Hatványozás. A hatványozás azonosságai
|
|
- Hunor Fábián
- 6 évvel ezelőtt
- Látták:
Átírás
1 Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = = 84 Elnevezés: a n = b, a: alap; n: kitevő; b: hatványérték A hatványozás azonosságai I. a n a m = a n+m Azonos alapú hatványokat úgy szorzunk össze, hogy az alapot a kitevők összegére emeljük = = 5 11 II. a n = an m am Azonos alapú hatványokat úgy osztunk, hogy az alapot a számláló és a nevező hatványkitevőjének különbségére emeljük = 58 2 = 5 6 III. (a n ) m = a n m Hatványt úgy hatványozunk, hogy az alapot a kitevők szorzatára emeljük. (2 3 ) 5 = (2 5 ) 3 = = 2 15 IV. (a b) n = a n b n Azonos kitevőjű hatványok szorzata egyenlő az alapok szorzatának ugyanilyen kitevőjű hatványával. (5 6) 7 = = 30 7 V. ( a b )n = an b n Azonos kitevőjű hatványok hányadosa egyenlő az alapok hányadosának ugyanilyen kitevőjű hatványával. ( 3 2 )4 = 34 =
2 Negatív egész kitevőjű hatványok Definíció: a n = 1 an, ahol a R{0}, n Z 2 1 = = = 1 8 ( ) = 1 ( 2 1 = 3 ) ( 2 3 ) 4 = = 3 2 = 1 ( 2 3 )4 2 4 = = Számok normál alakja Egy számot normálalakban a következő módon írunk fel: 1 és 10 közötti számot szorozzuk 10 hatványával = 1, , = 5, Polinom, algebrai tört Polinomok Algebrai kifejezés: számokkal és változókkal összeadást, szorzást, kivonást, osztást, gyökvonást véges sokszor végzünk. 5x + 3, 5 2y², stb. 8x - 7y³: x együtthatója 8; y³ együtthatója 7 10a: egytagú kifejezés 5y + 8x: kéttagú kifejezés Definíció: Egynemű kifejezések legfeljebb együtthatóikban különböznek, azaz ugyanazok a betűk szerepelnek bennük, és minden betű ugyanarra a kitevőre vannak emelve. Egynemű kifejezések összevonhatóak. példa: 7a 2 b 5ab 2 + 3a 2a + 3a 2 b + 2ab 2 = 10a 2 b 3ab 2 + a Definíció: Az olyan algebrai kifejezéseket, amelyekben nem jelölünk ki betűs kifejezéssel osztást, egész kifejezéseknek nevezzük, más néven polinomoknak.
3 polinom: 5x 2 + 3; 3x y 4 nem polinom: 1 b ; x+y y+2 Polinom fokszáma példa: x 2 + 3x + 2 fokszáma: 2, mert x-re nézve ez a legmagasabb kitevő x 2 + 5y + y 3 fokszám: x-re nézve 2, y-ra nézve 3 Rendezett polinom A változok hatványai szerint növekvő, vagy csökkenő sorrendben felírt polinom példa: rendezett polinom: x 5 + 3x 4 7x 3 + x 2 nem rendezett polinom: 3x 4 7x 3 + x 2 + x 5 1. Polinom szorzása valós számmal 3(7a + 13b) = 21a + 39b (5x 4y)2 = 10x 8y ( 3)(4a + 5b) = 12a 15b 2x3 = 6x 2. Polinom szorzása polinommal Műveletek polinomokkal (5x + 2y)(2a 3b) = 10xa 15xb + 4ya 6yb 3. Kiemelés 15ay + 10xy = 5y(3a + 2x) 4. Kiemelés csoportosítással ac + bc + ad + bd = c(a + b) + d(a + b) = (a + b)(c + d) Nevezetes azonosságok I. (a + b) 2 = a 2 + 2ab + b 2 II. (a b) 2 = a 2 2ab + b 2 III. (a b)(a + b) = a 2 b 2 Algebrai tört Definíció: Két polinom hányadosát algebrai törtnek nevezzük, ha a tört nevezője legalább elsőfokú polinom.
4 A számelmélet elemei, hatványozás Alapfogalmak Számelmélet Definíció: Az a és b természetes számok esetén az a számot a b szám osztójának nevezzük, ha van olyan c természetes szám, amelyre fennáll, hogy a c = b. Jelölés: 3 osztója 6-nak: 3 6, mert 3 2 = 6 2 nem osztója 5-nek, 2 5 Tulajdonságok: o Bármely szám osztója önmagának 2 osztója önmagának, mert 2 1 = 2 o Ha a b és b c, akkor a c 2 4 és 4 6, akkor 2 8 o Ha a b és a c, akkor a b + c 2 4 és 2 6, akkor = 10 o Ha a b, akkor a b c 2 4, akkor = 24 o Ha a b és b a, akkor a = b Definíció: Azokat az 1-nél nagyobb természetes számokat, melyek 1-gyel és önmagukkal oszthatóak, prímszámoknak nevezzük. Azokat az 1-nél nagyobb természetes számokat, amelyeknek kettőnél több osztójuk van, összetett számoknak nevezzük. prímszámok: 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, Végtelen sok prímszám van. összetett szám: 4, 6, 8, 9, 10, A számelmélet alaptétele: Bármely összetett szám, a tényezők sorrendjétől eltekintve egyértelműen felírható prímszámok szorzataként = Osztó, többszörös A legkisebb közös többszörös meghatározása: az összes prímszámot a legnagyobb kitevőjével szorozzuk össze. Jele: [] A legnagyobb közös osztó meghatározása: a közös prímszámok közül a legkisebb kitevőjűeket szorozzuk össze. Jele: () [72, 4450] =? és (72, 4450) =? Megoldás: 72 = és 4450 = [72; 4450] = (72; 4450) = 2
5 Definíció: Ha két szám legnagyobb közös osztója az 1, akkor a két számot relatív prímnek nevezzük. Oszthatósági szabályok 2-vel való oszthatóság: utolsó számjegy 0, 2, 4, 6, 8 3-mal való oszthatóság: számjegyek összege osztható 3-mal 4-gyel való oszthatóság: utolsó két számból alkotott szám osztható 4-gyel 5-tel való oszthatóság: utolsó számjegy 0, 5 8-cal való oszthatóság: utolsó három számjegyből alkotott szám osztható 8-cal 9-cel való oszthatóság: számjegyek összege osztható 9-cel Számrendszerek 10-es számrendszer számjegyei: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 2-es számrendszer számjegyei: 0, = es számrendszerből 10-es számrendszerbe átírás: = = = es számrendszerből 2-es számrendszerbe átírás: = = , mert 13 = , mert 6 = , mert 3 = , mert 1 = Alulról felfelé leolvasható a 13 2-es számrendszerbeli alakja.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
RészletesebbenRacionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q
Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N
Részletesebben7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?
7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Algebra
Algebra Műveletek tulajdonságai: kommutativitás (felcserélhetőség): a b = b a; a b = b a asszociativitás (átcsoportosíthatóság): (a b) c = a (b c); a (b c) = (a b) c disztributivitás (széttagolhatóság):
RészletesebbenPótvizsga matematika 7. osztály (Iskola honlapján is megtalálható!) Tételek
Pótvizsga matematika 7. osztály (Iskola honlapján is megtalálható!) Tételek 1. Hatványozás 2. Normálalak. Mértékegységek. Műveletek racionális számokkal (tört, tizedes tört) 5. Középpontos tükrözés 6.
Részletesebben1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.
1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy
RészletesebbenOSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
RészletesebbenSzámelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!
Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása
RészletesebbenMATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA
RészletesebbenOszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán):
Oszthatóság Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Azt mondjuk, hogy az a osztója b-nek (jel: a b), ha van olyan c egész, amelyre ac = b. A témakörben a betűk egész
RészletesebbenMinden egész szám osztója önmagának, azaz a a minden egész a-ra.
1. Számelmélet Definíció: Az a egész szám osztója a egész számnak, ha létezik olyan c egész szám, melyre = ac. Ezt a következőképpen jelöljük: a Tulajdonságok: Minden egész szám osztója önmagának, azaz
Részletesebben2016/2017. Matematika 9.Kny
2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 4. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal
RészletesebbenSzámelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb
Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes
RészletesebbenMegoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Számítsd ki a következő kifejezések pontos értékét!
Megoldások. Számítsd ki a következő kifejezések pontos értékét! 8 8 ( ) ( ) ( ) Használjuk a gyökvonás azonosságait. 0 8 8 8 8 8 8 ( ) ( ) ( ) 0 8 . Határozd meg a következő kifejezések értelmezési tartományát!
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Részletesebben2016/2017. Matematika 9.Kny
2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 5. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal
RészletesebbenALGEBRAI KIFEJEZÉSEK, EGYENLETEK
ALGEBRAI KIFEJEZÉSEK, EGYENLETEK AZ ALGEBRAI KIFEJEZÉS FOGALMÁNAK KIALAKÍTÁSA (7-9. OSZTÁLY) Racionális algebrai kifejezés (betűs kifejezés): betűket és számokat a négy alapművelet véges sokszori alkalmazásával
RészletesebbenMatematika pótvizsga témakörök 9. V
Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális
RészletesebbenAlgebrai egész kifejezések (polinomok)
Algebrai egész kifejezések (polinomok) Betűk használata a matematikában Feladat Mekkora a 107m 68m oldalhosszúságú téglalap alakú focipála kerülete, területe? a = 107 m b = 68 m Terület T = a b = 107m
RészletesebbenMatematika 7. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos képzés Matematika 7. osztály III. rész: Számelmélet Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék III.
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logaritmus
Logaritmus DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak nevezzük. Bármely pozitív
RészletesebbenAdd meg az összeadásban szereplő számok elnevezéseit!
1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok
RészletesebbenHHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:
Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik
RészletesebbenA SZÁMFOGALOM KIALAKÍTÁSA
A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése
Részletesebben2. témakör: Számhalmazok
2. témakör: Számhalmazok Olvassa el figyelmesen az elméleti áttekintést, és értelmezze megoldási lépéseket, a definíciókat, tételeket. Próbálja meg a minta feladatokat megoldani! Feldolgozáshoz szükségesidö:
RészletesebbenSzámelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
RészletesebbenSzámelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla
Számelmélet (2017 február 8) Bogya Norbert, Kátai-Urbán Kamilla 1 Oszthatóság 1 Definíció Legyen a, b Z Az a osztója b-nek, ha létezik olyan c Z egész szám, melyre ac = b Jelölése: a b 2 Példa 3 12, 2
RészletesebbenMatematika 7. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos képzés Matematika 7. osztály IV. rész: Algebra Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék IV. rész:
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenKomplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18
Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök
Részletesebben1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK
MATEMATIKA TÉMAKÖRÖK 11. évfolyam 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége, részhalmaz, üres halmaz, véges,
RészletesebbenEgyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
RészletesebbenSzámelméleti alapfogalmak
1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =
RészletesebbenKongruenciák. Waldhauser Tamás
Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek
RészletesebbenBevezetés az algebrába az egész számok 2
Bevezetés az algebrába az egész számok 2 Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december
Részletesebben4. modul: MŰVELETEK A VALÓS SZÁMOK KÖRÉBEN
MATEMATIK A 9. évfolyam 4. modul: MŰVELETEK A VALÓS SZÁMOK KÖRÉBEN KÉSZÍTETTE: DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 4. modul: MŰVELETEK A VALÓS SZÁMOK KÖRÉBEN Tanári útmutató 2 A modul célja Időkeret
Részletesebben3. Algebrai kifejezések, átalakítások
I Elméleti összefoglaló Műveletek polinomokkal Algebrai kifejezések, átalakítások Az olyan betűs kifejezéseket, amelyek csak valós számokat, változók pozitív egész kitevőjű hatványait, valamint összeadás,
RészletesebbenTARTALOM. Előszó 9 HALMAZOK
TARTALOM Előszó 9 HALMAZOK Halmazokkal kapcsolatos fogalmak, részhalmazok 10 Műveletek halmazokkal 11 Számhalmazok 12 Nevezetes ponthalmazok 13 Összeszámlálás, komplementer-szabály 14 Összeszámlálás, összeadási
RészletesebbenOszthatósági problémák
Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,
Részletesebben2. Algebrai átalakítások
I. Nulladik ZH-ban láttuk: 2. Algebrai átalakítások 1. Mi az alábbi kifejezés legegyszerűbb alakja a változó lehetséges értékei esetén? (A) x + 1 x 1 (x 1)(x 2 + 3x + 2) (1 x 2 )(x + 2) (B) 1 (C) 2 (D)
RészletesebbenMatematika 9. matematika és fizika szakos középiskolai tanár. II. fejezet (kb. 18 tanóra) > o < november 1.
Matematika 9 Tankönyv és feladatgyűjtemény Juhász László matematika és fizika szakos középiskolai tanár II. fejezet (kb. 18 tanóra) > o < 2015. november 1. copyright: c Juhász László Ennek a könyvnek a
RészletesebbenTétel: A háromszög belső szögeinek összege: 180
Tétel: A háromszög belső szögeinek összege: 180 Bizonyítás: legyenek az ABC háromszög belső szögei α, β, γ. Húzzunk a C csúcson át párhuzamost AB-vel. A C csúcsnál keletkezett egyenesszöget a háromszög
Részletesebben4. Számelmélet, számrendszerek
I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 9 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
Részletesebben5. Végezd el a kijelölt műveleteket, és ahol lehet, vonj össze!
1 1. Rendezd a következő polinomokat a bennük lévő változó növekedő hatvánkitevői szerint! a) 2 + + 2 b) 2 + + 2 + 6 2. Melek egnemű algebrai kifejezések? a) a 2 b; 2ab; a 2 b; 2a b; 1,a 2 b b) 2 ; 2 ;
RészletesebbenMATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember
MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra
Részletesebben: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!
nomosztással a megoldást visszavezethetjük egy alacsonyabb fokú egyenlet megoldására Mivel a 4 6 8 6 egyenletben az együtthatók összege 6 8 6 ezért az egyenletnek gyöke az (mert esetén a kifejezés helyettesítési
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
Részletesebben1. A maradékos osztás
1. A maradékos osztás Egész számok osztása Példa 223 = 7 31+6. Visszaszorzunk Kivonunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a,b Z esetén, ahol b 0, létezik olyan q,r Z, hogy a = bq +
Részletesebben1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást?
1. fogalom Add meg az összeadásban szereplő számok 73 + 19 = 92 összeadandók (tagok) összeg Összeadandók (tagok): amiket összeadunk. Összeg: az összeadás eredménye. Milyen tulajdonságai vannak az összeadásnak?
RészletesebbenNegatív alapú számrendszerek
2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1
RészletesebbenFüggvény fogalma, jelölések 15
DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük
RészletesebbenOsztályozóvizsga-tematika 8. évfolyam Matematika
Osztályozóvizsga-tematika 8. évfolyam Matematika 1. félév 1. Gondolkozz és számolj! A természetes szám fogalma, műveleti tulajdonságok Helyiértékek rendszere a tízes számrendszerben: alakiérték, tényleges
RészletesebbenOsztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév
9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek
Részletesebben1. A Horner-elrendezés
1. A Horner-elrendezés A polinomok műveleti tulajdonságai Polinomokkal a szokásos módon számolhatunk: Tétel (K2.1.6, HF ellenőrizni) Tetszőleges f,g,h polinomokra érvényesek az alábbiak. (1) (f +g)+h =
Részletesebben1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.
