Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok
|
|
- Ágnes Gulyás
- 8 évvel ezelőtt
- Látták:
Átírás
1 . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális számok, R a valós számok és R + a pozitív valós számok halmaza. J. Az a +a + +a n összegre a n a k vagy a a k jelölést használjuk (kiejtés: szumma k = -t l n-ig a k ). D.3 Vezessük be az... n szorzatra az n! (kiejtés: n faktoriális) jelölést. Legyen továbbá 0! =! =. D.4 Legyenek a, b Z, a 0. Az, hogy a osztója b-nek, azt jelenti, hogy van olyan c Z, hogy ac = b. Jelölése: a b. Feladatok Legyen a, b R és n N +. Bizonyítsuk be a következ azonosságokat:. a n b n = (a b)(a n + a n b + + ab n + b n ),. a n + b n = (a + b)(a n a n 3 b + a n 4 b ab n 3 + b n ), 3. a n b n = (a + b)(a n a n b + a n 3 b + ab n b n ). 4. Mutassuk meg, hogy ha a + b + c = 0 (a, b, c R), akkor a 3 + b 3 + c 3 = 3abc. Oldjuk meg a következ egyenleteket a valós számok halmazán: 5. x = x +, 6. x + 3 = x, 7. sin x = sin x +, 8. sin x = sin x + 3, 9. tg x = tg x + x 3, 0. x + = x x +,. x +6x+6 = x +4x+9 + x 3,. x 4 x 6 = x 4 4 x +, 3. x x = x x. Oldjuk meg a következ egyenl tlenségeket a valós számok halmazán: 3x x 7 < 0, 5. x + 3 3x 5, 6. < x 3 4x + 5 < 4, -
2 . Bevezetés Algebrai feladatok 5x 7. x + < 3, 8. 3x 7 <, 9. x < x + 6, 0. x + + x,. 4x 3 < x < 4x + 3, x. x + x <, 3. x + > x x +, x + 4. x 4 < x + 5 x +, 3x + 7x 4 5. x + x 3, 6. x > 3, 7. x( x) < 0, 05, 8. x 7x + > x 7x +, 9. x 5x > x 5x, x x > x +, 3. x x >. Oldjuk meg valós x ismeretlenre az alábbi egyismeretlenes egyenl tlenségrendszereket: 3. 4 < (x + 3) < 9, 33. (a )x > a, ax < a +. Ábrázoljuk a derékszög koordináta-rendszerben azoknak az ( x, y) pontoknak a halmazát, amelyek koordinátáira a következ egyenletek, illetve egyenl tlenségek teljesüljenek: 34. y x, 35. y < x +, 36. x + y. 37. x + y =, 38. x y =, 39. x + y = x + y, 40. x y = x y, Oldjuk meg a következ kétismeretlenes egyenl tlenségrendszereket a valós számpárok halmazán: 4. x y < 0 3x y 8 > 0, 43. x y < 0 3x 3y + 0 < 0, 45. x 5y + 7 < 0 x y < 0 x y + 4 > 0, 47. y 4x < 0 x + y x 0 x, 4. 3x y < 0 5x 4y + 6 < 0, 44. 4x + y = 0 x y 4 < 0, 46. 3x 7y + 3 = 0 x + 5y > 0 5x y 7 < 0, 48. 5x + 9y 5 0 9y 6x Bizonyítsuk be az alábbi egyenl tlenségeket. Ahol lehet, állapítsuk meg, hogy milyen feltételek mellett áll fenn az egyenl ség: 49. x + y x + y (x, y R) (háromszög-egyenl tlenség, l. még 5.), 50. a + b ab (a, b R), 5. a b a b (a, b R), 5. a b < a, ha b < (a, b R), a 53. a + a (a x + R+ ), 54. x + (x R), -
3 . Bevezetés Algebrai feladatok x x (x R), a + ab a + b (a, b R + ) (a harmonikus, a mértani és a b számtani közép közötti összefüggés; l. még a 8. feladatot!) 57. Bizonyítsuk be, hogy ha a, b 0 és α > β > 0 (a, b, α, β R), akkor (a α + b α ) α ( a β + b β) β. Az alábbi feladatokban értelmezzük a (nem üres) S halmazon a megadott vagy m veleteket. Vizsgáljuk meg, hogy a halmaz zárt-e ezekre a m veletekre nézve, azaz a m veletek eredménye mindig benne van-e a halmazban? Ha igen, akkor a m veletek kommutatívak-e, aszociatívak-e? Ahol két m veletet is megadtunk, ott disztributív-e valamelyik m velet a másikra nézve? 58. S = R, x y = y, x, y R, 59. S = R, x y = max(x, y), x, y R, 60. S a páratlan számok halmaza, a számok összeadása, 6. S a páros számok halmaza, a számok összeadása, 6. S a páratlan számok halmaza, a számok szorzása, 63. S = R, x y = x + y, x, y R, 64. S = R, x y = ax + by + c, x, y R, ahol a, b, c adott valós számok, 65. S = {a + b ; a, b Z}, a és a m velet a valós számok halmazán értelmezett összeadás és szorzás, 66. S = {a + b 3 ; a, b Z}, a és a m velet a valós számok halmazán értelmezett összeadás és szorzás, 67. S = R, a b = a + b, a b = a + b ab (a, b R). Számítsuk ki az alábbi összegeket: (k + ), k= 3 k 3, 5 5 ( ) k (k + ), 7. ( ) k, 0 4 π, 73. k sin kπ. k=7 Írjuk fel a szumma jel alkalmazásával a következ összegeket: , , (n ), 77. a 0 + a x + a x + + a n x n, 78. a 0 x n + a x n + + a n x + a n, 79. a 5 a 4 b + a 3 b a b 3 + ab 4 b 5. Melyek igazak az alábbi összefüggések közül minden a, a,..., a k, b, b,..., b k és c valós számra? -3
4 . Bevezetés Algebrai feladatok 80. n (a k + b k ) = 8. a k + b k, 8. n ca k = c a k, a k b k = a k b k, 83. a k b k = i= j= a i b j. 84. Írjuk fel az x-ben másodfokú n (a k x+b k ) függvény diszkriminánsát, ahol a k, b k R. 85. (Cauchy-Bunyakovszkij egyenl tlenség) Az el z feladat eredményét felhasználva bizonyítsuk be az alábbi egyenl tlenséget, ahol a k, b k R: a k b k a k b k. 86. Bizonyítsuk be, hogy tetsz leges a és b valós számra: (a + b )(a 4 + b 4 ) (a 3 + b 3 ). 87. Bizonyítsuk be, hogy tetsz leges a, b és x valós számra: a + b a cos x + b sin x a + b. Számítsuk ki a következ összegeket: ( 3), ( k ), 9. k + 9. n (a k a k+ ), 93. k(k + ), 94. n sin kx l= l= ( Útmutatás : k(k + ) = k ), k + (Útmutatás: szorozzunk sin x -vel), a kl, ahol a kl = 0, ha k l és a kl =, ha k = l, a kl, ha a kl = k, 97. Egyszer sítsük a következ kifejezéseket: c (n m); c konstans, k=m ( ) 0 k, (k ) k= l= a kl, ha a kl = k l. 0! ! 8! 3!7!! 0!, 99. (n + 3)! (n ), (n )! 00. n!(n + )! (n k)!(n (n N + + )! ), 0. (n, k N; k n). (n )!(n + 3)! n!(n + k)! 0. Bizonyítsuk be, hogy ha k m és k (m + n), ahol k, m, n Z és k 0, akkor k n. Igaz-e az állítás megfordítása? -4
5 . Bevezetés Teljes indukció Teljes indukció D.5 A teljes indukció a direkt bizonyítás egyik fontos típusa. Jelöljön A(n) olyan állítást, amely az n egész számtól függ. A bizonyítás két lépésb l áll. El ször megmutatjuk, hogy van olyan n 0 egész szám, hogy az A(n 0 ) állítás igaz. Azután feltesszük, hogy valamely n egész számra A(n) igaz, s ennek alapján bebizonyítjuk, hogy A(n + ) is igaz. Ezekb l már következik, hogy A(n) igaz minden n n 0 esetben. Feladatok Teljes indukcióval bizonyítsuk be, hogy a következ állítások igazak, ha az n pozitív egész szám nagyobb vagy egyenl valamely n 0 pozitív egész számnál (adjuk meg a legkisebb ilyen n 0 -t): 03. n(n + ) n =, (n ) = n, 05. n n(n k = n + )(n + ) =, (k ) = (n ) = n(4n ), n ( ) k k = ( ) n n n n(n + ) = ( ), (k )k = n(n )(3n + ), 09. ( ) ( ) ( ) (n + ) n(n + )(n + ) k(k + ) =, 3 k(k + )(k + )... (k + t ) = ( ) n(n + ) k 3 =, n n < = n + n +, (4k 3)(4k + ) = n 4n +, n(n + )... (n + t), t N +, t + k(k!) = (n + )!,, 6. n 3n + 7. n < n < n, -5 n + k > 3 4,
6 . Bevezetés Teljes indukció 8. n < n < n, 9. 3 n > n + 7n, 0. (n)! (n!) < 4n,. + + π + = cos (a bal oldalon n darab gyökjel van), n = 0n+ 9n 0 (a bal oldalon n tagú összeg van) Egy síkbeli tartományt n darab egyenessel részekre osztunk. Mutassuk meg, hogy az így kapott "térkép" két színnel színezhet úgy, hogy a közös oldallal rendelkez részek különböz szín ek legyenek (l. bal oldali ábra). 4. Egy országban úgy építenek autópályákat, hogy mindegyik autópálya egyenes, egyik keresztez désben sem találkozik kett nél több út, és minden keresztez désben az egyik út a másik fölött halad. Mutassuk meg, hogy bármely ilyen úthálózatban elérhet az, hogy minden úton felváltva alul majd felül haladjunk át a keresztez désen. (Útmutatás: Használhatjuk az el z feladat eredményét és a jobb oldali ábrát.) 5. Mutassuk meg, hogy ha a, a,..., a n R, akkor a + a + + a n a + a + + a n, és az egyenl ség akkor és csak akkor teljesül, ha a, a,..., a n számok között nincsenek különböz el jelüek. (l. a 49. feladatot!) 6. Mutassuk meg, hogy ha x, x,..., x n R + és x x... x n =, akkor x + x + + x n n, és az egyenl ség pontosan akkor teljesül, ha x = x =... = x n =. 7. Bizonyítsuk be, hogy ha x, x,..., x n R +, akkor x + x + + x n n. x x 3 x 8. Bizonyítsuk be, hogy ha x, x,..., x n R +, akkor x + x + + x n n n x x... x n, azaz pozitív számok mértani közepe nem nagyobb a számtani közepüknél, egyenl ség pontosan akkor teljesül, ha x = x =... = x n. -6
7 . Bevezetés Teljes indukció 9. Igazoljuk, hogy x, x,..., x n R + esetén nx x... x n x n + xn + + xn n ( ). n + n 30. Bizonyítsuk be az n! < (n ) egyenl tlenséget. Igazoljuk az alábbi oszthatóságokat (n N + ): n + 3 n +, 3. 6 n(n 3n + ), n+ + n. 34. Bizonyítsuk be, hogy minden -nél nagyobb pozitív egész szám sorrendt l eltekintve egyértelm en bontható fel prímszámok szorzatára ( a számelmélet alaptétele). Keressük meg a hibát a következ bizonyításokban: 35. Bebizonyítjuk, hogy minden egész szám egyenl. Ehhez megmutatjuk, hogy minden egész szám egyenl a rákövetkez egész számmal. Tegyük fel, hogy az állítás igaz az n egész számra, azaz n = n +. Adjunk -et az egyenlet mindkét oldalához, ekkor azt kapjuk, hogy n+ = n+, tehát a tulajdonság örökl dik. 36. Bebizonyítjuk, hogy a sík minden pontja egy egyenesen van. Ehhez megmutatjuk, hogy véges sok pont a síkon mindig egy egyenesen van. Az állitás n = esetén igaz, hiszen bármely két pont egy egyenesen van. Tegyük fel, hogy bármely n pont egy egyenesen van. Bizonyítjuk, hogy akkor bármely n+ pont is egy egyenesen van. Ha ugyanis nem volna, az azt jelentené, hogy van a síkon n olyan pont, amelyek egy egyenesen vannak, és egy (n + )-edik pont, amely nincs ezen az egyenesen. Ekkor elhagyva az egy egyenesen lév n pont valamelyikét, ezzel a ponttal olyan n pontot kapnánk, amelyek már nincsenek egy egyenesen, ez pedig ellentmond az indukciós feltevésnek. -7
Intergrált Intenzív Matematika Érettségi
. Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.
1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
Megoldások 11. osztály
XXV. Nemzetközi Magyar Matematikaverseny Budapest, 016. március 1115. Megoldások 11. osztály 1. feladat Egy háromszög három oldalának mér száma, a, b, c ebben a sorrendben egy mértani sorozat három egymást
HALMAZELMÉLET feladatsor 1.
HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,
2. gyakorlat. A polárkoordináta-rendszer
. gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel
2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában
9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának
Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont
Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú
Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36
Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.
: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!
nomosztással a megoldást visszavezethetjük egy alacsonyabb fokú egyenlet megoldására Mivel a 4 6 8 6 egyenletben az együtthatók összege 6 8 6 ezért az egyenletnek gyöke az (mert esetén a kifejezés helyettesítési
Hatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai
Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív
Függvényhatárérték és folytonosság
8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak
Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:
Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások
) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja
Megoldások 9. osztály
XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege
Szögfüggvények értékei megoldás
Szögfüggvények értékei megoldás 1. Számítsd ki az alábbi szögfüggvények értékeit! (a) cos 585 (f) cos ( 00 ) (k) sin ( 50 ) (p) sin (u) cos 11 (b) cos 00 (g) cos 90 (l) sin 510 (q) sin 8 (v) cos 9 (c)
Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?
Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.
Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda
Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett
25 i, = i, z 1. (x y) + 2i xy 6.1
6 Komplex számok megoldások Lásd ábra z = + i, z = + i, z = i, z = i z = 7i, z = + 5i, z = 5i, z = i, z 5 = 9, z 6 = 0 Teljes indukcióval 5 Teljes indukcióval 6 Az el z feladatból következik z = z = =
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Határozott integrál és alkalmazásai
Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,
Komplex számok. A komplex számok algebrai alakja
Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.
1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén
M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!
Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének
Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23
Komplex számok Wettl Ferenc 2014. szeptember 14. Wettl Ferenc Komplex számok 2014. szeptember 14. 1 / 23 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet
Diszkrét Matematika - Beadandó Feladatok
Diszkrét Matematika - Beadandó Feladatok Demjan Adalbert - SFDAGZ 2014. december 6. Tartalomjegyzék 1. 2.1-2/c 2 2. 2.2-1/c 3 3. 2.3-13/a 4 4. 2.3-13/b 5 5. 4.1-5/a 6 6. 4.1-5/b 7 7. 4.1-5/c 8 8. 4.4-16
Függvény fogalma, jelölések 15
DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük
Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.
Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:
Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független
Kongruenciák. Waldhauser Tamás
Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek
Matematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
I. Egyenlet fogalma, algebrai megoldása
11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz
Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
Gyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6
Gyakorló feladatok 1. Ismertesd a matematikai indukció logikai sémáját, magyarázzuk meg a bizonyítás lényegét. Bizonyítsuk be, hogy minden n természetes számra 1 + 3 + + (n 1) = n.. Matematikai indukcióval
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
FELVÉTELI VIZSGA, július 17.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 2017. július 17. Írásbeli vizsga MATEMATIKÁBÓL I. TÉTEL (30 pont) 1) (10 pont) Igazoljuk, hogy tetszőleges m R esetén
Matematika szintfelmérő dolgozat a 2018 nyarán felvettek részére augusztus
Matematika szintfelmérő dolgozat a 018 nyarán felvettek részére 018. augusztus 1. (8 pont) Oldjuk meg a következő egyenletet a valós számok halmazán: 6 4 x 13 6 x + 6 9 x = 0 6 ( ) x 4 13 9 6 4 x 13 6
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória
Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk
Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz
Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis
Klasszikus algebra előadás. Waldhauser Tamás április 14.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Egyváltozós függvények 1.
Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata
illetve a n 3 illetve a 2n 5
BEVEZETÉS A SZÁMELMÉLETBE 1. Határozzuk meg azokat az a természetes számokat ((a, b) számpárokat), amely(ek)re teljesülnek az alábbi feltételek: a. [a, 16] = 48 b. (a, 0) = 1 c. (a, 60) = 15 d. (a, b)
Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész
Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )
A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.
2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,
Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18
Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök
MBNK12: Permutációk (el adásvázlat, április 11.) Maróti Miklós
MBNK12: Permutációk el adásvázlat 2016 április 11 Maróti Miklós 1 Deníció Az A halmaz permutációin a π : A A bijektív leképezéseket értjünk Tetsz leges n pozitív egészre az {1 n} halmaz összes permutációinak
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Diszkrét matematika. Gyakorlati feladatsor. 1. Bevezetés: halmazok és függvények. Adjuk meg (és ábrázoljuk Venn-diagrammon) az alábbi halmazokat!
Diszkrét matematika Gyakorlati feladatsor. Bevezetés: halmazok és függvények.. Legyen A = {x N x páros}, B = {x N x > 4}, valamint C = {x N x < 6}. Adjuk meg (és ábrázoljuk Venn-diagrammon) az alábbi halmazokat!
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten KOMPLEX SZÁMOK Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Történeti bevezetés
VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok
VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják
Hatvány gyök logaritmus
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Hatvány gyök logaritmus Hatványozás azonosságai 1. Döntse el az alábbi állításról, hogy igaz-e vagy hamis! Ha két szám négyzete egyenl, akkor
Permutációk véges halmazon (el adásvázlat, február 12.)
Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz
TARTALOM. Előszó 9 HALMAZOK
TARTALOM Előszó 9 HALMAZOK Halmazokkal kapcsolatos fogalmak, részhalmazok 10 Műveletek halmazokkal 11 Számhalmazok 12 Nevezetes ponthalmazok 13 Összeszámlálás, komplementer-szabály 14 Összeszámlálás, összeadási
Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és
2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend
FELVÉTELI VIZSGA, szeptember 12.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy
8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.
8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az
1. Analizis (A1) gyakorló feladatok megoldása
Tartalomjegyzék. Analizis A) gyakorló feladatok megoldása.................... Egyenl tlenségek, matematikai indukció, számtani-mértani közép....... Számsorozatok............................... 5... Számorozatok................................
Algoritmuselmélet gyakorlat (MMN111G)
Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy
1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a
1. 1. hét 1.1. Alapfogalmak Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a (2, 3) Egyenes normál vektora egy pontban: egy olyan vektor
Lineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák
Lineáris Algebra Pejó Balázs Tartalomjegyzék 1. Peano-axiomák 2 1.1. 1.................................................... 2 1.2. 2.................................................... 2 1.3. 3....................................................
Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz
Halmazok 1. Feladat. Adott négy halmaz: az alaphalmaz, melynek részhalmazai az A, a B és a C halmaz: U {1, 2,,..., 20}, az A elemei a páros számok, a B elemei a hárommal oszthatók, a C halmaz elemei pedig
Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu
Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:
Analízis I. Vizsgatételsor
Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2
Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek
függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1
Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az
352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm
5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88
Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.
Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =
Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán):
Oszthatóság Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Azt mondjuk, hogy az a osztója b-nek (jel: a b), ha van olyan c egész, amelyre ac = b. A témakörben a betűk egész
Bevezetés az algebrába az egész számok 2
Bevezetés az algebrába az egész számok 2 Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december
konvergensek-e. Amennyiben igen, számítsa ki határértéküket!
1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
A matematika nyelvér l bevezetés
A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások
OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged
Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül
Algebra es sz amelm elet 3 el oad as Permut aci ok Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Permutációk Waldhauser Tamás 2014 őszi félév 1. Definíció. Permutációnak nevezzük egy nemüres (véges) halmaz önmagára való bijektív leképezését. 2. Definíció. Az {1, 2,...,
FELVÉTELI VIZSGA, július 21. Írásbeli próba MATEMATIKÁBÓL A. RÉSZ
BABE -BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 9. július. Írásbeli próba MATEMATIKÁBÓL FONTOS MEGJEGYZÉS: ) Az A. részben megjelen feleletválasztós feladatok esetén
NULLADIK MATEMATIKA ZÁRTHELYI
NULLADIK MATEMATIKA ZÁRTHELYI 08-09-07 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.
Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 14
Komplex számok Wettl Ferenc 2012-09-07 Wettl Ferenc () Komplex számok 2012-09-07 1 / 14 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet egy speciális
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
MM CSOPORTELMÉLET GYAKORLAT ( )
MM4122-1 CSOPORTELMÉLET GYAKORLAT (2008.12.01.) 1. Ismétlés szeptember 1.szeptember 8. 1.1. Feladat. Döntse el, hogy az alábbi állítások közül melyek igazak és melyek (1) Az A 6 csoportnak van 6-odrend
Haladók III. kategória 2. (dönt ) forduló
Haladók III. kategória 2. (dönt ) forduló 1. Tetsz leges n pozitív egész számra jelölje f (n) az olyan 2n-jegy számok számát, amelyek megegyeznek az utolsó n számjegyükb l alkotott szám négyzetével. Határozzuk