Nagy Gábor compalg.inf.elte.hu/ nagy ősz
|
|
- Erika Szabó
- 6 évvel ezelőtt
- Látták:
Átírás
1 Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra Tanszék 017. ősz
2 Komplex számok Diszkrét matematika 1. estis képzés 017. ősz. Komplex számok gyökei Példa ( ) 8-t: 1+i Számoljuk ki ( ) 8 ( ) 8 ( 1+i = i = cos π 4 + i sin ) π 8 4 = = cos ( 8 π 4 ) + i sin ( 8 π 4 ) = cos π + i sin π = 1 További komplex számok, melyeknek a 8-adik hatványa 1: 1; 1; i : i 8 = (i ) 4 = ( 1) 4 = 1; i; 1+i ; 1+i ; sőt: ±i 1+i : ( i 1+i ) 8 = i 8 ( 1+i ) 8 = 1 1 = 1.
3 Komplex számok Diszkrét matematika 1. estis képzés 017. ősz 3. Gyökvonás A z = z (cos ϕ + i sin ϕ) és w = w (cos ψ + i sin ψ) trigonometrikus alakban megadott komplex számok pontosan akkor egyenlőek: z (cos ϕ + i sin ϕ) = w (cos ψ + i sin ψ), ha z = w ϕ = ψ + k π valamely k Z szám esetén. n-edik gyökvonás: Legyen z n = w: z n = z n (cos nϕ + i sin nϕ) = w (cos ψ + i sin ψ). Ekkor z n = w z = n w nϕ = ψ + k π valamely k Z esetén, vagyis: ϕ = ψ n + k π n valamely k Z esetén. Ha k {0, 1,..., n 1}, akkor ezek mind különböző komplex számot adnak.
4 Komplex számok Diszkrét matematika 1. estis képzés 017. ősz 4. Gyökvonás Tétel Legyen z = z (cos ϕ + i sin ϕ), n N. Ekkor a z n-edik gyökei azok a w-k, amikre w n = z: w = n ( ( ϕ z cos n + kπ ) ( ϕ + i sin n n + kπ )) n k = 0, 1,..., n 1.
5 Komplex számok Diszkrét matematika 1. estis képzés 017. ősz 5. Gyökvonás w = n ( ( ϕ z cos n + kπ ) ( ϕ + i sin n n + kπ )) : k = 0, 1,..., n 1. n Példa Számítsuk ki a 6 1 i 3+i értékét! 1 i = ( i ) = ( cos 7π 4 + i sin 7π 4 ( 3 ) 3 + i = + i 1 = ( cos π 6 + i sin ) π 6 Mivel 7π i π 6 = 19π 1, ezért: 3+i = 6 1 ( cos 19π 19π 1 + i sin 1 ( cos 19π+4kπ 7 + i sin 19π+4kπ 7 = 1 1 ) ) = ) : k = 0, 1,..., 5.
6 Komplex számok Diszkrét matematika 1. estis képzés 017. ősz 6. Komplex egységgyökök Az ε n = 1 feltételnek eleget tevő komplex számok az n-edik egységgyökök: ( ε k = ε (n) k = cos kπ n + i sin kπ ) : k = 0, 1,..., n 1. n Nyolcadik komplex egységgyökök ε ε 3 ε 1 ε 4 ε 0 = 1 ε 5 ε 7 ε 6
7 Komplex számok Diszkrét matematika 1. estis képzés 017. ősz 7. Gyökvonás Pozitív valós számok négyzetgyöke: legyen r > 0 valós szám, ekkor az x = r megoldásai: ± r. Tétel Legyen z C nemnulla komplex szám. n N és w C olyan, hogy w n = z. Ekkor z n-edik gyökei feĺırhatóak a következő alakban: wε k : k = 0, 1,... n 1. Bizonyítás A wε k számok mind n-edik gyökök: (wε k ) n = w n ε n k = z 1 = z. Ez n különböző szám, így az összes gyököt megkaptuk.
8 Komplex számok Diszkrét matematika 1. estis képzés 017. ősz 8. Rend Bizonyos komplex számok hatványai periodikusak ismétlődnek: 1, 1, 1,... 1, 1, 1, 1,... i, 1, i, 1, i, 1,... 1+i, i, 1+i, 1, 1 i, i, 1 i, 1, 1+i, i,... Általában: cos( π n ) + i sin( π n )-nek n darab különböző hatványa van. Egy z komplex szám különböző (egész kitevős) hatványainak számát a z rendjének nevezzük és o(z)-vel jelöljük. Példa 1 rendje 1; rendje :, 4, 8, 16,... ; 1 rendje : 1, 1; i rendje 4: 1, i, 1, i.
9 Komplex számok Diszkrét matematika 1. estis képzés 017. ősz 9. Rend Tétel Egy z komplex számnak vagy bármely két egész kitevős hatványa különböző (ilyenkor a rendje végtelen), vagy pedig a hatványok a rend szerint periodikusan ismétlődnek. A rend a legkisebb olyan pozitív d szám, melyre z d = 1. Továbbá z k = z l o(z) k l. Speciálisan z k = 1 o(z) k. Bizonyítás NB. Talán később...
10 Komplex számok Diszkrét matematika 1. estis képzés 017. ősz 10. Primitív egységgyökök Az n-edik egységgyökök rendje nem feltétlenül n: 4-edik egységgyökök: 1, i, 1, i. 1 rendje 1; 1 rendje ; i rendje 4. Az n-ed rendű n-edik egységgyökök a primitív n-edik egységgyökök. A tétel következményei: Következmény(HF) Egy primitív n-edik egységgyök hatványai pontosan az n-edik egységgyökök. Egy primitív n-edik egységgyök pontosan akkor k-adik egységgyök, ha n k.
11 Komplex számok Diszkrét matematika 1. estis képzés 017. ősz 11. Primitív egységgyökök Példa Primitív 1. egységgyök: 1; Primitív. egységgyök: 1; Primitív 3. egységgyökök: 1±i 3 ; Primitív 4. egységgyökök: ±i; Primitív 5. egységgyökök:... (HF) Primitív 6. egységgyökök: 1±i 3. Álĺıtás(HF) Egy cos ( ) ( kπ n + i sin kπ ) n n-edik egységgyök pontosan akkor primitív n-edik egységgyök, ha (n, k) = 1.
12 Elemi számelmélet Diszkrét matematika 1. estis képzés 017. ősz 1. Oszthatóság Ha a és b racionális számok (b 0), akkor az a/b osztás mindig elvégezhető (és az eredmény szintén racionális). Ha a és b egész számok, az a/b osztás nem mindig végezhető el (a hányados nem feltétlenül lesz egész). Az a egész osztja a b egészet (b osztható a-val): a b, ha létezik olyan c egész, mellyel a c = b (azaz a 0 esetén b/a szintén egész). Példák 1 13, mert 1 13 = 13; 1 n, mert 1 n = n; 6 1, mert 6 = 1; 6 1, mert ( 6) ( ) = 1. A definíció kiterjeszthető például a Gauss-egészekre: {a + bi : a, b Z}. Példák i 13, mert i ( 13i) = 13; 1 + i, mert (1 + i) (1 i) =.
13 Elemi számelmélet Diszkrét matematika 1. estis képzés 017. ősz 13. Oszthatóság tulajdonságai Álĺıtás (HF) Minden a, b, c,... Z esetén 1 a a; a b és b c a c; 3 a b és b a a = ±b; 4 a b és a b aa bb ; 5 a b ac bc; 6 ac bc és c 0 a b; 7 a b 1,..., b k a c 1 b c k b k ; 8 a 0, u.i. a 0 = 0; 9 0 a a = 0; 10 1 a és 1 a; Példák 1 6 6; 6 és 6 1 1; 3 a 3 és 3 a a = ±3; 4 4 és ; ; és ; 7 3 6, 9 3 6c 1 + 9c
14 Elemi számelmélet Diszkrét matematika 1. estis képzés 017. ősz 14. Egységek Ha egy ε szám bármely másiknak osztója, akkor ε-t egységnek nevezzük. Álĺıtás Az egész számok körében két egység van: 1, 1. Bizonyítás A ±1 nyilván egység. Megfordítva: ha ε egység, akkor 1 = ε q valamely q egész számra. Mivel ε 1, q 1 ε = 1, azaz ε = ±1. Példa A Gauss-egészek körében az i is egység: a + bi = i(b ai). Megjegyzés Pontosan 1 osztói az egységek.
15 Elemi számelmélet Diszkrét matematika 1. estis képzés 017. ősz 15. Asszociáltak Oszthatóság szempontjából nincs különbség a 1 ill. 1 között. Két szám asszociált, ha egymás egységszeresei. Megjegyzés a és b pontosan akkor asszociált, ha a b és b a. Bizonyítás = : Ha b = εa és a = ε b, ahol ε, ε egységek, akkor a b és b a nyilvánvaló. =: Legyen b = ab 1 és a = ba 1. Ekkor b = ab 1 = ba 1 b 1, így a 1 b 1 = 1, vagyis a 1 és b 1 is egységek. Egy számnak az asszociáltjai és az egységek a triviális osztói.
16 Elemi számelmélet Diszkrét matematika 1. estis képzés 017. ősz 16. Prímek, felbonthatatlanok Ha egy nem-nulla, nem egység számnak a triviális osztóin kívül nincs más osztója, akkor felbonthatatlannak (irreducibilisnek) nevezzük. Példa,, 3, 3, 5, 5 felbonthatatlanok. Példa 6 nem felbonthatatlan, mert 6 = 3. Egy nem-nulla, nem egység p számot prímszámnak nevezünk, ha p ab p a vagy p b. Példa,, 3, 3, 5, 5. Példa 6 nem prímszám, mert 6 3 de 6 és 6 3.
17 Elemi számelmélet Diszkrét matematika 1. estis képzés 017. ősz 17. Prímek, felbonthatatlanok Álĺıtás Minden prímszám felbonthatatlan. Bizonyítás Legyen p prímszám és legyen p = ab egy felbontás. Igazolnunk kell, hogy a vagy b egység. Mivel p = ab, így p ab, ahonnan például p a. Ekkor a = pk = a(bk), azaz bk = 1, ahonnan következik, hogy b és k is egység. A fordított irány nem feltétlenül igaz: Z-ben igaz, (lásd később); {a + bi 5 : a, b Z}-ben nem igaz.
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Diszkrét matematika 1.
Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 017. ősz 1. Diszkrét matematika 1. középszint. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz
Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18
Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
1. Polinomok számelmélete
1. Polinomok számelmélete Oszthatóság, egységek. Emlékeztető Legyen R a C, R, Q, Z egyike. Azt mondjuk, hogy (1) a g R[x] polinom osztója f R[x]-nek R[x]-ben, ha létezik olyan h R[x] polinom, hogy f (x)
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
1. A maradékos osztás
1. A maradékos osztás Egész számok osztása Példa 223 = 7 31+6. Visszaszorzunk Kivonunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a,b Z esetén, ahol b 0, létezik olyan q,r Z, hogy a = bq +
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
1. Egész együtthatós polinomok
1. Egész együtthatós polinomok Oszthatóság egész számmal Emlékeztető (K3.1.3): Ha f,g Z[x], akkor f g akkor és csak akkor, ha van olyan h Z[x], hogy g = fh. Állítás (K3.1.6) Az f(x) Z[x] akkor és csak
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.
Kalkulus. Komplex számok
Komplex számok Komplex számsík A komplex számok a valós számok természetes kiterjesztése, annak érdekében, hogy a gyökvonás művelete elvégezhető legyen a negatív számok körében is. Vegyük tehát hozzá az
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla
Számelmélet (2017 február 8) Bogya Norbert, Kátai-Urbán Kamilla 1 Oszthatóság 1 Definíció Legyen a, b Z Az a osztója b-nek, ha létezik olyan c Z egész szám, melyre ac = b Jelölése: a b 2 Példa 3 12, 2
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Komplex számok. (a, b) + (c, d) := (a + c, b + d)
Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)
Hatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
1. Komplex szám rendje
1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Kongruenciák. Waldhauser Tamás
Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek
Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Nevezetes számelméleti problémák Waldhauser Tamás 2014 őszi félév Tartalom 1. Számok felbontása hatványok összegére 2. Prímszámok 3. Algebrai és transzcendens számok Tartalom
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 1. középszint
Diszkrét matematika 1. középszint 2017. sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Klasszikus algebra előadás. Waldhauser Tamás április 28.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,
1. Komplex számok. x 2 = 1 és x 2 + x + 1 = 0. egyenletek megoldását számnak tekinthessük:
. Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését
Polinomok (el adásvázlat, április 15.) Maróti Miklós
Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes
5. Az Algebrai Számelmélet Elemei
5. Az Algebrai Számelmélet Elemei 5.0. Bevezetés. Az algebrai számelmélet legegyszerűbb kérdései az ún. algebrai számtestek egészei gyűrűjének aritmetikai tulajdonságainak vizsgálata. Ezek legegyszerűbb
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat
8.2. Gyűrűk Fogalmak, definíciók: Gyűrű, kommutatív gyűrű, integritási tartomány, test Az (R, +, ) algebrai struktúra gyűrű, ha + és R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ) félcsoport,
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Komplex számok. Komplex számok és alakjaik, számolás komplex számokkal.
Komplex számok Komplex számok és alakjaik, számolás komplex számokkal. 1. Komplex számok A komplex számokra a valós számok kiterjesztéseként van szükség. Ugyanis már középiskolában el kerülnek olyan másodfokú
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
1. feladatsor Komplex számok
. feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4
Waldhauser Tamás szeptember 8.
Algebra és számelmélet előadás Waldhauser Tamás 2016. szeptember 8. Tematika Komplex számok, kanonikus és trigonometrikus alak. Moivre-képlet, gyökvonás, egységgyökök, egységgyök rendje, primitív egységgyökök.
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten KOMPLEX SZÁMOK Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Történeti bevezetés
Számelmélet. 1. Oszthatóság Prímszámok
Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen
OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 11. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Kongruenciák Diszkrét matematika I. középszint 2014.
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Komplex számok StKis, EIC 2019-02-06 Wettl Ferenc
1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b).
1. Polinomfüggvények Behelyettesés polinomba. Definíció Legyen b komplex szám. Az f (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n polinom b helyen felvett helyettesítési értéke f (b) = a 0 + a 1 b + a 2 b
Bevezetés az algebrába az egész számok 2
Bevezetés az algebrába az egész számok 2 Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december
Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23
Komplex számok Wettl Ferenc 2014. szeptember 14. Wettl Ferenc Komplex számok 2014. szeptember 14. 1 / 23 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet
10. Feladat. Döntse el, hogy igaz vagy hamis. Név:...
1. Feladat. Döntse el, hogy igaz vagy hamis. Név:........................................... (1) (1 3) = (3 1). (hamis) () (1 ) = ( 1). (igaz). Feladat. Döntse el, hogy igaz vagy hamis. Név:...........................................
7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?
7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika
2017, Diszkrét matematika
Diszkrét matematika 10. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017, őszi félév Miről volt szó az elmúlt előadáson? a prímszámtétel prímszámok,
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság
Algebrai alapismeretek az Algebrai síkgörbék c tárgyhoz 1 Integritástartományok, oszthatóság 11 Definíció A nullaosztómentes, egységelemes kommutatív gyűrűket integritástartománynak nevezzük 11 példa Integritástartományra
Waldhauser Tamás szeptember 15.
Algebra és számelmélet előadás Waldhauser Tamás 2016. szeptember 15. Házi feladat a gyakorlatra 4. feladat. Ábrázolja a Gauss-féle számsíkon az alábbi számhalmazokat. { (a) z C: 0 arg (zi) < π } (b) {z
Polinomok (előadásvázlat, október 21.) Maróti Miklós
Polinomok (előadásvázlat, 2012 október 21) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: gyűrű, gyűrű additív csoportja, zéruseleme, és multiplikatív félcsoportja,
x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2
Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését
Baran Ágnes. Gyakorlat Komplex számok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 33
Matematika Mérnököknek 1. Baran Ágnes Gyakorlat Komplex számok Baran Ágnes Matematika Mérnököknek 1. 2.-4. Gyakorlat 1 / 33 Feladatok 1. Oldja meg az alábbi egyenleteket a komplex számok halmazán! Ábrázolja
Klasszikus algebra előadás. Waldhauser Tamás március 24.
Klasszikus algebra előadás Waldhauser Tamás 2014. március 24. Irreducibilitás 3.33. Definíció. A p T [x] polinom irreducibilis, ha legalább elsőfokú, és csak úgy bontható két polinom szorzatára, hogy az
1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.
1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy
13.1.Állítás. Legyen " 2 C primitív n-edik egységgyök és K C olyan számtest, amelyre " =2 K, ekkor K(") az x n 1 2 K[x] polinomnak a felbontási teste
13. GYÖKB½OVÍTÉS GALOIS CSOPORTJA, POLINOMOK GYÖKEINEK ELÉRHET½OSÉGE 13.1.Állítás. Legyen " 2 C primitív n-edik egységgyök és K C olyan számtest, amelyre " =2 K, ekkor K(") az x n 1 2 K[x] polinomnak a
4. Algebrai Módszerek Klasszikus Eredmények
4. Algebrai Módszerek Klasszikus Eredmények Igazolásában, Út az Algebrai Számelmélet felé 4.1. Maradékosztálygyűrűk egységcsoportjai szerkezete. Jelölés. Tetszőleges n > 1 egészre jelölje U n a Z n maradékosztálygyűrű
illetve a n 3 illetve a 2n 5
BEVEZETÉS A SZÁMELMÉLETBE 1. Határozzuk meg azokat az a természetes számokat ((a, b) számpárokat), amely(ek)re teljesülnek az alábbi feltételek: a. [a, 16] = 48 b. (a, 0) = 1 c. (a, 60) = 15 d. (a, b)
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
Tartalom. Algebrai és transzcendens számok
Nevezetes számelméleti problémák Tartalom 6. Nevezetes számelméleti problémák Számok felbontása hatványok összegére Prímszámok Algebrai és transzcendens számok 6.1. Definíció. Az (x, y, z) N 3 számhármast
1. Gyökvonás komplex számból
1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i
Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két
Irreducibilis polinomok szakkörre
Eötvös Loránd Tudományegyetem Természettudományi Kar Algebra és Számelmélet Tanszék Irreducibilis polinomok szakkörre Szakdolgozat Készítette Birtha Nikoletta Matematika Tanári BSc. Konzulens Dr. Zábrádi
1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?
Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?
MTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA. 1. Csoportelméleti alapfogalmak
MTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA 1. Csoportelméleti alapfogalmak 1.1. Feladat. Csoportot alkotnak-e az alábbi halmazok a megadott műveletre nézve? (1) (Z 2 ; ), (2) (Z 2 ; +), (3) (R \ { 1}; ),
1. Hatvány és többszörös gyűrűben
1. Hatvány és többszörös gyűrűben Hatvány és többszörös Definíció (K2.2.19) Legyen asszociatív művelet és n pozitív egész. Ekkor a n jelentse az n tényezős a a... a szorzatot. Ez az a elem n-edik hatványa.
1. Analizis (A1) gyakorló feladatok megoldása
Tartalomjegyzék. Analizis A) gyakorló feladatok megoldása.................... Egyenl tlenségek, matematikai indukció, számtani-mértani közép....... Számsorozatok............................... 5... Számorozatok................................
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Számelméleti alapfogalmak
1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.
GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE
GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,