2yz. (x + y + z) 3 =... Tétel r, n N esetén (x 1 + x x r ) n = Bizonyítás i 1+i i r =n n! i 1! i 2!... i r! x i1 1 x i x ir r. (x 1 + x x r ) n = (x 1 + x x r )(x 1 + x x r ) (x 1 + x x r ). Az ( )( x i1 1 x i )( x r ir együtthatója: ) ( ) n n i 1 n i 1 i 2 n i 1 i 2... i r 1 = i 1 i 2 i 3 i r n! (n i 1)! i 1!(n i 1)! i 2!(n i 1 i (n i 1 i 2... i r 1)! 2)! i r!(n i 1... i r 1 i r )! = n! i 1! i 2! i r!
3 Kombinatorika Diszkrét matematika 1. középszint ősz 3. Polinomiális tétel (x 1 + x x r ) n = (x + y + z) 3 =... i 1+i i r =n i 1 i 2 i 3 i 1!i 2!i (x + y + z) 3 = !0! = 1 x !1!0! = 3 +3x 2 y !0!1! = 3 +3x 2 z !2!0! = 3 +3xy !1!1! = 6 +6xyz !0!2! = 3 +3xz !0! = 1 +y !2!1! = 3 +3y 2 z !1!2! = 3 +3yz !0! = 1 +z3 n! i 1!i 2! i r! x i1 1 x i2 2 x r ir
4 Kombinatorika Diszkrét matematika 1. középszint ősz 4. Skatulya-elv Skatulya-elv Ha n darab gyufásdobozunk és n + 1 gyufaszálunk van, akkor akárhogyan rakjuk bele az összes gyufát a skatulyákba, valamelyikben legalább kettő gyufa lesz. Példa Nyolc ember közül van legalább kettő, aki a hét ugyanazon napján született. Az A = {1, 2, 3, 4, 5, 6, 7, 8} halmazból bárhogyan választunk ki ötöt, akkor lesz közülük kettő, melyek összege 9. Tekintsük az {1, 8}, {2, 7}, {3, 6}, {4, 5} halmazokat. Ekkor a kiválasztott öt elem közül lesz kettő, melyek azonos halmazban lesznek, így összegük 9.
5 Kombinatorika Diszkrét matematika 1. középszint ősz 5. Szita módszer Hány olyan 1000-nél kisebb pozitív egész szám van, amely nem osztható sem 2-vel, sem 3-mal, sem 5-tel? Az 1000-nél kisebb számok összes vel osztható = mal osztható = tel osztható 999 = mal osztható 2 5-tel osztható 3 5-tel osztható tel osztható = = = = = 266
6 Kombinatorika Diszkrét matematika 1. középszint ősz 6. Szita módszer Tétel Legyenek A 1, A 2,..., A n véges halmazok. Ekkor n i=1 A i = n i=1 A i i<j A i A j + i<j<k A i A j A k... Példa Hány olyan 1000-nél kisebb szám van, amely nem osztható sem 2-vel, sem 3-mal, sem 5-tel? Először: Hány olyan 1000-nél kisebb szám van, amely osztható 2-vel vagy 3-mal vagy 5-tel? A 1 = {1 n 999 : 2 n} A 1 = ; A 2 = {1 n 999 : 3 n} A 2 = ; A 3 = {1 n 999 : 5 n} A 3 = Hasonlóan A 1 A 2 = , A1 A 3 = , A2 A 3 = , A 1 A 2 A 3 = vel vagy 3-mal vagy 5-tel osztható számok száma:
7 Kombinatorika Diszkrét matematika 1. középszint ősz 7. Általános szita formula Tétel Legyenek A 1,..., A n az A véges halmaz részhalmazai, f : A R tetszőleges függvény. Legyenek S = f (x); x A S r = f (x); 0<i 1<i 2<...<i r n x A i1 A i2... A ir S 0 = f (x). x A\ n i=1 A i Ekkor S 0 = S S 1 + S 2 S 3 ±... + ( 1) n S n. Példa A = {1, 2,..., 999}, A 1 = {n : 1 n < 1000, 2 n}, A 2 = {n : 1 n < 1000, 3 n}, A 3 = {n : 1 n < 1000, 5 n}, f (x) = 1. S 0 : 2-vel, 3-mal, 5-tel nem osztható 1000-nél kisebb számok száma.
