Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét.
|
|
- Ödön Hegedűs
- 7 évvel ezelőtt
- Látták:
Átírás
1 Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a Számítsuk ki a 2i + 3j + 6k kvaternió inverzét. b Köbgyöktelenítsük a nevezőt az alábbi törtben: Megoldás: a Egy q = a + bi + cj + dk a, b, c, d R kvaternió inverze q 1 = q, ahol Nq q = a bi cj dk és Nq = a 2 +b 2 +c 2 +d 2. Esetünkben q = 2i+3j +6k, így q = 2i 3j 6k és Nq = = 49. Tehát q 1 = 1 2 2i 3j 6k = i 3 49 j 6 49 k. b 1. megoldás Felhasználva az x 3 1 = x 1x 2 + x + 1 azonosságot az x = 3 3 számra bővitsunk a számlálóban és a nevezőben is számmal. Ekkor = = megoldás Keressük a megoldást a következő alakban: Átszorzás után azt kapjuk, hogy Összehasonlítva az együtthatókat kapjuk, hogy = a + b c 3 9. = a 3c + b a c b 3 9. a 3c = 1, b a = 1, c b = 0. Ennek megoldása a = 2, b = 1, c = 1 vagyis = = Megjegyzés: Bár az első megoldás rövidebb, ez a megoldás némileg ad hoc, túlságosan támaszkodik a felhasznált azonosságra. A második megoldás viszont mindig működik. 1
2 2 2. Adjunk meg egy olyan a egész számot, melyre az ax 5 +a 2 +5x 2 +a+5 polinom irreducibilis Q fölött, és egy olyat is, amelyre nem irreducibilis Z fölött. Megoldás: Az első részfeladatnál a Schönemann-Eisenstein kritériumot fogjuk ellenőrizni. Ehhez kell egy p prím és egy a szám, melyre p nem osztója a-nak, p osztója az a 2 + 5, a + 5 számoknak valamint a 0-nak, de az mindig teljesül, de p 2 nem osztója a + 5 számnak. A p = 2, a = 1 választás megfelel: 2 osztója = = 6-nak, de 2 2 nem osztója 6-nak és 2 nem osztója a = 1-nek, így x 5 + 6x polinom irreducibilis. A második részben egyszerűen kihasználjuk, hogy ha a polinom nem primitív vagyis az együtthatóknak van 1-nél nagyobb közös osztója és legalább elsőfokú akkor nem lehet irreducibilis. Az a = 5 választással kapjuk, hogy ax 5 + a 2 + 5x 2 + a + 5 = 5x x = 5 x 5 + 6x Ez azért egy felbontás, mert az 5 nem egység Z-ben hiszen 1/5 / Z. 2. megoldás a második részre: Ha a polinomnak van egy racionális gyöke akkor biztosan reducibilis. Ezt könnyen elérhetjük, például a = 5 választással az x = 0 gyök lesz: 5x x = x 2 5x
3 3 3. Irreducibilis-e Q fölött az x 4 + 2x 3 + 3x 2 + 2x + 1 polinom? 1. megoldás: Vegyük észre, hogy x 4 + 2x 3 + 3x 2 + 2x + 1 = x 2 + x Tehát a polinom reducibilis mivel egyik tényező sem egység. 2. megoldás: Egy negyedfokú reducibilis polinom Q felett vagy egy első és egy harmadfokú vagy két másodfokú polinom szorzatára bomlik. Az első eset azt jelenti, hogy van racionális gyöke. A racionális gyöktesztből azonban látjuk, hogy csak két jelölt van racionális gyökre, ±1, ezek azonban nem gyökei a polinomnak: = 9, míg = 1. Tehát azt az esetet kell még ellenőrizni, hogy két másodfokú szorzatára bomlik a polinom. Ekkor x 4 + 2x 3 + 3x 2 + 2x + 1 = a 2 x 2 + a 1 x + a 0 b 2 x 2 + b 1 x + b 0. Felhasználjuk, hogy ha egy egész együtthatós polinomot fel lehet írni két kisebb fokú racionális együtthatós polinom szorzatára akkor két egész együtthatós polinom szorzatára is fel lehet írni. Tehát feltehetjük, hogy a 2, a 1, a 0, b 2, b 1, b 0 egészek. Tehát