Klasszikus algebra előadás. Waldhauser Tamás április 14.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Klasszikus algebra előadás. Waldhauser Tamás április 14."

Átírás

1 Klasszikus algebra előadás Waldhauser Tamás április 14.

2 Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket, ahol 0 = a T és k 1,..., k n N 0. Az ilyen monomok véges összegeit pedig T feletti n-határozatlanú polinomoknak nevezzük. Jelölés. A T feletti n-határozatlanú polinomok halmazát T [x 1,..., x n ] jelöli Tétel. A természetes módon definiált szorzással és összeadással T [x 1,..., x n ] integritástartomány Megjegyzés. Az n-határozatlanú polinomok gyűrűjét lehetne rekurzívan is definiálni: legyen T [x 1,..., x n ] = (T [x 1,..., x n 1 ]) [x n ], azaz a T [x 1,..., x n 1 ] integritástartomány feletti (egyhatározatlanú) polinomgyűrű.

3 Többhatározatlanú polinomok Példa. f = 7x 2 1 x 3 2x 1 x 2 x x 1x 2 3x 2 1 x 2x x 1x 2 x 3 3 2x x 1 x 2 2 x 3 x 2 1 x 2x 3 6x 1 x 3 + 2x x 1x x2 2 x R [x 1, x 2, x 3 ] f = x 2 1 ( 3x 2 x 2 3 x 2x 3 + 7x 3 2 ) + x 1 (5x 2 2 x 3 2x 2 x x 2x x 2 + x 2 3 6x 3) + ( 4x 2 2 x x ) R [x 2, x 3 ] [x 1 ] ( f = x1 2 x 2 ( 3x ) 3 2 x 3) + (7x3 2) + ( x 1 x2 2 (5x ( 3) x 2 2x x ) + ( x3 2 6x 3) ) + ( x2 2 (4x 3 2 ) ( + 2x )) R [x 3 ] [x 2 ] [x 1 ]

4 Lexikografikus rendezés 4.6. Definíció. Azt mondjuk, hogy az ax k 1 1 xk n n monom lexikografikusan megelőzi a bx l 1 1 x l n n monomot, ha i {1,..., n} : k 1 = l 1,..., k i 1 = l i 1 és k i > l i. (Vagyis megkeressük az első eltérést a k 1, k 2,..., k n és az l 1, l 2,..., l n kitevősorozatok között, és amelyikben nagyobb szám áll ezen a helyen, az kerül előrébb a lexikografikus sorrendben.) Jelölés. Tetszőleges M, N T [x 1,..., x n ] monomok esetén M N jelöli azt, hogy M lexikografikusan megelőzi N-et, M N pedig azt, hogy M N vagy M N. A relációt lexikografikus rendezésnek nevezzük.

5 Lexikografikus rendezés Példa. x 2 1 x99 2 x23 3 x71 4 x 3 1 x 2x 2 3 x5 4 2x 3 1 x 2x 4 3 x2 4 14x 3 1 x 2x 2 3 x3 4 x 1 x 2 x 2 3 x 4 3x 4 2 x6 3 x2 4 12x 2 1 x3 2 x 3x 5 4 9x 2 1 x3 2 x 3x 5 4

6 Lexikografikus rendezés 4.7. Álĺıtás. A monomok halmazán reflexív, tranzitív és dichotóm reláció, valamint M M N akkor és csak akkor áll fenn egyszerre, ha M és N asszociált Megjegyzés. Az előző álĺıtás szerint a reláció teljes rendezés (dichotóm részbenrendezés) a monomok halmazán modulo asszociáltság. Általában egyszerre csak egy adott polinomban előforduló monomokat vizsgálunk, ezek között pedig nincsenek asszociáltak (azokat össze lehetne vonni egy taggá), tehát ilyenkor valójában teljesen rendezett halmazzal dolgozhatunk. N és 4.9. Álĺıtás. A monomok szorzása monoton a lexikografikus rendezésre nézve, azaz tetszőleges M, ˆM, N, ˆN monomokra ha M N és ˆM ˆN, akkor M ˆM N ˆN, és itt asszociáltság csak akkor teljesül, ha M N és ˆM ˆN Álĺıtás. Tetszőleges f, g T [x 1,..., x n ] nemzéró polinomokra fg lexikografikusan első tagja nem más, mint f és g lexikografikusan első tagjának szorzata.

7 Lexikografikus rendezés Példa. A korábbi példában szereplő polinom tagjai lexikografikusan csökkenő sorrendben: f = 3x 2 1 x 2x 2 3 x2 1 x 2x 3 + 7x 2 1 x 3 2x x 1x 2 2 x 3 2x 1 x 2 x x 1 x 2 x x 1x 2 + x 1 x 2 3 6x 1x 3 + 4x 2 2 x x

8 Szimmetrikus polinomok Definíció. Az f T [x 1,..., x n ] polinomot szimmetrikus polinomnak nevezzük, ha invariáns a határozatlanok minden permutációjára, azaz π S n : f (x 1π,..., x nπ ) = f (x 1,..., x n ) Definíció. A k-adik n-határozatlanú elemi szimmetrikus polinom az x 1,..., x n határozatlanokból képezett összes k-tényezős szorzatok összege (k = 1,..., n). Jelölés. A k-adik n-határozatlanú elemi szimmetrikus polinomot σ k jelöli (az alaptest és n értéke általában világos a szövegkörnyezetből), tehát σ k = x i1 x i2... x ik = 1 i 1 <i 2 < <i k n I {1,...,n} I =k x i T [x 1,..., x n ]. i I Megjegyzés. Az elemi szimmetrikus polinomokkal már találkoztunk: segítségükkel fejezhetők ki egy komplex együtthatós főpolinom együtthatói a polinom gyökeiből. Tehát a Viète-formulák σ k (α 1,..., α n ) = ( 1) k a n k alakban is feĺırhatók.

9 Szimmetrikus polinomok Példa. Határozzuk meg az x 3 + 2x 2 + 8x + 6 polinom gyökeinek négyzetösszegét. A Viète-formulák szerint α 1 + α 2 + α 3 = σ 1 (α 1, α 2, α 3 ) = 2, α 1 α 2 + α 1 α 3 + α 2 α 3 = σ 2 (α 1, α 2, α 3 ) = 8, α 1 α 2 α 3 = σ 3 (α 1, α 2, α 3 ) = 6. α α α 2 3 = (α 1 + α 2 + α 3 ) 2 2 (α 1 α 2 + α 1 α 3 + α 2 α 3 ) = 4 16 = 12 A megoldás kulcsa az, hogy az x x2 2 + x2 3 Q [x 1, x 2, x 3 ] polinomot ki lehet fejezni az elemi szimmetrikus polinomok segítségével: x x x 2 3 = σ 2 1 2σ 2. Ez pedig azért tehető meg, mert x1 2 + x2 2 + x2 3 szimmetrikus polinom.

10 A szimmetrikus polinomok alaptétele Tétel. A szimmetrikus polinomok részgyűrűt alkotnak a T [x 1,..., x n ] polinomgyűrűben Lemma. Ha ax k 1 1 xk n n egy szimmetrikus polinom lexikografikusan első tagja, akkor k 1 k n Lemma. Tetszőleges k 1 k n nemnegatív egészekhez léteznek olyan l 1,..., l n nemnegatív egészek, hogy σ l σ l n n T [x 1,..., x n ] lexikografikusan első tagja éppen x k 1 1 xk n n Tétel (a szimmetrikus polinomok alaptétele). Bármely szimmetrikus polinom feĺırható, mégpedig egyetlen módon, az elemi szimmetrikus polinomok polinomjaként. Formálisan: f T [x 1,..., x n ] : f szimmetrikus =!h T [x 1,..., x n ] : f = h (σ 1,..., σ n ).

11 Diszkrimináns Következmény. Tetszőleges n-edfokú f Q [x] polinom esetén ha f komplex gyökei (multiplicitással) α 1,..., α n, akkor minden g Q [x 1,..., x n ] szimmetrikus polinomra g (α 1,..., α n ) Q. Példa. Ha a g = 1 i<j n (x i x j ) 2 polinomra alkalmazzuk a fenti következményt, akkor azt kapjuk, hogy racionális együtthatós polinom diszkriminánsa racionális szám (hiszen kifejezhető az együtthatók racionális polinomjaként).

12 A harmadfokú polinom diszkriminánsa D = (x 1 x 2 ) 2 (x 1 x 3 ) 2 (x 2 x 3 ) 2 σ 1 = x 1 + x 2 + x 3 σ 2 = x 1 x 2 + x 1 x 3 + x 2 x 3 σ 3 = x 1 x 2 x 3 D = x 4 1 x2 2 2x4 1 x 2x 3 + x 4 1 x2 3 2x3 1 x x3 1 x2 2 x 3 + 2x 3 1 x 2x 2 3 2x3 1 x3 3 +x 2 1 x x2 1 x3 2 x 3 6x 2 1 x2 2 x x2 1 x 2x x2 1 x4 3 2x 1x 4 2 x 3 +2x 1 x 3 2 x x 1x 2 2 x3 3 2x 1x 2 x x4 2 x2 3 2x3 2 x3 3 + x2 2 x4 3

13 A harmadfokú polinom diszkriminánsa D σ 2 1 σ2 2 = 4x 4 1 x 2x 3 4x 3 1 x3 2 6x3 1 x2 2 x 3 6x 3 1 x 2x 2 3 4x3 1 x3 3 6x 2 1 x3 2 x 3 21x 2 1 x2 2 x2 3 6x2 1 x 2x 3 3 4x 1x 4 2 x 3 6x 1 x 3 2 x2 3 6x 1x 2 2 x3 3 4x 1x 2 x 4 3 4x3 2 x3 3 D σ 2 1 σ σ3 1 σ 3 = 4x 3 1 x x3 1 x2 2 x 3 + 6x 3 1 x 2x 2 3 4x3 1 x x2 1 x3 2 x 3 +3x 2 1 x2 2 x x2 1 x 2x x 1x 3 2 x x 1x 2 2 x3 3 4x3 2 x3 3 D σ 2 1 σ σ3 1 σ 3 + 4σ 3 2 = 18x 3 1 x2 2 x x 3 1 x 2x x2 1 x3 2 x x 2 1 x2 2 x x 2 1 x 2x x 1x 3 2 x x 1x 2 2 x3 3 D σ 2 1 σ σ3 1 σ 3 + 4σ σ 1σ 2 σ 3 = 27x 2 1 x2 2 x2 3 D σ 2 1 σ σ3 1 σ 3 + 4σ σ 1σ 2 σ σ 2 3 = 0

14 A harmadfokú polinom diszkriminánsa D = σ 2 1 σ2 2 4σ3 1 σ 3 4σ σ 1σ 2 σ 3 27σ 2 3 Ha (x α 1 ) (x α 2 ) (x α 3 ) = x 3 + px + q, akkor a Viéte-formulák szerint tehát σ 1 (α 1, α 2, α 3 ) = 0, σ 2 (α 1, α 2, α 3 ) = p, σ 3 (α 1, α 2, α 3 ) = q, D (α 1, α 2, α 3 ) = 4σ 2 (α 1, α 2, α 3 ) 3 27σ 3 (α 1, α 2, α 3 ) 2 = 4p 3 27q 2 = 108 ( ( q ) 2 ( p ) )

15 Algebrai és transzcendens számok Definíció. Az α komplex számot algebrai számnak nevezzük, ha gyöke valamely nemzéró racionális együtthatós polinomnak. A nem algebrai számokat transzcendens számoknak nevezzük Definíció. Ha f Q [x] minimális fokszámú mindazon nemzéró racionális együtthatós főpolinomok között, melyeknek α gyöke, akkor f -et az α algebrai szám minimálpolinomjának nevezzük Tétel*. Algebrai szám minimálpolinomja mindig egyértelműen meghatározott, és irreducibilis a racionális számtest felett. Továbbá, ha f Q [x] olyan irreducibilis főpolinom melynek az α algebrai szám gyöke, akkor f megegyezik α minimálpolinomjával Tétel*. Létezik transzcendens szám.

16 Algebrai és transzcendens számok Példa. 2 algebrai szám, minimálpolinomja: x 2 2 (miért irreducibilis?). n 2 algebrai szám, minimálpolinomja: x n 2 (miért irreducibilis?). i algebrai szám, minimálpolinomja: x (miért irreducibilis?). π és e transzcendens számok. A Liouville-féle 1 10 n! konstans transzcendens szám. Gelfond Schneider-tétel: Ha α = 0, 1 és β / Q algebrai számok, akkor α β transzcendens szám. Például 2 2, 2 2 és i i = e π/2 transzcendens számok.

17

18 Algebrai számok és gyökmennyiségek Tétel*. Az algebrai számok résztestet alkotnak a komplex számok testében Tétel*. Ha α algebrai szám és n 2, akkor n α is algebrai szám (a gyöknek mind az n értékére) Definíció. Az α komplex számot gyökmennyiségnek nevezzük, ha megkapható racionális számokból kiindulva a négy alapművelet (összeadás, kivonás, szorzás, osztás) és egész kitevős gyökvonás véges számú alkalmazásával Következmény. A gyökmennyiségek algebrai számok. Példa. Ez a szám algebrai:

19 Algebrai számok és gyökmennyiségek Tétel*. Van olyan algebrai szám, ami nem gyökmennyiség. A fenti ártatlannak látszó tételből következik, hogy nem minden egyenlet oldható meg gyökjelek segítségével. Az ötödfokú egyenletnek már nincs általános megoldóképlete, sőt, például az x 5 4x + 2 = 0 egyenletnek még ad hoc megoldóképlete sincs, mert gyökei nem gyökmennyiségek Tétel*. Az algebrai számok teste algebrailag zárt, azaz ha α C gyöke a legalább elsőfokú f = a n x n + + a 1 x + a 0 polinomnak, ahol a 0,..., a n algebrai számok, akkor α maga is algebrai szám.

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev Algebra és számelmélet 3 előadás Nevezetes számelméleti problémák Waldhauser Tamás 2014 őszi félév Tartalom 1. Számok felbontása hatványok összegére 2. Prímszámok 3. Algebrai és transzcendens számok Tartalom

Részletesebben

Tartalom. Algebrai és transzcendens számok

Tartalom. Algebrai és transzcendens számok Nevezetes számelméleti problémák Tartalom 6. Nevezetes számelméleti problémák Számok felbontása hatványok összegére Prímszámok Algebrai és transzcendens számok 6.1. Definíció. Az (x, y, z) N 3 számhármast

Részletesebben

Polinomok (előadásvázlat, október 21.) Maróti Miklós

Polinomok (előadásvázlat, október 21.) Maróti Miklós Polinomok (előadásvázlat, 2012 október 21) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: gyűrű, gyűrű additív csoportja, zéruseleme, és multiplikatív félcsoportja,

Részletesebben

Polinomok (el adásvázlat, április 15.) Maróti Miklós

Polinomok (el adásvázlat, április 15.) Maróti Miklós Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás március 24.

Klasszikus algebra előadás. Waldhauser Tamás március 24. Klasszikus algebra előadás Waldhauser Tamás 2014. március 24. Irreducibilitás 3.33. Definíció. A p T [x] polinom irreducibilis, ha legalább elsőfokú, és csak úgy bontható két polinom szorzatára, hogy az

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.

1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők. 1. Interpoláció Az interpoláció alapproblémája. Feladat Olyan polinomot keresünk, amely előre megadott helyeken előre megadott értékeket vesz fel. A helyek: páronként különböző a 1, a,...,a n számok. Az

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Klasszikus algebra előadás. Waldhauser Tamás április 28. Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,

Részletesebben

Testek március 29.

Testek március 29. Testek 2014. március 29. 1. Alapfogalmak 2. Faktortest 3. Testbővítések 1. Alapfogalmak 2. Faktortest 3. Testbővítések [Sz] V/3, XIII/1,2; [F] III/1-7 (+ előismeretek!) Definíció Ha egy nemüres halmazon

Részletesebben

1. Interpoláció. Egyértelműség (K2.4.10) Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.

1. Interpoláció. Egyértelműség (K2.4.10) Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők. 1. Interpoláció Az interpoláció alapproblémája Feladat Olyan polinomot keresünk, amely előre megadott helyeken előre megadott értékeket vesz fel. A helyek: páronként különböző a 1,a 2,...,a n számok. Az

Részletesebben

Algoritmuselmélet gyakorlat (MMN111G)

Algoritmuselmélet gyakorlat (MMN111G) Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy

Részletesebben

Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság

Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság Algebrai alapismeretek az Algebrai síkgörbék c tárgyhoz 1 Integritástartományok, oszthatóság 11 Definíció A nullaosztómentes, egységelemes kommutatív gyűrűket integritástartománynak nevezzük 11 példa Integritástartományra

Részletesebben

Kongruenciák. Waldhauser Tamás

Kongruenciák. Waldhauser Tamás Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek

Részletesebben

5. Az Algebrai Számelmélet Elemei

5. Az Algebrai Számelmélet Elemei 5. Az Algebrai Számelmélet Elemei 5.0. Bevezetés. Az algebrai számelmélet legegyszerűbb kérdései az ún. algebrai számtestek egészei gyűrűjének aritmetikai tulajdonságainak vizsgálata. Ezek legegyszerűbb

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika

Részletesebben

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 9

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 9 Komplex számok Wettl Ferenc 2010-09-10 Wettl Ferenc () Komplex számok 2010-09-10 1 / 9 Tartalom 1 Számok Egy kis történelem A megoldóképlet egy speciális esetre Lehet számolni negatív szám gyökével Műveletek

Részletesebben

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!! 4. Test feletti egyhatározatlaú poliomok Klasszikus algebra előadás Waldhauser Tamás 2013 április 11. Eddig a poliomokkal mit formális kifejezésekkel számoltuk, em éltük azzal a lehetőséggel, hogy x helyébe

Részletesebben

1. A maradékos osztás

1. A maradékos osztás 1. A maradékos osztás Egész számok osztása Példa 223 = 7 31+6. Visszaszorzunk Kivonunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a,b Z esetén, ahol b 0, létezik olyan q,r Z, hogy a = bq +

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23 Komplex számok Wettl Ferenc 2014. szeptember 14. Wettl Ferenc Komplex számok 2014. szeptember 14. 1 / 23 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet

Részletesebben

megválaszolása: E. Galois elmélete.

megválaszolása: E. Galois elmélete. Galois életéről A megoldhatóság kérdésének megválaszolása: E. Galois elmélete. Klukovits Lajos TTIK Bolyai Intézet 2013. április 17. 1811. október 25-én született egy Párizs közeli kisvárosban Bourg-la-Reine-ben,

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

MTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA. 1. Csoportelméleti alapfogalmak

MTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA. 1. Csoportelméleti alapfogalmak MTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA 1. Csoportelméleti alapfogalmak 1.1. Feladat. Csoportot alkotnak-e az alábbi halmazok a megadott műveletre nézve? (1) (Z 2 ; ), (2) (Z 2 ; +), (3) (R \ { 1}; ),

Részletesebben

1. Hatvány és többszörös gyűrűben

1. Hatvány és többszörös gyűrűben 1. Hatvány és többszörös gyűrűben Hatvány és többszörös Definíció (K2.2.19) Legyen asszociatív művelet és n pozitív egész. Ekkor a n jelentse az n tényezős a a... a szorzatot. Ez az a elem n-edik hatványa.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.

Részletesebben

1. Polinomok számelmélete

1. Polinomok számelmélete 1. Polinomok számelmélete Oszthatóság, egységek. Emlékeztető Legyen R a C, R, Q, Z egyike. Azt mondjuk, hogy (1) a g R[x] polinom osztója f R[x]-nek R[x]-ben, ha létezik olyan h R[x] polinom, hogy f (x)

Részletesebben

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest 2007-07-25 A 2. és a 4. fejezet feladatai megoldva megtalálhatók a Testb vítés, véges testek;

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében? Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?

Részletesebben

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 14

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 14 Komplex számok Wettl Ferenc 2012-09-07 Wettl Ferenc () Komplex számok 2012-09-07 1 / 14 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet egy speciális

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a

1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a 1. 1. hét 1.1. Alapfogalmak Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a (2, 3) Egyenes normál vektora egy pontban: egy olyan vektor

Részletesebben

Hatványozás. A hatványozás azonosságai

Hatványozás. A hatványozás azonosságai Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84

Részletesebben

1. Egész együtthatós polinomok

1. Egész együtthatós polinomok 1. Egész együtthatós polinomok Oszthatóság egész számmal Emlékeztető (K3.1.3): Ha f,g Z[x], akkor f g akkor és csak akkor, ha van olyan h Z[x], hogy g = fh. Állítás (K3.1.6) Az f(x) Z[x] akkor és csak

Részletesebben

b, b > 0 racionális szám, hogy a

b, b > 0 racionális szám, hogy a 3. A lánctörtek alkalmazásai. 3.. Diofantikus approximáció. Alapkérdés: Mennyire jól közelíthetők az irracionálisok racionális számokkal? Megjegyzés. Mindenek előtt azt kell tisztázni, hogy mit jelent

Részletesebben

matematika alapszak Waldhauser Tamás jegyzete alapján készítette B. Szendrei Mária

matematika alapszak Waldhauser Tamás jegyzete alapján készítette B. Szendrei Mária ALGEBRA ÉS SZÁMELMÉLET vázlat az előadáshoz matematika alapszak 2019-20, őszi félév Waldhauser Tamás jegyzete alapján készítette B. Szendrei Mária 1. Komplex számok Kanonikus alak, konjugált, abszolút

Részletesebben

Bevezetés az algebrába az egész számok

Bevezetés az algebrába az egész számok Bevezetés az algebrába az egész számok Wettl Ferenc V. 15-09-11 Wettl Ferenc Bevezetés az algebrába az egész számok V. 15-09-11 1 / 32 Jelölések 1 Egész számok és sorozataik 2 Oszthatóság 3 Közös osztók

Részletesebben

Mi az, hogy egyenlet. Megoldhatók-e az egyenletek. Mi az, hogy egyenlet. Mi az, hogy egyenlet. Számokat keresünk 3.

Mi az, hogy egyenlet. Megoldhatók-e az egyenletek. Mi az, hogy egyenlet. Mi az, hogy egyenlet. Számokat keresünk 3. A probléma Megoldhatók-e az egyenletek. Időutazás a matematika 4000 éves történetében. Klukovits Lajos TTIK Bolyai Intézet 2015. november 24. Egy egyszerű definíció. Egy vagy több olyan matematikai objektumot

Részletesebben

KLASSZIKUS ALGEBRA ÉS SZÁMELMÉLET FELADATOK

KLASSZIKUS ALGEBRA ÉS SZÁMELMÉLET FELADATOK KLASSZIKUS ALGEBRA ÉS SZÁMELMÉLET FELADATOK (a rutinfeladatokat O jelzi) Leképezések, relációk 1. feladat O Adja meg az A = {2, 3, 8, 9, 14, 15, 19, 26} alaphalmazon értelmezett ekvivalenciarelációhoz

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Matematika alapjai; Feladatok

Matematika alapjai; Feladatok Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \

Részletesebben

Polinomok maradékos osztása

Polinomok maradékos osztása 14. előadás: Racionális törtfüggvények integrálása Szabó Szilárd Polinomok maradékos osztása Legyenek P, Q valós együtthatós polinomok valamely x határozatlanban. Feltesszük, hogy deg(q) > 0. Tétel Létezik

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Komplex számok StKis, EIC 2019-02-06 Wettl Ferenc

Részletesebben

Mikor van egy változó egy kvantor hatáskörében? Milyen tulajdonságokkal rendelkezik a,,részhalmaz fogalom?

Mikor van egy változó egy kvantor hatáskörében? Milyen tulajdonságokkal rendelkezik a,,részhalmaz fogalom? Definíciók, tételkimondások Mondjon legalább három példát predikátumra. Sorolja fel a logikai jeleket. Milyen kvantorokat ismer? Mi a jelük? Hogyan kapjuk a logikai formulákat? Mikor van egy változó egy

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét.

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét. Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a Számítsuk ki a 2i + 3j + 6k kvaternió inverzét. b Köbgyöktelenítsük a nevezőt az alábbi törtben: 1 3 3. Megoldás: a Egy q = a + bi + cj

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet. 1. A polinom fogalma Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1 = x egyenletet. Megoldás x + 1-gyel átszorozva x 2 + x + 1 = x 2 + x. Innen 1 = 0. Ez ellentmondás, így az

Részletesebben

Algebrai egész kifejezések (polinomok)

Algebrai egész kifejezések (polinomok) Algebrai egész kifejezések (polinomok) Betűk használata a matematikában Feladat Mekkora a 107m 68m oldalhosszúságú téglalap alakú focipála kerülete, területe? a = 107 m b = 68 m Terület T = a b = 107m

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Gy ur uk aprilis 11.

Gy ur uk aprilis 11. Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

LINEÁRIS ALGEBRA. Szerkeszt es alatt NAGY ATTILA

LINEÁRIS ALGEBRA. Szerkeszt es alatt NAGY ATTILA LINEÁRIS ALGEBRA NAGY ATTILA 2014.12.15 Tartalomjegyzék Bevezető 5 1. Alapfogalmak 7 1.1. Algebrai struktúrák.............................. 7 1.1.1. Az algebrai struktúra fogalma.................... 7

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

I. POLINOMELMÉLET. 1. Polinomok gyökei

I. POLINOMELMÉLET. 1. Polinomok gyökei I. POLINOMELMÉLET 1. Polinomok gyökei Ebben a paragrafusban legyen A integritástartomány, amely valamely K test részgyűrűje. Definíció. Azt mondjuk, hogy a c K elem az f(x) A[x] polinom gyöke, illetve

Részletesebben

Mi az, hogy egyenlet. Megoldhatók-e az egyenletek. Mi az, hogy egyenlet. Több egyenlet együttese az ókorban. Számokat keresünk 2.

Mi az, hogy egyenlet. Megoldhatók-e az egyenletek. Mi az, hogy egyenlet. Több egyenlet együttese az ókorban. Számokat keresünk 2. A probléma Mi az, hogy egyenlet. Megoldhatók-e az egyenletek. Időutazás a matematika 4000 éves történetében. Klukovits Lajos TTIK Bolyai Intézet 2017. május 4. Egy egyszerű definíció. Egy vagy több olyan

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Szerkeszt es alatt LINEÁRIS ALGEBRA NAGY ATTILA EGYETEMI JEGYZET. Budapesti Műszaki és Gazdaságtudományi Egyetem. Algebra Tanszék

Szerkeszt es alatt LINEÁRIS ALGEBRA NAGY ATTILA EGYETEMI JEGYZET. Budapesti Műszaki és Gazdaságtudományi Egyetem. Algebra Tanszék LINEÁRIS ALGEBRA NAGY ATTILA EGYETEMI JEGYZET Budapesti Műszaki és Gazdaságtudományi Egyetem Algebra Tanszék 2011 Ez a jegyzet a Budapesti Műszaki és Gazdaságtudományi Egyetemen a Matematika Alapszak

Részletesebben

1. feladatsor Komplex számok

1. feladatsor Komplex számok . feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4

Részletesebben

Diszkrét matematika II., 8. előadás. Vektorterek

Diszkrét matematika II., 8. előadás. Vektorterek 1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten KOMPLEX SZÁMOK Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Történeti bevezetés

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Waldhauser Tamás szeptember 8.

Waldhauser Tamás szeptember 8. Algebra és számelmélet előadás Waldhauser Tamás 2016. szeptember 8. Tematika Komplex számok, kanonikus és trigonometrikus alak. Moivre-képlet, gyökvonás, egységgyökök, egységgyök rendje, primitív egységgyökök.

Részletesebben

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2. TARTALOMJEGYZÉK Polinomok konvolúviója A DFT és a maradékos osztás Gyűrűk támogatás nélkül Második nekifutás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. október 2. TARTALOMJEGYZÉK Polinomok

Részletesebben

Kalkulus. Komplex számok

Kalkulus. Komplex számok Komplex számok Komplex számsík A komplex számok a valós számok természetes kiterjesztése, annak érdekében, hogy a gyökvonás művelete elvégezhető legyen a negatív számok körében is. Vegyük tehát hozzá az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Számelmélet. 1. Oszthatóság Prímszámok

Számelmélet. 1. Oszthatóság Prímszámok Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Markov-láncok stacionárius eloszlása

Markov-láncok stacionárius eloszlása Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Lineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák

Lineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák Lineáris Algebra Pejó Balázs Tartalomjegyzék 1. Peano-axiomák 2 1.1. 1.................................................... 2 1.2. 2.................................................... 2 1.3. 3....................................................

Részletesebben

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat 8.2. Gyűrűk Fogalmak, definíciók: Gyűrű, kommutatív gyűrű, integritási tartomány, test Az (R, +, ) algebrai struktúra gyűrű, ha + és R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ) félcsoport,

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Algebra es sz amelm elet 3 el oad as Permut aci ok Waldhauser Tam as 2014 oszi f el ev

Algebra es sz amelm elet 3 el oad as Permut aci ok Waldhauser Tam as 2014 oszi f el ev Algebra és számelmélet 3 előadás Permutációk Waldhauser Tamás 2014 őszi félév 1. Definíció. Permutációnak nevezzük egy nemüres (véges) halmaz önmagára való bijektív leképezését. 2. Definíció. Az {1, 2,...,

Részletesebben

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:...

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:... 1. Feladat. Döntse el, hogy igaz vagy hamis. Név:........................................... (1) (1 3) = (3 1). (hamis) () (1 ) = ( 1). (igaz). Feladat. Döntse el, hogy igaz vagy hamis. Név:...........................................

Részletesebben

Magasabbfokú egyenletek

Magasabbfokú egyenletek 86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y

Részletesebben

A permutáció fogalma. Ciklusfelbontás. 1. feladat. Számítsuk ki S 6 -ban a πρ, ρπ, π 1 és π 2014 permutációkat, ahol

A permutáció fogalma. Ciklusfelbontás. 1. feladat. Számítsuk ki S 6 -ban a πρ, ρπ, π 1 és π 2014 permutációkat, ahol A permutáció fogalma 11 Definíció Permutációnak nevezzük egy nemüres véges halmaz önmagára való bijektív leképezését 12 Definíció Az {1, 2,, n} halmaz összes permutációi csoportot alkotnak a leképezésszorzás

Részletesebben

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla Számelmélet (2017 február 8) Bogya Norbert, Kátai-Urbán Kamilla 1 Oszthatóság 1 Definíció Legyen a, b Z Az a osztója b-nek, ha létezik olyan c Z egész szám, melyre ac = b Jelölése: a b 2 Példa 3 12, 2

Részletesebben

Waldhauser Tamás szeptember 15.

Waldhauser Tamás szeptember 15. Algebra és számelmélet előadás Waldhauser Tamás 2016. szeptember 15. Házi feladat a gyakorlatra 4. feladat. Ábrázolja a Gauss-féle számsíkon az alábbi számhalmazokat. { (a) z C: 0 arg (zi) < π } (b) {z

Részletesebben

Permutációk véges halmazon (el adásvázlat, február 12.)

Permutációk véges halmazon (el adásvázlat, február 12.) Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz

Részletesebben

Alapvető polinomalgoritmusok

Alapvető polinomalgoritmusok Alapvető polinomalgoritmusok Maradékos osztás Euklideszi algoritmus Bővített euklideszi algoritmus Alkalmazás: Véges testek konstrukciója Irodalom: Iványi Antal: Informatikai algoritmusok II, 18. fejezet.

Részletesebben