8 Kombinatorika Diszkrét matematika 1. középszint ősz 8. Általános szita formula bizonyítása S 0 = S S 1 + S 2 S 3 ±... + ( 1) n S n : S 0 = f (x), S = f (x) x A\ n i=1 A i x A S r = f (x) 0<i 1<i 2<...<i r n x A i1 A i2... A ir Bizonyítás Ha x A \ n i=1 A i, akkor f (x) mindkét oldalon egyszer szerepel. Ha x n i=1 A i, legyenek A j1,..., A jt azon részhalmazok, melyeknek x eleme. Ekkor f (x) a bal oldalon nem szerepel. Jobb oldalon a f (x) 0<i 1<i 2< <i r n x A i1 A i2 A ir összegben szerepel, ha {i 1,..., i r } {j 1,..., j t }. Ilyen r elemű indexhalmaz ( t r) darab van. Így f (x) együtthatója t ( ) t ( 1) r = 0 (Biz.: gyakorlaton). r r=0
9 Kombinatorika Diszkrét matematika 1. középszint ősz 9. Véges halmazok Definíció Az X és Y halmazokat ekvivalensnek nevezzük, ha létezik f : X Y bijekció. Jelölése: X Y. Álĺıtás Ha n természetes szám, akkor {1, 2,... n} nem ekvivalens egyetlen valódi részhalmazával sem. Definíció Egy X halmazt végesnek nevezünk, ha valamely n N esetén ekvivalens az {1, 2,... n} halmazzal, egyébként végtelennek nevezzük. Azt az egyértelműen meghatározott természetes számot, amire egy adott X halmaz ekvivalens az {1, 2,..., n} halmazzal, az X számosságának nevezzük, jelölése: X (esetleg card(x ), (X ), #(X ).
10 Kombinatorika Diszkrét matematika 1. középszint ősz 10. Véges halmazok Tétel Legyenek X és Y halmazok. Ekkor 1 ha X véges, és Y X, akkor Y is véges, és Y X ; 2 ha X véges, és Y X, akkor Y < X ; 3 ha X és Y végesek és diszjunktak, akkor X Y is véges, és X Y = X + Y ; 4 ha X és Y végesek, akkor X Y + X Y = X + Y ; 5 ha X és Y végesek, akkor X Y is véges, és X Y = X Y ; 6 ha X véges, akkor 2 X is véges, és 2 X = 2 X. Álĺıtás (Skatulyaelv) Ha X és Y véges halmazok, és X > Y, akkor egy f : X Y függvény nem lehet injektív.
11 Elemi számelmélet Diszkrét matematika 1. középszint ősz 11. Oszthatóság Ha a és b racionális számok (b 0), akkor az a/b osztás mindig elvégezhető (és az eredmény szintén racionális). Ha a és b egész számok, az a/b osztás nem mindig végezhető el (a hányados nem feltétlenül lesz egész). Definíció Az a egész osztja a b egészet (b osztható a-val): a b, ha létezik olyan c egész, mellyel a c = b (azaz a 0 esetén b/a szintén egész). Példák 1 13, mert 1 13 = 13; 1 n, mert 1 n = n; 6 12, mert 6 2 = 12; 6 12, mert ( 6) ( 2) = 12. A definíció kiterjeszthető például a Gauss-egészekre: {a + bi : a, b Z}. Példák i 13, mert i ( 13i) = 13; 1 + i 2, mert (1 + i) (1 i) = 2.
12 Elemi számelmélet Diszkrét matematika 1. középszint ősz 12. Oszthatóság tulajdonságai Álĺıtás (HF) Minden a, b, c,... Z esetén 1 a a; 2 a b és b c a c; 3 a b és b a a = ±b; 4 a b és a b aa bb ; 5 a b ac bc; 6 ac bc és c 0 a b; 7 a b 1,..., b k a c 1 b c k b k ; 8 a 0, ui. a 0 = 0; 9 0 a a = 0; 10 1 a és 1 a; Példák 1 6 6; és ; 3 a 3 és 3 a a = ±3; és ; ; és ; 7 3 6, 9 3 6c 1 + 9c 2
13 Elemi számelmélet Diszkrét matematika 1. középszint ősz 13. Egységek Definíció Ha egy ε szám bármely másiknak osztója, akkor ε-t egységnek nevezzük. Álĺıtás Az egész számok körében két egység van: 1, 1. Bizonyítás A ±1 nyilván egység. Megfordítva: ha ε egység, akkor 1 = ε q valamely q egész számra. Mivel ε 1, q 1 ε = 1, azaz ε = ±1. Példa A Gauss-egészek körében az i is egység: a + bi = i(b ai). Megjegyzés Pontosan 1 osztói az egységek.
14 Elemi számelmélet Diszkrét matematika 1. középszint ősz 14. Asszociáltak Oszthatóság szempontjából nincs különbség a 12 ill. 12 között. Definíció Két szám asszociált, ha egymás egységszeresei. Megjegyzés a és b pontosan akkor asszociált, ha a b és b a. Bizonyítás = : Ha b = εa és a = ε b, ahol ε, ε egységek, akkor a b és b a nyilvánvaló. =: Legyen b = ab 1 és a = ba 1. Ekkor b = ab 1 = ba 1 b 1, így a 1 b 1 = 1, vagyis a 1 és b 1 is egységek. Definíció Egy számnak az asszociáltjai és az egységek a triviális osztói.
15 Elemi számelmélet Diszkrét matematika 1. középszint ősz 15. Prímek, felbonthatatlanok Definíció Ha egy nem-nulla, nem egység számnak a triviális osztóin kívül nincs más osztója, akkor felbonthatatlannak (irreducibilisnek) nevezzük. Példa 2, 2, 3, 3, 5, 5 felbonthatatlanok. Példa 6 nem felbonthatatlan, mert 6 = 2 3. Definíció Egy nem-nulla, nem egység p számot prímszámnak nevezünk, ha p ab p a vagy p b. Példa 2, 2, 3, 3, 5, 5. Példa 6 nem prímszám, mert de 6 2 és 6 3.
16 Elemi számelmélet Diszkrét matematika 1. középszint ősz 16. Prímek, felbonthatatlanok Álĺıtás Minden prímszám felbonthatatlan. Bizonyítás Legyen p prímszám és legyen p = ab egy felbontás. Igazolnunk kell, hogy a vagy b egység. Mivel p = ab, így p ab, ahonnan például p a. Ekkor a = pk = a(bk), azaz bk = 1, ahonnan következik, hogy b és k is egység. A fordított irány nem feltétlenül igaz: Z-ben igaz, (lásd később); {a + bi 5 : a, b Z}-ben nem igaz.
17 Elemi számelmélet Diszkrét matematika 1. középszint ősz 17. Maradékos osztás A számelméletben a fő eszközünk a maradékos osztás lesz: Tétel Tetszőleges a egész számhoz és b 0 egész számhoz egyértelműen léteznek q, r egészek, hogy a = bq + r és 0 r < b. Bizonyítás A tételt csak nemnegatív számok esetében bizonyítjuk. 1 Létezés: a szerinti indukcióval. a = 0 esetén q = r = 0 jó választás. Tegyük fel, hogy a-nál kisebb számok már feĺırhatók ilyen alakban. Ha a < b, akkor a = b 0 + a (q = 0, r = a). Ha a b, akkor legyen az indukciós feltevés értelmében a b = bq + r. Ekkor a = b(q + 1) + r (q = q + 1, r = r ). 2 Egyértelműség: legyen a = bq + r = bq + r. Ekkor b(q q ) = r r. Ez csak akkor lehet, ha q = q és r = r.