1. A polinom fogalma Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1 = x egyenletet. Megoldás x + 1-gyel átszorozva x 2 + x + 1 = x 2 + x. Innen 1 = 0. Ez ellentmondás, így az
RészletesebbenOsztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel
RészletesebbenAmit a törtekről tudni kell Minimum követelményszint
Amit a törtekről tudni kell Minimum követelményszint Fontos megjegyzés: A szabályoknak nem a pontos matematikai meghatározását adtuk. Helyettük a gyakorlatban használható, egyszerű megfogalmazásokat írtunk.
RészletesebbenSzakács Lili Kata megoldása
1. feladat Igazoljuk, hogy minden pozitív egész számnak van olyan többszöröse, ami 0-tól 9-ig az összes számjegyet tartalmazza legalább egyszer! Andó Angelika megoldása Áll.: minden a Z + -nak van olyan
RészletesebbenBizonyítási módszerek - megoldások. 1. Igazoljuk, hogy menden természetes szám esetén ha. Megoldás: 9 n n = 9k = 3 3k 3 n.
Bizonyítási módszerek - megoldások 1. Igazoljuk, hogy menden természetes szám esetén ha (a) 9 n 3 n (b) 4 n 2 n (c) 21 n 3 n (d) 21 n 7 n (e) 5 n 25 n (f) 4 n 16 n (g) 15 n (3 n 5 n) 9 n n = 9k = 3 3k
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai
Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív
RészletesebbenMegoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Határozd meg a következő kifejezésekben a c értékét!
Megoldások. Határozd meg a következő kifejezésekben a c értékét! log 4 = c log 7 = c log 5 5 = c lg 0 = c log 7 49 = c A feladatok megoldásához használjuk a definíciót: log a b = c b = a c. log 4 = c 4
RészletesebbenElemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged
Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet
Számelmélet DEFINÍCIÓ: (Ellentett) Egy szám ellentettjén azt a számot értjük, amelyet a számhoz hozzáadva az 0 lesz. Egy szám ellentettje megegyezik a szám ( 1) szeresével. DEFINÍCIÓ: (Reciprok) Egy 0
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint
RészletesebbenMATEMATIKA 9. osztály Segédanyag 4 óra/hét
MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY
RészletesebbenKlasszikus algebra előadás. Waldhauser Tamás március 24.
Klasszikus algebra előadás Waldhauser Tamás 2014. március 24. Irreducibilitás 3.33. Definíció. A p T [x] polinom irreducibilis, ha legalább elsőfokú, és csak úgy bontható két polinom szorzatára, hogy az
RészletesebbenMatematika 8. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály I. rész: Algebra Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék I. rész: Algebra................................
Részletesebben1. melléklet: A tanárokkal készített interjúk főbb kérdései
12. Mellékletek 1. melléklet: A tanárokkal készített interjúk főbb kérdései 1. Mikor tanít számelméletet és hány órában? (Pl. 9. osztályban a nevezetes azonosságok után 4 órában.) 2. Milyen könyvet használnak
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenOsztályozó- és javítóvizsga. Matematika tantárgyból
Osztályozó- és javítóvizsga Matematika tantárgyból 2018-2019 A vizsga 60 perces írásbeli vizsga (feladatlap) a megadott témakörökből. A megjelölt százalék (50%) nem teljesítése esetén szóbeli vizsga is,
RészletesebbenKlasszikus algebra előadás. Waldhauser Tamás április 28.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. 21 és 5 7 = 15
Megoldások 1. Írj fel 4 számot törtalakban a 3 7 és 5 7 között! Bővítsük a nevezőket a megfelelő mértékig: 3 7 = 9 21 és 5 7 = 15 21. Ezek alapján a megoldás: 10 21, 11 21, 12 21, 13 21. 2. Írd fel törtalakban
RészletesebbenPolinomok (el adásvázlat, április 15.) Maróti Miklós
Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes
RészletesebbenPolinomok (előadásvázlat, október 21.) Maróti Miklós
Polinomok (előadásvázlat, 2012 október 21) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: gyűrű, gyűrű additív csoportja, zéruseleme, és multiplikatív félcsoportja,
RészletesebbenÓra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2.
MATEMATIKA ÉRETTSÉGI ELŐKÉSZTŐ 11. évfolyam Óra A tanítási óra anyaga Ismeretek, 1. Év eleji szervezési feladatok 2. A hatványozásról tanultak ismétlése, feladatok az n- edik gyök fogalmára, azonosságaira
RészletesebbenÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak.
ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak. Időtartam: 60 perc 1. Halmazműveletek konkrét halmazokkal.
RészletesebbenMatematika szóbeli érettségi témakörök 2017/2018-as tanév
Matematika szóbeli érettségi témakörök 2017/2018-as tanév 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, LOGIKA, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége,
RészletesebbenDiszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz
Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis
Részletesebben1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b).
1. Polinomfüggvények Behelyettesés polinomba. Definíció Legyen b komplex szám. Az f (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n polinom b helyen felvett helyettesítési értéke f (b) = a 0 + a 1 b + a 2 b
Részletesebben2017/2018. Matematika 9.K
2017/2018. Matematika 9.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép 2 órás, 4 jegyet ér 2018. május 28. hétfő 1-2. óra A312 terem Aki hiányzik, a következő
Részletesebben2016, Diszkrét matematika
Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat
RészletesebbenSzámelmélet. 1. Oszthatóság Prímszámok
Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen
RészletesebbenFirst Prev Next Last Go Back Full Screen Close Quit
Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.
RészletesebbenAz osztályozóvizsgák követelményrendszere 9. évfolyam
Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és
RészletesebbenBevezetés. 1. fejezet. Algebrai feladatok. Feladatok
. fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális
Részletesebben1. Polinomok számelmélete
1. Polinomok számelmélete Oszthatóság, egységek. Emlékeztető Legyen R a C, R, Q, Z egyike. Azt mondjuk, hogy (1) a g R[x] polinom osztója f R[x]-nek R[x]-ben, ha létezik olyan h R[x] polinom, hogy f (x)
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
RészletesebbenSZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a
Részletesebben1. Egész együtthatós polinomok
1. Egész együtthatós polinomok Oszthatóság egész számmal Emlékeztető (K3.1.3): Ha f,g Z[x], akkor f g akkor és csak akkor, ha van olyan h Z[x], hogy g = fh. Állítás (K3.1.6) Az f(x) Z[x] akkor és csak
Részletesebben2. tétel Egész számok - Műveletek egész számokkal. feleletvázlat
1. tétel Természetes számok tízes számrendszer műveletek és tulajdonságaik Természetes számok, jele, jelölések, ábrázolása számegyenesen műveletek a természetes számok halmazán belül Tízes számrendszer
RészletesebbenEgyenletek, egyenlőtlenségek X.
Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak
RészletesebbenSULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA
1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal
RészletesebbenI. Egyenlet fogalma, algebrai megoldása
11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel
RészletesebbenAmit a törtekről tudni kell 5. osztály végéig Minimum követelményszint
Amit a törtekről tudni kell. osztály végéig Minimum követelményszint Fontos megjegyzés: A szabályoknak nem a pontos matematikai meghatározását adtuk. Helyettük a gyakorlatban használható, egyszerű megfogalmazásokat
RészletesebbenAz alapvetı tudnivalók jegyzéke matematikából 9. évf. Halmazok. Algebra és számelmélet
Az alapvetı tudnivalók jegyzéke matematikából 9. évf. Halmazok halmaz halmaz megadása, jelölésmód üres halmaz véges halmaz végtelen halmaz halmazok egyenlısége részhalmaz, valódi részhalmaz halmazok uniója
RészletesebbenOsztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Részletesebben