az a 2 b 2 = 1 egyenletből következik, hogy a 2 = b 2 = 1 vagy a 2 = b 2 = 1, de utóbbi esetben megszorozhatjuk mindkét tagot 1-gyel vagyis feltehető, hogy a 2 = b 2 = 1. Vagyis x 4 + 2x 3 + 3x 2 + 2x + 1 = x 2 + a 1 x + a 0 x 2 + b 1 x + b 0. A konstans tag összehasonlításából kapjuk, hogy a 0 b 0 = 1 vagyis a 0 = b 0 = 1 vagy a 0 = b 0 = 1. Az első esetben kapjuk, hogy x 4 +2x 3 +3x 2 +2x+1 = x 2 +a 1 x 1x 2 +b 1 x 1 = x 4 +a 1 +b 1 x 3 +a 1 b 1 2x 2 a 1 +b 1 x+1 vagyis a 1 + b 1 egyszerre 2 és 2, ez nem lehet. A második esetben x 4 +2x 3 +3x 2 +2x+1 = x 2 +a 1 x+1x 2 +b 1 x+1 = x 4 +a 1 +b 1 x 3 +a 1 b 1 +2x 2 +a 1 +b 1 x+1 vagyis a 1 + b 1 = 2, a 1 b 1 = 1. Ennek megoldása a 1 = b 1 = 1, így kaptunk egy felbontást: x 4 + 2x 3 + 3x 2 + 2x + 1 = x 2 + x + 1x 2 + x + 1. Megjegyzés: Az első megoldást némileg provokatív, de jól mutatja, hogy ha tudunk egy felbontást akkor vége is a feladatnak. Ez mutatja, hogy erősen eltér két feladat ha az adott polinom az egyik esetben reducibilis, a másikban pedig irreducibilis. Egyébként nem teljesen lehetetlen, hogy valaki egyből meglássa, hogy a polinom teljes négyzet a fenti feladatban, főleg ha behelyettesít néhány értéket és azt látja, hogy mindig négyzetszámot kapott. Egy másik mód a felbontás megtalálásához az az észrevétel, hogy egy reciprok polinomról van szó, így először felbonthatjuk C felett, majd ezt használva megkaphatjuk Q felett a fent megadott felbontást. Megjegyzés: A 2-es és 3-as feladatot összefoglalva a következő technikák, ötletek vannak polinomok irreducibilitásának eldöntésére: 1 racionális gyökteszt, 2 Schönemann-Eisenstein, 3 Schönemann-Eisenstein eltolt polinomra, 4 harmadfokúra a racionális gyökteszt után kész vagyunk, 5 negyedfokú polinomnál racionális gyökteszt után meg kell vizsgálni két másodfokú szorzatára bonthatóságot is, 6 mod p redukció általában p = 2-vel. Nem tagadom, hogy én elég lusta ember vagyok: ha 1 vagy 2 nem működik, akkor megvárom míg számítógép közelben leszek és megoldatom egy matematikai szoftverrel a problémát. Persze ez csak akkor működik ha konkrét polinomunk van, ha egy polinomcsalád irreducibilitását kell ellenőrizni akkor sajnos nem nagyon úszható meg, hogy ez ember egy adott ponton el ne kezdjen gondolkodni.
4 4 4. Gyűrűhomomorfizmus-e vagyis művelettartó-e az alábbi φ : R R leképezés? a R = C 2 2, φa = A T. b R egy 2 karakteriszikajú test, φa = q 2. Megoldás: Egy φ : R R gyűrűhomomorfizmus akkor ha φa + b = φa + φb és φab = φaφb. Az a feladatban teljesül, hogy φa + B = φa + φb hiszen A + B T = A T + B T, de általában nem igaz, hogy Egy konkrét ellenpélda: legyen Ekkor φab = AB T = B T A T A = 0 1 φab = φ de φaφb = Tehat itt φ nem gyűrűhomomorfizmus. A b feladatban:? = A T B T = φaφb és B = = =, φa + b = a + b 2 = a 2 + ab + ba + b 2 = a 2 + 2ab + b 2 = a 2 + b 2 = φa + φb, mert 2ab = 0 a 2 karaketisztika miatt. Továbbá φaφb = a 2 b 2 = ab 2 = φab. Mindkét számolásban kihasználtuk, hogy a szorzás kommutatív, mert R test és az első számolásban kihasználtuk, hogy 2ab = 0, mert a karakterisztika 2. Tehát ebben az esetben φ gyűrűhomomorfizmus..
5 5 5. Igazoljuk, hogy az n n-es valós felső háromszögmátrixok gyűrűt alkotnak. Megoldás: Legyen R az n n-es valós felső háromszögmátrixok halmaza. Azt kell megmutatnunk, hogy 0 R és ha A, B R akkor A, A + B, AB R. Ebből már következik, hogy R gyűrű, mert az R elemei benne vannak az összes valós mátrix gyűrűjében ahol teljesülnek a gyűrűaxiómák azonosságai: az összeadás kommutativítása, asszociatívitása, szorzás associatívitása és a két oldali disztributívitás, tehát ezek R-ben is fognak teljesülni ha R zárt a műveletekre. Egy A = a ij mátrix felső háromszögmátrix ha a ij = 0 ha i > j. Tehát az n n-es 0 n mátrix benne van R-ben. Szintén R-beli A = a ij : ha a ij = 0 akkor a ij = 0. A, B R esetén A + B = a ij + b ij szintén felsőháromszögmátrix: a ij = b ij = 0 akkor a ij + b ij = 0. Megmutatjuk, hogy A, B R esetén C = AB is: c ij = a ik b kj. k Tegyük fel, hogy i > j. Ekkor minden k-ra vagy i > k vagy k < j, mert ha i k és k j lenne akkor i j is teljesülne. Ez azt jelenti, hogy a szorzatban a ik = 0 vagy b kj = 0 minden k-ra, tehát c ij = 0 vagyis C felsőháromszögmátrix. Megjegyzés: Természetesen úgy is meg lehetett oldani a feladatot, hogy az ember egyenként leellenőrzi az összes gyűrűaxiómát. Ekkor azonban nem csak azt kell leellenőriznie, hogy 0 R és A, B R esetén A, A + B, AB R hanem még az "azonosságokat" kommutatívitás, asszociatívitás, disztributívitás is. Vagyis az egy óriasi előny ha már van egy gyűrű és nekünk csak azt kell belátnunk, hogy az adott halmaz egy részgyűrű. Megjegyzés: Összehasonlítva a 4-es és 5-ös feladatokat azt láthatja az ember, hogy nagyon hasonló dolgokat kell leellenőrizni a részgyűrűséghez és a homomorfizmusoknál, de még sem teljesen ugyanazt. A részgyűrűnél az kell, hogy 0 R és A, B R esetén A, A + B, AB R, míg a homomorfizmusnál az kell, hogy φa + b = φa + φb és φab = φaφb. Felmerülhet a kérdés, hogy miért nem kell leellenőrizni, hogy φ0 = 0 és φ a = φa. A válasz az, hogy ezek következnek a φa + b = φa + φb azonosságból: φ0 = φ0 + 0 = φ0 + φ0 így φ0 = 0, továbbá φa + φ a = φa + a = φ0 = 0, így φ a = φa. A következő kérdés ami felmerülhet, hogy a részgyűrűnél is le kell-e ellenőrizni, hogy 0 R és a R ha a R vagy ez következik az összeadás és szorzás zártságából. A válasz az, hogy sajnos le kell ellenőrizni: a pozitív számok halmaza például zárt az összeadásra és a szorzásra, de a 0 nem pozitív és a sincs a pozitív számok halmazában ha a pozitív. Valójaban a következőről van szó: a gyűrűben nem csak két darab kétvaltozós művelet +, van, hanem egy egyváltozós a a művelet is van, sőt egy nulla változós is. 0. A részgyűrűknel ezen műveletekre való zártságot is meg kell nézni, a homomorfizmusnál viszont "szerencsénk van", ezek következnek a kétváltozós műveletekre rótt feltételekből.
6 6 6. Jelöljön p egy páratlan prímszámot. Számítsuk ki a 4p-edik körosztási polinomot. Megoldás: Tanultuk, hogy tetszőleges n-re vagy ami ezzel ekvivalens, hogy A 4p osztói 1, 2, 4, p, 2p, 4p, így Φ 4p x = Φ n x = xn 1 Φ d x d n d n x n 1 = d n Φ d x. x 4p 1 Φ 1 xφ 2 xφ 4 xφ p xφ 2p x. A fenti összefüggést n = 2p-re használva kapjuk, hogy x 2p 1 = Φ 1 xφ 2 xφ p xφ 2p x. Tehát x 4p 1 Φ 4p x = Φ 1 xφ 2 xφ 4 xφ p xφ 2p x = x 4p 1 x 2p 1Φ 4 x = x2p + 1 Φ 4 x. Megint csak a rekurziót használva: Φ 4 x = x4 1 Φ 1 xφ 2 x = x4 1 x 2 1 = x Valóban, a 4. primitív egységgyökök a ±i és x + ix i = x Tehát Φ 4p x = x2p + 1 x = x2p 1 x 2p 2 + x 2p 3 x 2p 4 + x Ezutóbbi lépést egy maradékos osztással kaphatjuk. Megjegyzés: Fenti megoldásból azt a kulcslépést érdemes megjegyezni, hogy a nevezőben is fel lehet, és érdemes is felhasználni a rekurziót: az lépés rengeteg számolástól kimélt meg minket. x 2p 1 = Φ 1 xφ 2 xφ p xφ 2p x
1. Egész együtthatós polinomok
1. Egész együtthatós polinomok Oszthatóság egész számmal Emlékeztető (K3.1.3): Ha f,g Z[x], akkor f g akkor és csak akkor, ha van olyan h Z[x], hogy g = fh. Állítás (K3.1.6) Az f(x) Z[x] akkor és csak
Részletesebben1. Polinomok számelmélete
1. Polinomok számelmélete Oszthatóság, egységek. Emlékeztető Legyen R a C, R, Q, Z egyike. Azt mondjuk, hogy (1) a g R[x] polinom osztója f R[x]-nek R[x]-ben, ha létezik olyan h R[x] polinom, hogy f (x)
Részletesebben1. A maradékos osztás
1. A maradékos osztás Egész számok osztása Példa 223 = 7 31+6. Visszaszorzunk Kivonunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a,b Z esetén, ahol b 0, létezik olyan q,r Z, hogy a = bq +
RészletesebbenVizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat
8.2. Gyűrűk Fogalmak, definíciók: Gyűrű, kommutatív gyűrű, integritási tartomány, test Az (R, +, ) algebrai struktúra gyűrű, ha + és R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ) félcsoport,
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
RészletesebbenAlgoritmuselmélet gyakorlat (MMN111G)
Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy
RészletesebbenGy ur uk aprilis 11.
Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenPolinomok (előadásvázlat, október 21.) Maróti Miklós
Polinomok (előadásvázlat, 2012 október 21) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: gyűrű, gyűrű additív csoportja, zéruseleme, és multiplikatív félcsoportja,
RészletesebbenKlasszikus algebra előadás. Waldhauser Tamás március 24.
Klasszikus algebra előadás Waldhauser Tamás 2014. március 24. Irreducibilitás 3.33. Definíció. A p T [x] polinom irreducibilis, ha legalább elsőfokú, és csak úgy bontható két polinom szorzatára, hogy az
RészletesebbenPolinomok (el adásvázlat, április 15.) Maróti Miklós
Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenKongruenciák. Waldhauser Tamás
Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek
RészletesebbenDiszkrét matematika II. feladatok
Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden
Részletesebben1. Komplex szám rendje
1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével
RészletesebbenIntergrált Intenzív Matematika Érettségi
. Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Részletesebben1. Hatvány és többszörös gyűrűben
1. Hatvány és többszörös gyűrűben Hatvány és többszörös Definíció (K2.2.19) Legyen asszociatív művelet és n pozitív egész. Ekkor a n jelentse az n tényezős a a... a szorzatot. Ez az a elem n-edik hatványa.
Részletesebben1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.
1. A polinom fogalma Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1 = x egyenletet. Megoldás x + 1-gyel átszorozva x 2 + x + 1 = x 2 + x. Innen 1 = 0. Ez ellentmondás, így az
Részletesebben1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.
1. Interpoláció Az interpoláció alapproblémája. Feladat Olyan polinomot keresünk, amely előre megadott helyeken előre megadott értékeket vesz fel. A helyek: páronként különböző a 1, a,...,a n számok. Az
RészletesebbenKlasszikus algebra előadás. Waldhauser Tamás április 14.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,
RészletesebbenDiszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
RészletesebbenTestek március 29.
Testek 2014. március 29. 1. Alapfogalmak 2. Faktortest 3. Testbővítések 1. Alapfogalmak 2. Faktortest 3. Testbővítések [Sz] V/3, XIII/1,2; [F] III/1-7 (+ előismeretek!) Definíció Ha egy nemüres halmazon
RészletesebbenKlasszikus algebra előadás. Waldhauser Tamás április 28.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,
Részletesebben1. feladatsor Komplex számok
. feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4
RészletesebbenMTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA. 1. Csoportelméleti alapfogalmak
MTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA 1. Csoportelméleti alapfogalmak 1.1. Feladat. Csoportot alkotnak-e az alábbi halmazok a megadott műveletre nézve? (1) (Z 2 ; ), (2) (Z 2 ; +), (3) (R \ { 1}; ),
RészletesebbenFFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.
TARTALOMJEGYZÉK Polinomok konvolúviója A DFT és a maradékos osztás Gyűrűk támogatás nélkül Második nekifutás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. október 2. TARTALOMJEGYZÉK Polinomok
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
RészletesebbenKomplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18
Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök
RészletesebbenDISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ
DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ B szakirány 2014 június Tartalom 1. Fák definíciója ekvivalens jellemzései... 3 2. Hamilton-kör Euler-vonal... 4 3. Feszítőfa és vágás... 6 4. Címkézett
RészletesebbenIrreducibilis polinomok szakkörre
Eötvös Loránd Tudományegyetem Természettudományi Kar Algebra és Számelmélet Tanszék Irreducibilis polinomok szakkörre Szakdolgozat Készítette Birtha Nikoletta Matematika Tanári BSc. Konzulens Dr. Zábrádi
Részletesebben1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b).
1. Polinomfüggvények Behelyettesés polinomba. Definíció Legyen b komplex szám. Az f (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n polinom b helyen felvett helyettesítési értéke f (b) = a 0 + a 1 b + a 2 b
RészletesebbenAz eddig leadott anyag Diszkrét matematika II tárgyhoz tavasz
Az eddig leadott anyag Diszkrét matematika II tárgyhoz 2011. tavasz A (+)-szal jelzett tételek bizonyítással együtt, a (-)-szal anélkül értendők! A tételek esetleges neve, vagy száma a fóliákkal van szinkronban,
RészletesebbenGAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE
GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,
RészletesebbenLINEÁRIS ALGEBRA. Szerkeszt es alatt NAGY ATTILA
LINEÁRIS ALGEBRA NAGY ATTILA 2014.12.15 Tartalomjegyzék Bevezető 5 1. Alapfogalmak 7 1.1. Algebrai struktúrák.............................. 7 1.1.1. Az algebrai struktúra fogalma.................... 7
RészletesebbenAlgebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság
Algebrai alapismeretek az Algebrai síkgörbék c tárgyhoz 1 Integritástartományok, oszthatóság 11 Definíció A nullaosztómentes, egységelemes kommutatív gyűrűket integritástartománynak nevezzük 11 példa Integritástartományra
Részletesebben1. A Horner-elrendezés
1. A Horner-elrendezés A polinomok műveleti tulajdonságai Polinomokkal a szokásos módon számolhatunk: Tétel (K2.1.6, HF ellenőrizni) Tetszőleges f,g,h polinomokra érvényesek az alábbiak. (1) (f +g)+h =
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 5. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Számfogalom bővítése Diszkrét matematika I. középszint
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenSzerkeszt es alatt LINEÁRIS ALGEBRA NAGY ATTILA EGYETEMI JEGYZET. Budapesti Műszaki és Gazdaságtudományi Egyetem. Algebra Tanszék
LINEÁRIS ALGEBRA NAGY ATTILA EGYETEMI JEGYZET Budapesti Műszaki és Gazdaságtudományi Egyetem Algebra Tanszék 2011 Ez a jegyzet a Budapesti Műszaki és Gazdaságtudományi Egyetemen a Matematika Alapszak
RészletesebbenTartalom. Algebrai és transzcendens számok
Nevezetes számelméleti problémák Tartalom 6. Nevezetes számelméleti problémák Számok felbontása hatványok összegére Prímszámok Algebrai és transzcendens számok 6.1. Definíció. Az (x, y, z) N 3 számhármast
RészletesebbenPolinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu
Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:
RészletesebbenVektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
Részletesebben: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!
nomosztással a megoldást visszavezethetjük egy alacsonyabb fokú egyenlet megoldására Mivel a 4 6 8 6 egyenletben az együtthatók összege 6 8 6 ezért az egyenletnek gyöke az (mert esetén a kifejezés helyettesítési
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Részletesebben4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!
4. Test feletti egyhatározatlaú poliomok Klasszikus algebra előadás Waldhauser Tamás 2013 április 11. Eddig a poliomokkal mit formális kifejezésekkel számoltuk, em éltük azzal a lehetőséggel, hogy x helyébe
Részletesebben3. Algebrai kifejezések, átalakítások
I Elméleti összefoglaló Műveletek polinomokkal Algebrai kifejezések, átalakítások Az olyan betűs kifejezéseket, amelyek csak valós számokat, változók pozitív egész kitevőjű hatványait, valamint összeadás,
RészletesebbenTartalomjegyzék 1. Műveletek valós számokkal... 1 8 2. Függvények... 8 12 3. Elsőfokú egyenletek és egyenlőtlenségek... 13 16
Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 1.1. Gyökök és hatványozás... 1 3 1.1.1. Hatványozás...1 1.1.2. Gyökök... 1 3 1.2. Azonosságok... 3 4 1.3. Egyenlőtlenségek... 5 8 2. Függvények... 8
RészletesebbenMATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén
RészletesebbenFELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest
FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest 2007-07-25 A 2. és a 4. fejezet feladatai megoldva megtalálhatók a Testb vítés, véges testek;
Részletesebben1. Interpoláció. Egyértelműség (K2.4.10) Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.
1. Interpoláció Az interpoláció alapproblémája Feladat Olyan polinomot keresünk, amely előre megadott helyeken előre megadott értékeket vesz fel. A helyek: páronként különböző a 1,a 2,...,a n számok. Az
RészletesebbenMagasabbfokú egyenletek
86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y
RészletesebbenLineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák
Lineáris Algebra Pejó Balázs Tartalomjegyzék 1. Peano-axiomák 2 1.1. 1.................................................... 2 1.2. 2.................................................... 2 1.3. 3....................................................
RészletesebbenEgyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Részletesebben8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.
8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az
Részletesebben5. Az Algebrai Számelmélet Elemei
5. Az Algebrai Számelmélet Elemei 5.0. Bevezetés. Az algebrai számelmélet legegyszerűbb kérdései az ún. algebrai számtestek egészei gyűrűjének aritmetikai tulajdonságainak vizsgálata. Ezek legegyszerűbb
Részletesebben1. Bevezetés A félév anyaga. Gyűrűk és testek Ideál, faktorgyűrű, főideálgyűrű Gauss-egészek, két négyzetszám tétel Az alaptételes gyűrűk jellemzése A számfogalom lezárása Algebrai és transzcendens számok
RészletesebbenAlgebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Nevezetes számelméleti problémák Waldhauser Tamás 2014 őszi félév Tartalom 1. Számok felbontása hatványok összegére 2. Prímszámok 3. Algebrai és transzcendens számok Tartalom
RészletesebbenElemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged
Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül
RészletesebbenMátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenVEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok
VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten KOMPLEX SZÁMOK Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Történeti bevezetés
RészletesebbenDiszkrét matematika II. feladatok
Diszkrét matematika II. feladatok 1. Gráfelmélet 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot. Hány összefüggő, illetve reguláris van közöttük? 2. Van-e olyan (legalább
RészletesebbenDiszkrét matematika 1.
Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenHatározatlan integrál
Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 7 VII. Gyűrűk 1. Gyűrű Definíció Egy a következő axiómákat: gyűrű alatt olyan halmazt értünk, amelyben definiálva van egy összeadás és egy szorzás, amelyek teljesítik (1) egy
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.
RészletesebbenDISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes
1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz
Részletesebben1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?
Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?
Részletesebben7. gyakorlat megoldásai
7. gyakorlat megoldásai Komple számok, sajátértékek, sajátvektorok F1. Legyen z 1 = + i és z = 1 i. Számoljuk ki az alábbiakat: z 1 z 1 + z, z 1 z, z 1 z,, z 1, z 1. z M1. A szorzásnál használjuk, hogy
RészletesebbenWaldhauser Tamás szeptember 8.
Algebra és számelmélet előadás Waldhauser Tamás 2016. szeptember 8. Tematika Komplex számok, kanonikus és trigonometrikus alak. Moivre-képlet, gyökvonás, egységgyökök, egységgyök rendje, primitív egységgyökök.
RészletesebbenBevezetés. 1. fejezet. Algebrai feladatok. Feladatok
. fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális
Részletesebben1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
RészletesebbenDiszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenDiszkrét matematika II. feladatok
Diszkrét matematika II. feladatok 1. Gráfelmélet 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot. Hány összefüggő, illetve reguláris van közöttük? 2. Hány olyan, páronként
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenLáng Csabáné Testbıvítés, véges testek
Láng Csabáné Testbıvítés, véges testek Készült a programtervezı matematikus szak esti tagozat III. év II. félév, valamint az esti informatikus Bsc szak II. év II. félév számára Lektorálta Burcsi Péter
RészletesebbenAlapvető polinomalgoritmusok
Alapvető polinomalgoritmusok Maradékos osztás Euklideszi algoritmus Bővített euklideszi algoritmus Alkalmazás: Véges testek konstrukciója Irodalom: Iványi Antal: Informatikai algoritmusok II, 18. fejezet.
RészletesebbenDirekt limesz, inverz limesz, végtelen Galois-bővítések
Direkt esz, inverz esz, végtelen Galois-bővítések Az alábbi jegyzetben a direkt eszt, az inverz eszt, testek algebrai lezártjának létezését, ill. a végtelen Galois-csoportokat tekintjük át. Nem minden
RészletesebbenLineáris algebra mérnököknek
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok, testek, komplex számok Kf81 2018-09-14
Részletesebben1. A maradékos osztás
1. A maradékos osztás Egész számok osztása. 223 = 7 31 + 6. Visszaszorzunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a, b Z esetén, ahol b 0, létezik olyan q, r Z, hogy a = bq + r és r < b.
RészletesebbenGonda János POLINOMOK. Példák és megoldások
Gonda János POLINOMOK Példák és megoldások ELTE Budapest 007-11-30 IK Digitális Könyvtár 4. javított kiadás Fels oktatási tankönyv Lektorálták: Bui Minh Phong Láng Csabáné Szerkesztette: Láng Csabáné c
RészletesebbenA parciális törtekre bontás?
Miért működik A parciális törtekre bontás? Borbély Gábor 212 június 7 Tartalomjegyzék 1 Lineáris algebra formalizmus 2 2 A feladat kitűzése 3 3 A LER felépítése 5 4 A bizonyítás 6 1 Lineáris algebra formalizmus
RészletesebbenSzA XIII. gyakorlat, december. 3/5.
SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?
Részletesebben1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.
1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy
RészletesebbenIntegrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november
Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................
Részletesebben10. Feladat. Döntse el, hogy igaz vagy hamis. Név:...
1. Feladat. Döntse el, hogy igaz vagy hamis. Név:........................................... (1) (1 3) = (3 1). (hamis) () (1 ) = ( 1). (igaz). Feladat. Döntse el, hogy igaz vagy hamis. Név:...........................................
Részletesebben3. Egyenletek, egyenletrendszerek, egyenlőtlenségek
. Egyenletek, egyenletrendszerek, egyenlőtlenségek I. Nulladik ZH-ban láttuk: 1. Mennyi a 2x 2 8x 5 = 0 egyenlet gyökeinek a szorzata? (A) 10 (B) 2 (C) 2,5 (D) 4 (E) ezek egyike sem Megoldás I.: BME 2011.
RészletesebbenHatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
Részletesebben2. Algebrai átalakítások
I. Nulladik ZH-ban láttuk: 2. Algebrai átalakítások 1. Mi az alábbi kifejezés legegyszerűbb alakja a változó lehetséges értékei esetén? (A) x + 1 x 1 (x 1)(x 2 + 3x + 2) (1 x 2 )(x + 2) (B) 1 (C) 2 (D)
RészletesebbenLineáris egyenletrendszerek Műveletek vektorokkal Geometriai transzformációk megadása mátrixokkal Determinánsok és alkalmazásaik
1. Bevezetés A félév anyaga. Komplex számok Műveletek Kapcsolat a geometriával Gyökvonás Polinomok A gyökök száma A gyökök és együtthatók összefüggése Szorzatra bontás, számelméleti kérdések A harmad-
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Részletesebben