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Diszkrét matematika 1.
Diszkrét matematika 1. 201. ősz 1. Diszkrét matematika 1. 1. előadás Mérai László diái alapján Komputeralgebra Tanszék 201. ősz Kombinatorika Diszkrét matematika 1. 201. ősz 2. Kombinatorika Kombinatorika
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz
Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis
Diszkrét matematika 1.
Diszkrét matematika 1. 2017. ősz 1. Diszkrét matematika 1. 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
1. A maradékos osztás
1. A maradékos osztás Egész számok osztása Példa 223 = 7 31+6. Visszaszorzunk Kivonunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a,b Z esetén, ahol b 0, létezik olyan q,r Z, hogy a = bq +
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
1. Polinomok számelmélete
1. Polinomok számelmélete Oszthatóság, egységek. Emlékeztető Legyen R a C, R, Q, Z egyike. Azt mondjuk, hogy (1) a g R[x] polinom osztója f R[x]-nek R[x]-ben, ha létezik olyan h R[x] polinom, hogy f (x)
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla
Számelmélet (2017 február 8) Bogya Norbert, Kátai-Urbán Kamilla 1 Oszthatóság 1 Definíció Legyen a, b Z Az a osztója b-nek, ha létezik olyan c Z egész szám, melyre ac = b Jelölése: a b 2 Példa 3 12, 2
Klasszikus algebra előadás. Waldhauser Tamás április 28.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Diszkrét matematika I.
Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Kombinatorika
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Diszkrét matematika 1. középszint
Diszkrét matematika 1. középszint 2017. sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
1. Egész együtthatós polinomok
1. Egész együtthatós polinomok Oszthatóság egész számmal Emlékeztető (K3.1.3): Ha f,g Z[x], akkor f g akkor és csak akkor, ha van olyan h Z[x], hogy g = fh. Állítás (K3.1.6) Az f(x) Z[x] akkor és csak
Diszkrét matematika I.
Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 9. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Halmazok Diszkrét
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Prezentációk készítése
Prezentációk készítése 2009 1 / 14 Prezentációk készítése Beamer gyorstalpaló Írta: Kiss Emil ewkiss@cs.elte.hu 2009 Áttekintés Prezentációk készítése 2009 2 / 14 A beamer koncepciója A beamer egy L A
Számelmélet. 1. Oszthatóság Prímszámok
Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen
1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.
1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?
Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 1.
Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett
1. A maradékos osztás
1. A maradékos osztás Egész számok osztása. 223 = 7 31 + 6. Visszaszorzunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a, b Z esetén, ahol b 0, létezik olyan q, r Z, hogy a = bq + r és r < b.
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.
Diszkrét matematika I.
Diszkrét matematika I. - Vizsga anyag 1 EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Diszkrét matematika I. Vizsgaanyag Készítette: Nyilas Árpád Diszkrét matematika I. - Vizsga anyag 2 Bizonyítások 1)
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat
8.2. Gyűrűk Fogalmak, definíciók: Gyűrű, kommutatív gyűrű, integritási tartomány, test Az (R, +, ) algebrai struktúra gyűrű, ha + és R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ) félcsoport,
A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)
A 205/206. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA a speciális tanterv szerint haladó gimnazisták Javítási-értékelési útmutató. feladat Az {,2,...,n} halmaz
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged
Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül
Számelméleti alapfogalmak
1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
1. előadás: Halmazelmélet, számfogalom, teljes
1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,
1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!
1. Részcsoportok A részcsoport fogalma. 2.2.15. Definíció Legyen G csoport. A H G részhalmaz részcsoport, ha maga is csoport G műveleteire nézve. Jele: H G. Az altér fogalmához hasonlít. Példák (1) C +
OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet
Hatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Kongruenciák. Waldhauser Tamás
Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Bevezetés az algebrába az egész számok 2
Bevezetés az algebrába az egész számok 2 Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december
Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság
Algebrai alapismeretek az Algebrai síkgörbék c tárgyhoz 1 Integritástartományok, oszthatóság 11 Definíció A nullaosztómentes, egységelemes kommutatív gyűrűket integritástartománynak nevezzük 11 példa Integritástartományra
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 5. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Számfogalom bővítése Diszkrét matematika I. középszint
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Polinomok (el adásvázlat, április 15.) Maróti Miklós
Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes
Bizonyítási módszerek - megoldások. 1. Igazoljuk, hogy menden természetes szám esetén ha. Megoldás: 9 n n = 9k = 3 3k 3 n.
Bizonyítási módszerek - megoldások 1. Igazoljuk, hogy menden természetes szám esetén ha (a) 9 n 3 n (b) 4 n 2 n (c) 21 n 3 n (d) 21 n 7 n (e) 5 n 25 n (f) 4 n 16 n (g) 15 n (3 n 5 n) 9 n n = 9k = 3 3k
: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!
nomosztással a megoldást visszavezethetjük egy alacsonyabb fokú egyenlet megoldására Mivel a 4 6 8 6 egyenletben az együtthatók összege 6 8 6 ezért az egyenletnek gyöke az (mert esetén a kifejezés helyettesítési
A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:
Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika I. bizonyítások
Diszkrét matematika I. bizonyítások Készítette: Szegedi Gábor SZGRACI.ELTE DYDHMF (http://szegedigabor.web.elte.hu) Burcsi Péter tanár úr előadása alapján készült 2010-2011. őszi félév 1. Fogalmazza meg
Klasszikus algebra előadás. Waldhauser Tamás március 24.
Klasszikus algebra előadás Waldhauser Tamás 2014. március 24. Irreducibilitás 3.33. Definíció. A p T [x] polinom irreducibilis, ha legalább elsőfokú, és csak úgy bontható két polinom szorzatára, hogy az
Diszkrét matematika I. gyakorlat
Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség
Mikor van egy változó egy kvantor hatáskörében? Milyen tulajdonságokkal rendelkezik a,,részhalmaz fogalom?
Definíciók, tételkimondások Mondjon legalább három példát predikátumra. Sorolja fel a logikai jeleket. Milyen kvantorokat ismer? Mi a jelük? Hogyan kapjuk a logikai formulákat? Mikor van egy változó egy
Bevezetés az algebrába 1
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egész számok 2 H406 2016-09-13,15,18 Wettl Ferenc
2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
Diszkrét matematika II., 8. előadás. Vektorterek
1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,
2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N}
2. Feladatsor Oszthatóság, legnagyobb közös osztó, prímfaktorizáció az egész számok körében 1 Kötelező házi feladat(ok) 2., Határozzuk meg a ϕ:z Z, z [ z 5] leképezés magját. Adjuk meg a ker(ϕ)-hez tartozó
25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel
5. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel Axióma: Bizonyítás: olyan állítás, amelynek igazságát bizonyítás nélkül elfogadjuk.
Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1
Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
5. Az Algebrai Számelmélet Elemei
5. Az Algebrai Számelmélet Elemei 5.0. Bevezetés. Az algebrai számelmélet legegyszerűbb kérdései az ún. algebrai számtestek egészei gyűrűjének aritmetikai tulajdonságainak vizsgálata. Ezek legegyszerűbb
Számelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.
Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 017. ősz 1. Diszkrét matematika 1. középszint. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra