Diszkrét matematika 2. estis képzés

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Diszkrét matematika 2. estis képzés"

Átírás

1 Diszkrét matematika 2. estis képzés tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék tavasz

2 Grupoidok Diszkrét matematika 2. estis képzés tavasz 2. Emlékeztető Definíció Az egy binér műveletes struktúrát grupoidnak nevezzük. A (G; ) grupoid félcsoport, ha asszociatív G-n. Definíció Legyen (G; ) egy grupoid. Ha létezik s b G: g G : s b g = g, akkor az s b bal oldali semleges elem (bal oldali egységelem), ha létezik s j G: g G : g s j = g, akkor az s j jobb oldali semleges elem (jobb oldali egységelem). Ha s egyszerre bal oldali és jobb oldali semleges elem, akkor semleges elemnek (egységelemnek) nevezzük.

3 Grupoidok Diszkrét matematika 2. estis képzés tavasz 3. Semleges elem egyértelműsége Álĺıtás Ha a (G; ) grupoidban s b b.o.s.e., s j pedig j.o.s.e., akkor s b = s j. s j = s b s j = s b Következmény Semleges elem egyértelmű. Megjegyzés Tekintsük a (Z; ) grupoidot, ahol a b = b. Ekkor végtelen sok b.o.s.e. van, de nincs j.o.s.e.

4 Grupoidok Diszkrét matematika 2. estis képzés tavasz 4. Emlékeztető Definíció Legyen (G; ) egy grupoid az s semleges elemmel. Azt a g G elemet, amire: g g = s a g G elem bal oldali inverzének nevezzük, azt a g G elemet, amire: g g = s a g G elem jobb oldali inverzének nevezzük. Ha g egyszerre bal oldali és jobb oldali inverze g-nek, akkor g inverzének nevezzük.

5 Grupoidok Diszkrét matematika 2. estis képzés tavasz 5. Inverz egyértelműsége félcsoportban Álĺıtás Legyen (G; ) egy félcsoport az s semleges elemmel. Ha g b bal oldali inverze g-nek, g j pedig jobb oldali inverze, akkor g b = g j. g j = s g j = (g b g) g j = g b (g g j ) = g b s = g b Következmény Félcsoportban az inverz egyértelmű.

6 Grupoidok Diszkrét matematika 2. estis képzés tavasz 6. Művelettartó leképezések Definíció Legyenek (X ; ) és (Y ; ) grupoidok. Az f : X Y függvény művelettartó, ha a, b X esetén f (a b) = f (a) f (b). f (X )-et X homomorf képének nevezzük. Elnevezés A művelettartó leképezést homomorfizmusnak nevezzük, a bijektív homomorfizmust pedig izomorfizmusnak. Megjegyzés Grupoidoknál általában a -ot használjuk a művelet jelölésére, és általában elhagyjuk az operandusok közül.

7 Grupoidok Diszkrét matematika 2. estis képzés tavasz 7. Művelettartó leképezések Álĺıtás Legyenek f 1 : X Y és f 2 : Y Z homomorfizmusok. Ekkor f 2 f 1 is homomorfizmus. (f 2 f 1 )(ab) = f 2 (f 1 (ab)) = f 2 (f 1 (a)f 1 (b)) = f 2 (f 1 (a))f 2 (f 1 (b)) = = (f 2 f 1 )(a)(f 2 f 1 )(b) Álĺıtás Izomorfizmus inverze izomorfizmus. f 1 (f (a)f (b)) = f 1 (f (ab)) = ab = f 1 (f (a))f 1 (f (b))

8 Grupoidok Diszkrét matematika 2. estis képzés tavasz 8. Művelettartó leképezések Álĺıtás Legyen adott a (G; ) félcsoport és az f : G G homomorfizmus. Ekkor igazak a következők. 1 f (G) félcsoport. 2 Ha G-ben s b.o.s.e., j.o.s.e., illetve s.e., akkor f (G)-ben f (s) b.o.s.e., j.o.s.e., illetve s.e. 3 Ha G-ben g-nek g b.o.i.-e, j.o.i.-e, illetve inverze, akkor f (G)-ben f (g)-nek f (g ) b.o.i.-e, j.o.i.-e, illetve inverze. 4 Ha G-ben g és h felcserélhetőek, akkor f (G)-ben f (g) és f (h) felcserélhetőek.

9 Grupoidok Diszkrét matematika 2. estis képzés tavasz 9. Művelettartó leképezések Az egyszerűség kedvéért a G-beli elemek f szerinti képét jelölje a megfelelő -s verzió (pl. f (g) = g ). 1 (a b )c = (ab) c = ((ab)c) = (a(bc)) = a (bc) = a (b c ) 2 s g = (sg) = g g s = (gs) = g 3 g g = (g g) = s g g = (gg ) = s 4 g h = (gh) = (hg) = h g

10 Csoportok Diszkrét matematika 2. estis képzés tavasz 10. Emlékeztető Definíció A (G; ) grupoidot csoportnak nevezzük, ha Példák a művelet asszociatív G-n ( g 1, g 2, g 3 : (g 1 g 2 )g 3 = g 1 (g 2 g 3 )), létezik egységelem ( e G : g G : eg = ge = g), minden elemnek van inverze ( g G : g 1 G : gg 1 = g 1 g = e). (Z; +), (Q; +), (R; +), (C; +); (Q \ {0}; ), (R \ {0}; ), (C \ {0}; ); ({M R k k : det M 0}; ),({M C k k : det M 0}; ); (Z m ; +); (Z p \ {0}; ), ahol p prím; (E n = {ε C : ε n = 1}; ).

11 Csoportok Diszkrét matematika 2. estis képzés tavasz 11. Csoport ekvivalens jellemzése Tétel Egy (G; ) félcsoportra a következő feltételek ekvivalensek: (1) (G; ) csoport; (2) Minden a, b G esetén egyértelműen létezik az ax = b és az ya = b egyenletnek megoldása G-ben; (3) Minden a, b G esetén létezik az ax = b és az ya = b egyenletnek megoldása G-ben; (4) Létezik e b G bal oldali egységelem, és minden a G elemnek létezik e b -re vonatkozó a b G bal oldali inverze (a b a = e b ). A bizonyítás menete (1) (2) (3) (4) (1)

12 Csoportok Diszkrét matematika 2. estis képzés tavasz 12. Csoport ekvivalens jellemzése (1) (2) Ha x megoldása az ax = b egyenletnek, akkor a 1 (ax) = a 1 b, és így a 1 (ax) = (a 1 a)x = ex = x miatt x = a 1 b (G egységelemét e jelöli). Ráadásul x = a 1 b valóban megoldás, hiszen a(a 1 b) = (aa 1 )b = eb = b. Az ya = b egyenlet esete hasonló módon bizonyítható. (2) (3) Nyilvánvaló. (3) (4) Tekintsünk egy tetszőleges a G elemet, és legyen e b az ya = a egyenlet egy megoldása. Belátjuk, hogy e b bal oldali egységelem, vagyis minden b G esetén e b b = b. Legyen x 0 egy megoldása az ax = b egyenletnek. Ekkor e b b = e b (ax 0 ) = (e b a)x 0 = ax 0 = b. Tetszőleges c G esetén az yc = e b egyenlet egy megoldása jó lesz c-nek az e b -re vonatkozó bal oldali inverzének.

13 Csoportok Diszkrét matematika 2. estis képzés tavasz 13. Csoport ekvivalens jellemzése Biz.folyt. (4) (1) Legyen e b a bal oldali egységelem, továbbá egy tetszőleges a G esetén a b az e b -re vonatkozó bal oldali inverze, valamint a b az a b-nek az e b -re vonatkozó bal oldali inverze. Ekkor aa b = (e b a)a b = e b (aa b ) = (a ba b )(aa b ) = a b(a b a)a b = a b(e b a b ) = a ba b = e b. Tehát a b egyben jobb oldali inverze is a-nak, vagyis inverze, így tetszőleges elemnek van az e b -re vonatkozó inverze. Belátjuk még, hogy e b jobb oldali egységelem is, így egységelem: ae b = a(a b a) = (aa b )a = e b a = a.

14 Csoportok Diszkrét matematika 2. estis képzés tavasz 14. Egyszerűsítési szabály Következmény (egyszerűsítési szabály) Csoportban a művelet reguláris, vagyis ac = bc esetén a = b, illetve ca = cb esetén a = b. ac = bc = d esetén a és b is megoldása az yc = d egyenletnek, aminek a csoport definíciójával ekvivalens (2) megfogalmazás alapján egyértelmű a megoldása. A ca = cb eset hasonlóan bizonyítható. Megjegyzés (N; +) egységelemes félcsoport, teljesül az egyszerűsítési szabály, mégsem csoport.

15 Csoportok Diszkrét matematika 2. estis képzés tavasz 15. Fontos feltétel Példa Legyen (H; ) az a struktúra, amelyre H = {a, b, c}, a műveleti táblája pedig a következő: a b c a b a c b a c b c c b a Ekkor tetszőleges h 1, h 2 H esetén megoldható a h 1 x = h 2, illetve az yh 1 = h 2 egyenlet H-ban, (H; ) mégsem csoport, hiszen nincs egységelem, így inverze sincs minden elemnek. Ez azért lehetséges, mert a nem asszociatív H-n: (ab)c = ac = c a = ab = a(bc).

16 Csoportok Diszkrét matematika 2. estis képzés tavasz 16. Számolás csoportban Álĺıtás (szorzat inverze) (ab) 1 = b 1 a 1 (b 1 a 1 )(ab) = b 1 (a 1 a)b = b 1 eb = b 1 (eb) = b 1 b = e Megjegyzés (hatványozás csoportban) A (G; ) csoportban g G és n Z + esetén g n = g g... g. }{{} n db Példa (Z, +) esetén 2 3 = = 6.

17 Csoportok Diszkrét matematika 2. estis képzés tavasz 17. Komplexusok Definíció Legyen (G; ) csoport, ekkor K G esetén K-t komplexusnak nevezzük. A komplexusok halmazán értelmezzük a komplexusszorzást: K, M G esetén KM = {km k K m M}. Álĺıtás Legyen (G; ) csoport e egységelemmel, P = {K K G}. Ekkor (P; ) egységelemes félcsoport E = {e} egységelemmel. A komplexusszorzás definíciója alapján (P; ) grupoid. K(MN) = {k(mn) k K m M n N} = = {(km)n k K m M n N} = (KM)N EK = {ek k K} = {k k K} = {ke k K} = KE

18 Csoportok Diszkrét matematika 2. estis képzés tavasz 18. Részcsoportok Definíció Legyen (G; ) csoport, továbbá H G. Ha (H; H H ) csoport, akkor a (H; H H ) részcsoportja a (G; ) csoportnak. Jelölés: (H; H H ) (G; ) Megjegyzés Egy adott (G; ) csoport és H G esetén, ha azt mondjuk, hogy H részcsoportja G-nek, vagy azt írjuk, hogy H G, akkor ez alatt azt értjük, hogy (H; H H ) részcsoportja a (G; ) csoportnak. Példák (2Z; +) (Z; +) (Q \ {0}; ) (R \ {0}; ) (E 2 ; ) (E 4 ; )

19 Csoportok Diszkrét matematika 2. estis képzés tavasz 19. Részcsoport ekvivalens jellemzése Jelölés Ha (G; ) csoport, akkor K G esetén K 1 = {k 1 k K}. Tétel Legyen (G; ) csoport, továbbá H G. Az alábbi feltételek ekvivalensek: (1) H részcsoportja G-nek; (2) a leszűkítése H H-ra egy H H-t H-ba képező leképzés, H tartalmazza (G; ) egységelemét, és H 1 H; (3) H, HH H és H 1 H; (4) H és H 1 H H. A bizonyítás menete (1) (2) (3) (4) (1)

20 Csoportok Diszkrét matematika 2. estis képzés tavasz 20. Részcsoport ekvivalens jellemzése (1) (2): - Mivel H részcsoport, ezért algebrai struktúra is. - Legyen e H H egységeleme, e G pedig G-é. Ekkor tetszőleges h H esetén he H = h és he G = h, így az egyszerűsítési szabály miatt e H = e G. - Legyen h H-nak a H-beli inverze h 1, a G-beli pedig h 1. Ekkor H h 1 G h = e H és h 1 H h = e H, így az egyszerűsítési szabály miatt h 1 G (2) (3): Nyilvánvaló. (3) (4): H 1 H H 1 H HH H (4) (1): - h H e G = h 1 h H 1 H H - h 1 = h 1 e G H 1 H H - h 1 h 2 = (h 1 1 ) 1 h 2 H 1 H H G = h 1 H.

21 Csoportok Diszkrét matematika 2. estis képzés tavasz 21. Részcsoport ekvivalens jellemzése Megjegyzés A tételben szereplő tartalmazások nem valódiak. h H h 1 H 1 h 1 H h = (h 1 ) 1 H 1 h H h = eh HH h H h = eh H 1 H

22 Csoportok Diszkrét matematika 2. estis képzés tavasz 22. Részcsoportok metszete Következmény Legyen (G; ) csoport, továbbá H γ G, ahol γ Γ. Ekkor H = γ Γ H γ esetén H G. Legyen e az egységeleme G-nek. Minden γ Γ esetén: - e H γ, illetve - H 1 H Hγ 1 H γ H γ, így H, illetve H 1 H H.

23 Csoportok Diszkrét matematika 2. estis képzés tavasz 23. Részcsoportok uniója Megjegyzés Részcsoportok uniója viszont nem feltétlenül részcsoport. Példa (Klein-csoport) Legyen K = {e, a, b, c}, a K-n értelmezett művelet pedig a következő műveleti táblával definiált: e a b c e e a b c a a e c b b b c e a c c b a e Ekkor H a = {e, a} és H b = {e, b} részcsoportok, de H a H b = {e, a, b} nem az.

24 Csoportok Diszkrét matematika 2. estis képzés tavasz 24. Generátum Definíció Legyen (G, ) csoport és K G egy komplexusa. K generátuma K = L. L G K L Megjegyzés K generátuma G-nek a K halmazt tartalmazó legszűkebb részcsoportja. Definíció Ha K = G, akkor K-t a G generátorrendszerének nevezzük. Az egyelemű generátorrendszert generátornak hívjuk, g = G esetén a g által generált ciklikus csoportról beszélünk.

25 Csoportok Diszkrét matematika 2. estis képzés tavasz 25. Generátum Tétel (generátum elemei) Következmény Elem generátuma...

26 Csoportok Diszkrét matematika 2. estis képzés tavasz 26. Ciklikus csoportok Álĺıtás Legyen (G; ) csoport, továbbá ϕ: G G homomorfizmus. Ekkor n Z-re ϕ(g n ) = (ϕ(g)) n. n N esetén TI.: n = 0-ra nyilvánvalóan teljesül. Tfh. n = k-ra igaz az összefüggés. Ekkor n = k + 1 esetén: ϕ(g k+1 ) = ϕ(g k g) = ϕ(g k )ϕ(g) = (ϕ(g)) k ϕ(g) = (ϕ(g)) k+1. Ha n < 0, akkor n N, így: ϕ(g n ) = ϕ((g 1 ) n ) = (ϕ(g 1 )) n = ((ϕ(g)) 1 ) n = (ϕ(g)) n. Következmény Ciklikus csoport homomorf képe ciklikus.

27 Csoportok Diszkrét matematika 2. estis képzés tavasz 27. Rend Definíció Rend...

28 Csoportok Diszkrét matematika 2. estis képzés tavasz 28. Ciklikus csoportok Tétel Végtelen ciklikus csoport izomorf Z additív csoportjával, n elemű ciklikus csoport izomorf Z n additív csoportjával. Legyen (G; ) ciklikus csoport e egységelemmel, G = g = {g n n Z}. Az f : Z G leképezés szürjektív (Miért?) és homomorfizmus is, hiszen: f (n + m) = g n+m = g n g m = f (n)f (m). Ha injektív is, akkor izomorfizmus, így (Z; +) = (G; ). Különben i, j Z, i > j : g i = g j, amiből g i j = e, vagyis van olyan m Z +, amire g m = e. Legyen n Z + a legkisebb ilyen. Ekkor e, g, g 2,..., g n 1 mind különbözőek (Miért?), és i j (n) esetén: g i = g j+kn = g j (g n ) k = g j e k = g j, így G-nek n eleme van. (Vagyis f injektív, ha G végtelen.) Tehát f szürjektív, művelettartó, és minden mod n maradékosztályon konstans.

29 Csoportok Diszkrét matematika 2. estis képzés tavasz 29. Ciklikus csoportok Biz.folyt. Legyen f : Z n G a következőképp definiálva: f (a) := f (a). Ekkor f szürjektív, ebből kifolyólag injektív is, hiszen Z n -nek és G-nek ugyanannyi eleme van (Miért?), továbbá homomorfizmus: f (a + b) = f (a + b) = f (a + b) = f (a)f (b) = f (a) f (b). Következmény Ciklikus csoport kommutatív. Észrevétel Véges rendű elem rendje megegyezik az általa generált részcsoport rendjével.

30 Csoportok Diszkrét matematika 2. estis képzés tavasz 30. Ciklikus csoportok Tétel Ciklikus csoport részcsoportja ciklikus....

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

ELTE IK Esti képzés tavaszi félév. Tartalom

ELTE IK Esti képzés tavaszi félév. Tartalom Diszkrét Matematika 2 vizsgaanyag ELTE IK Esti képzés 2017. tavaszi félév Tartalom 1. Számfogalom bővítése, homomorfizmusok... 2 2. Csoportok... 9 3. Részcsoport... 11 4. Generátum... 14 5. Mellékosztály,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat 8.2. Gyűrűk Fogalmak, definíciók: Gyűrű, kommutatív gyűrű, integritási tartomány, test Az (R, +, ) algebrai struktúra gyűrű, ha + és R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ) félcsoport,

Részletesebben

Gy ur uk aprilis 11.

Gy ur uk aprilis 11. Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. március 9. 1. Diszkrét matematika 2. 4. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. március 9. Gráfelmélet Diszkrét

Részletesebben

Általános algebra. 1. Algebrai struktúra, izomorfizmus. 3. Kongruencia, faktoralgebra március Homomorfizmus, homomorfiatétel

Általános algebra. 1. Algebrai struktúra, izomorfizmus. 3. Kongruencia, faktoralgebra március Homomorfizmus, homomorfiatétel 1. Algebrai struktúra, izomorfizmus Általános algebra 2. Részalgebra, generálás 3. Kongruencia, faktoralgebra 2013 március 8. 4. Homomorfizmus, homomorfiatétel 1. Algebrai struktúra, izomorfizmus 2. Részalgebra,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!

1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet! 1. Részcsoportok A részcsoport fogalma. 2.2.15. Definíció Legyen G csoport. A H G részhalmaz részcsoport, ha maga is csoport G műveleteire nézve. Jele: H G. Az altér fogalmához hasonlít. Példák (1) C +

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 5. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Számfogalom bővítése Diszkrét matematika I. középszint

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Csoportok II március 7-8.

Csoportok II március 7-8. Csoportok II 2014 március 7-8. 1. Mellékosztályok 2. Lagrange tétele 3. Kompatibilis osztályozás, kongruenciareláció 4. Normálosztó, faktorcsoport 5. Konjugálás 6. Homomorfizmus, homomorfiatétel 7. Permutációcsoportok

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes 1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz

Részletesebben

1. Mellékosztály, Lagrange tétele

1. Mellékosztály, Lagrange tétele 1. Mellékosztály, Lagrange tétele 1.1. Definíció. Legyen (G, ) csoport, H G részcsoport és g G tetszőleges elem. Ekkor a {gh h H} halmazt a H részcsoport g elem szerinti baloldali mellékosztályának nevezzük

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében? Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Mikor van egy változó egy kvantor hatáskörében? Milyen tulajdonságokkal rendelkezik a,,részhalmaz fogalom?

Mikor van egy változó egy kvantor hatáskörében? Milyen tulajdonságokkal rendelkezik a,,részhalmaz fogalom? Definíciók, tételkimondások Mondjon legalább három példát predikátumra. Sorolja fel a logikai jeleket. Milyen kvantorokat ismer? Mi a jelük? Hogyan kapjuk a logikai formulákat? Mikor van egy változó egy

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét

Részletesebben

FÉLCSOPORTOK NAGY ATTILA

FÉLCSOPORTOK NAGY ATTILA FÉLCSOPORTOK NAGY ATTILA 2013.06.28 Tartalomjegyzék Bevezető 4 1. A félcsoport és csoport fogalma 6 1.1. A művelet fogalma.............................. 6 1.2. A félcsoport fogalma.............................

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Ha G egy csoport, akkor g G : gg = Gg = G (mert gg G evidens és y G : y = g(g 1 y) gg, tehát G gg, ahonnan G = gg, hasonlóan a másik).

Ha G egy csoport, akkor g G : gg = Gg = G (mert gg G evidens és y G : y = g(g 1 y) gg, tehát G gg, ahonnan G = gg, hasonlóan a másik). 4. Részcsoportok 4.A. Csoport részhalmazainak félcsoportja Legyen (G, ) egy csoport és tekintsük G részhalmazait. Ha H, K G (H, K P(G)) definiáljuk ezek szorzatát így: HK = {hk : h H, k K}. Ha H = {h}

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

Algebra és számelmélet blokk III.

Algebra és számelmélet blokk III. Algebra és számelmélet blokk III. 2008/2009 tavasz Károlyi Gyula órái alapján Molnár Attila 2. óra 2009. március 10. 1. Generált, normális és karakterisztikus részcsoportok 1.1. Definíció (Generált részcsoport).

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

3. Feloldható csoportok

3. Feloldható csoportok 3. Feloldható csoportok 3.1. Kommutátor-részcsoport Egy csoport két eleme, a és b felcserélhető, ha ab = ba, vagy átrendezve az egyenlőséget, a 1 b 1 ab = 1. Ezt az [a,b] = a 1 b 1 ab elemet az a és b

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1 Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival

Részletesebben

Lineáris algebra. =0 iє{1,,n}

Lineáris algebra. =0 iє{1,,n} Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai

Részletesebben

Diszkrét matematika gyakorlat 1. ZH október 10. α csoport

Diszkrét matematika gyakorlat 1. ZH október 10. α csoport Diszkrét matematika gyakorlat 1. ZH 2016. október 10. α csoport 1. Feladat. (5 pont) Adja meg az α 1 β szorzatrelációt, amennyiben ahol A {1, 2, 3, 4}. α {(1, 2), (1, 3), (2, 1), (3, 1), (3, 4), (4, 4)}

Részletesebben

MM CSOPORTELMÉLET GYAKORLAT ( )

MM CSOPORTELMÉLET GYAKORLAT ( ) MM4122-1 CSOPORTELMÉLET GYAKORLAT (2008.12.01.) 1. Ismétlés szeptember 1.szeptember 8. 1.1. Feladat. Döntse el, hogy az alábbi állítások közül melyek igazak és melyek (1) Az A 6 csoportnak van 6-odrend

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

1. Bevezetés A félév anyaga. Gyűrűk és testek Ideál, faktorgyűrű, főideálgyűrű Gauss-egészek, két négyzetszám tétel Az alaptételes gyűrűk jellemzése A számfogalom lezárása Algebrai és transzcendens számok

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Klasszikus algebra előadás. Waldhauser Tamás április 28. Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. EÖTVÖS LORÁND TUDOMÁNYEGYETEM - INFORMATIKAI KAR Diszkrét matematika I. Vizsgaanyag Cserép Máté 2009.01.20. A dokumentum a programtervező informatikus szak Diszkrét matematika I. kurzusának vizsgaanyagát

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

DISZKRÉT MATEMATIKA 2

DISZKRÉT MATEMATIKA 2 DISZKRÉT MATEMATIKA 2 KÉRDÉSEK Készítette: Molnár Krisztián (MOKOABI.ELTE) Aktualizálva: 2011. június 28. (1.) Mely tétel alapján számolhatjuk ki véges sok egész szám legnagyobb közös osztóját prímfelbontás

Részletesebben

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Leképezések. Leképezések tulajdonságai. Számosságok.

Leképezések. Leképezések tulajdonságai. Számosságok. Leképezések Leképezések tulajdonságai. Számosságok. 1. Leképezések tulajdonságai A továbbiakban legyen A és B két tetszőleges halmaz. Idézzünk fel néhány definíciót. 1. Definíció (Emlékeztető). Relációknak

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Bevezetés az algebrába az egész számok 2

Bevezetés az algebrába az egész számok 2 Bevezetés az algebrába az egész számok 2 Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

Az eddig leadott anyag Diszkrét matematika II tárgyhoz tavasz

Az eddig leadott anyag Diszkrét matematika II tárgyhoz tavasz Az eddig leadott anyag Diszkrét matematika II tárgyhoz 2011. tavasz A (+)-szal jelzett tételek bizonyítással együtt, a (-)-szal anélkül értendők! A tételek esetleges neve, vagy száma a fóliákkal van szinkronban,

Részletesebben

MTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA. 1. Csoportelméleti alapfogalmak

MTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA. 1. Csoportelméleti alapfogalmak MTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA 1. Csoportelméleti alapfogalmak 1.1. Feladat. Csoportot alkotnak-e az alábbi halmazok a megadott műveletre nézve? (1) (Z 2 ; ), (2) (Z 2 ; +), (3) (R \ { 1}; ),

Részletesebben

FELVÉTELI VIZSGA, július 17.

FELVÉTELI VIZSGA, július 17. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 2017. július 17. Írásbeli vizsga MATEMATIKÁBÓL I. TÉTEL (30 pont) 1) (10 pont) Igazoljuk, hogy tetszőleges m R esetén

Részletesebben

SE EKK EIFTI Matematikai analízis

SE EKK EIFTI Matematikai analízis SE EKK EIFTI Matematikai analízis 2. Blokk A számelmélet a matematikának a számokkal foglalkozó ága. Gyakran azonban ennél sz kebb értelemben használják a számelmélet szót: az egész számok elméletét értik

Részletesebben

Kongruenciák. Waldhauser Tamás

Kongruenciák. Waldhauser Tamás Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 9. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Halmazok Diszkrét

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

1. Bevezetés A félév anyaga. Lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Testek március 29.

Testek március 29. Testek 2014. március 29. 1. Alapfogalmak 2. Faktortest 3. Testbővítések 1. Alapfogalmak 2. Faktortest 3. Testbővítések [Sz] V/3, XIII/1,2; [F] III/1-7 (+ előismeretek!) Definíció Ha egy nemüres halmazon

Részletesebben

Matematika szigorlat június 17. Neptun kód:

Matematika szigorlat június 17. Neptun kód: Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat

Részletesebben

Csoportelmélet ( ) ϕ ψ adatokra ( ) ( ) ( ) ( )

Csoportelmélet ( ) ϕ ψ adatokra ( ) ( ) ( ) ( ) Csoportelmélet ( A csoportaxiómák nem tartalmaznak ellentmondást mert az { } csoportot alkot. Fizika felépítése: fizikai valóság fizikai modellek matematikai modellek (átjárhatók reprezentációk (áttranszformálhatók

Részletesebben

Diszkrét matematika 1. középszint

Diszkrét matematika 1. középszint Diszkrét matematika 1. középszint 2017. sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben