Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Nagy Gábor compalg.inf.elte.hu/ nagy ősz"

Átírás

1 Diszkrét matematika 3. estis képzés ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék ősz

2 Polinomok Diszkrét matematika 3. estis képzés ősz 2. Bővített euklideszi algoritmus Algoritmus Legyen R test, f, g R[x]. Ha g = 0, akkor (f, g) = f = 1 f + 0 g, különben végezzük el a következő maradékos osztásokat: f = q 1 g + r 1 ; g = q 2 r 1 + r 2 ; r 1 = q 3 r 2 + r 3 ;. r n 2 = q n r n 1 + r n ; r n 1 = q n+1 r n. Ekkor d = r n jó lesz kitüntetett közös osztónak. Az u 1 = 1, u 0 = 0, v 1 = 0, v 0 = 1 kezdőértékekkel, továbbá az u k = u k 2 q k u k 1 és v k = v k 2 q k v k 1 rekurziókkal megkapható u = u n és v = v n polinomok olyanok, amelyekre teljesül d = u f + v g.

3 Polinomok Diszkrét matematika 3. estis képzés ősz 3. Bővített euklideszi algoritmus Bizonyítás A maradékok foka természetes számok szigorúan monoton csökkenő sorozata, ezért az eljárás véges sok lépésben véget ér. Indukcióval belátjuk, hogy r 1 = f és r 0 = g jelöléssel r k = u k f + v k g teljesül minden 1 k n esetén: k = 1-re f = 1 f + 0 g, k = 0-ra g = 0 f + 1 g. Mivel r k+1 = r k 1 q k+1 r k, így az indukciós feltevést használva: r k+1 = u k 1 f + v k 1 g q k+1 (u k f + v k g) = = (u k 1 q k+1 u k ) f + (v k 1 q k+1 v k ) g = u k+1 f + v k+1 g. Tehát r n = u n f + v n g, és így f és g közös osztói r n -nek is osztói. Kell még, hogy r n osztója f -nek és g-nek. Indukcióval belátjuk, hogy r n r n k teljesül minden 0 k n + 1 esetén: k = 0-ra r n r n nyilvánvaló, k = 1-re r n 1 = q n+1 r n miatt r n r n 1. r n (k+1) = q n (k 1) r n k + r n (k 1) miatt az indukciós feltevést használva kapjuk az álĺıtást, és így k = n, illetve k = n + 1 helyettesítéssel r n r 0 = g, illetve r n r 1 = f.

4 Polinomok Diszkrét matematika 3. estis képzés ősz 4. Polinomok algebrai deriváltja Definíció Legyen R gyűrű. Az f (x) = f n x n + f n 1 x n f 2 x 2 + f 1 x + f 0 R[x] (f n 0) polinom algebrai deriváltja az f (x) = nf n x n 1 + (n 1)f n 1 x n f 2 x + f 1 R[x] polinom. Megjegyzés Itt kf k = f k + f k f }{{ k. } k db Álĺıtás Legyen R gyűrű, a, b R és n N +. Ekkor (na)b = n(ab) = a(nb). Bizonyítás (a + a a)b = (ab + ab ab) = a(b + b b) }{{}}{{}}{{} n db n db n db

5 Polinomok Diszkrét matematika 3. estis képzés ősz 5. Polinomok algebrai deriváltja Álĺıtás Ha R egységelemes integritási tartomány, akkor az f f algebrai deriválás rendelkezik a következő tulajdonságokkal: 1 konstans polinom deriváltja a nullpolinom; 2 az x polinom deriváltja az egységelem; 3 (f + g) = f + g, ha f, g R[x] (additivitás); 4 (fg) = f g + fg, ha f, g R[x] (szorzat differenciálási szabálya). Megjegyzés Megfordítva, ha egy R egységelemes integritási tartomány esetén egy f f, R[x]-et önmagába képező leképzés rendelkezik az előző 4 tulajdonsággal, akkor az az algebrai deriválás.

6 Polinomok Diszkrét matematika 3. estis képzés ősz 6. Polinomok algebrai deriváltja Álĺıtás Ha R egységelemes integritási tartomány, c R és n N +, akkor ((x c) n ) = n(x c) n 1. Bizonyítás n szerinti TI: n = 1 esetén (x c) = 1 = 1 (x c) 0. Tfh. n = k-ra teljesül az álĺıtás, vagyis ((x c) k ) = k(x c) k 1. Ekkor ((x c) k+1 ) = ((x c) k (x c)) = ((x c) k ) (x c)+(x c) k (x c) = = k(x c) k 1 (x c) + (x c) k 1 = (x c) k (k + 1). Ezzel az álĺıtást beláttuk. Álĺıtás (NB) Ha R integritási tartomány, char(r) = p, és 0 r R, akkor n r = 0 p n.

7 Polinomok Diszkrét matematika 3. estis képzés ősz 7. Polinomok algebrai deriváltja Definíció Legyen R egységelemes integritási tartomány, 0 f R[x] és n N +. Azt mondjuk, hogy c R az f egy n-szeres gyöke, ha (x c) n f, de (x c) n+1 f. Megjegyzés A definíció azzal ekvivalens, hogy f (x) = (x c) n g(x), ahol c nem gyöke g-nek. (Miért?) Tétel Legyen R egységelemes integritási tartomány, f R[x], n N + és c R az f egy n-szeres gyöke. Ekkor c az f -nek legalább (n 1)-szeres gyöke, és ha char(r) n, akkor pontosan (n 1)-szeres gyöke.

8 Polinomok Diszkrét matematika 3. estis képzés ősz 8. Polinomok algebrai deriváltja Bizonyítás Ha f (x) = (x c) n g(x), ahol c nem gyöke g-nek, akkor f (x) = ((x c) n ) g(x) + (x c) n g (x) = = n(x c) n 1 g(x) + (x c) n g (x) = (x c) n 1 (ng(x) + (x c)g (x)). Tehát c tényleg legalább (n 1)-szeres gyöke f -nek, és akkor lesz (n 1)-szeres gyöke, ha c nem gyöke ng(x) + (x c)g (x)-nek, vagyis 0 ng(c) + (c c)g (c) = ng(c) + 0 g (c) = ng(c). Ez pedig teljesül, ha char(r) n. Példa Legyen f (x) = x 4 x Z 3 [x]. Ekkor 1 3-szoros gyöke f -nek, mert f (x) = x(x 3 1) Z 3 = x(x 3 3x 2 + 3x 1) = x(x 1) 3. f (x) = 4x 3 1 Z 3 = x 3 3x 2 + 3x 1 = (x 1) 3, tehát 1 3-szoros gyöke f -nek is.

9 Polinomok Diszkrét matematika 3. estis képzés ősz 9. Lagrange-interpoláció Tétel Legyen R test, c 0, c 1,..., c n R különbözőek, továbbá d 0, d 1,..., d n R tetszőlegesek. Ekkor létezik egy olyan legfeljebb n-ed fokú polinom, amelyre f (c j ) = d j, ha j = 0, 1,..., n. Bizonyítás Legyen l j (x) = i j (x c i) i j (c j c i ), a j-edik Lagrange-interpolációs alappolinom, és legyen n f (x) = d j l j (x). l j (c i ) = 0, ha i j, és l j (c j ) = 1-ből következik az álĺıtás. j=0

10 Polinomok Diszkrét matematika 3. estis képzés ősz 10. Lagrange-interpoláció Példa Adjunk meg olyan f R[x] polinomot, amelyre f (0) = 3, f (1) = 3, f (4) = 7 és f ( 1) = 0! A feladat szövege alapján c 0 = 0, c 1 = 1, c 2 = 4, c 3 = 1, d 0 = 3, d 1 = 3, d 2 = 7 és d 3 = 0 értékekkel alkalmazzuk a Lagrange-interpolációt.

11 Polinomok Diszkrét matematika 3. estis képzés ősz 10. Lagrange-interpoláció Példa Adjunk meg olyan f R[x] polinomot, amelyre f (0) = 3, f (1) = 3, f (4) = 7 és f ( 1) = 0! A feladat szövege alapján c 0 = 0, c 1 = 1, c 2 = 4, c 3 = 1, d 0 = 3, d 1 = 3, d 2 = 7 és d 3 = 0 értékekkel alkalmazzuk a Lagrange-interpolációt. l 0(x) = (x 1)(x 4)(x+1) (0 1)(0 4)(0+1) = 1 4 x 3 x x + 1

12 Polinomok Diszkrét matematika 3. estis képzés ősz 10. Lagrange-interpoláció Példa Adjunk meg olyan f R[x] polinomot, amelyre f (0) = 3, f (1) = 3, f (4) = 7 és f ( 1) = 0! A feladat szövege alapján c 0 = 0, c 1 = 1, c 2 = 4, c 3 = 1, d 0 = 3, d 1 = 3, d 2 = 7 és d 3 = 0 értékekkel alkalmazzuk a Lagrange-interpolációt. l 0(x) = (x 1)(x 4)(x+1) (0 1)(0 4)(0+1) = 1 4 x 3 x x + 1 l 1(x) = (x 0)(x 4)(x+1) (1 0)(1 4)(1+1) = 1 6 x x x

13 Polinomok Diszkrét matematika 3. estis képzés ősz 10. Lagrange-interpoláció Példa Adjunk meg olyan f R[x] polinomot, amelyre f (0) = 3, f (1) = 3, f (4) = 7 és f ( 1) = 0! A feladat szövege alapján c 0 = 0, c 1 = 1, c 2 = 4, c 3 = 1, d 0 = 3, d 1 = 3, d 2 = 7 és d 3 = 0 értékekkel alkalmazzuk a Lagrange-interpolációt. l 0(x) = (x 1)(x 4)(x+1) = 1 x 3 x 2 1 x + 1 (0 1)(0 4)(0+1) 4 4 l 1(x) = (x 0)(x 4)(x+1) = 1 x x x (1 0)(1 4)(1+1) l 2(x) = (x 0)(x 1)(x+1) = 1 x 3 1 x (4 0)(4 1)(4+1) 60 60

14 Polinomok Diszkrét matematika 3. estis képzés ősz 10. Lagrange-interpoláció Példa Adjunk meg olyan f R[x] polinomot, amelyre f (0) = 3, f (1) = 3, f (4) = 7 és f ( 1) = 0! A feladat szövege alapján c 0 = 0, c 1 = 1, c 2 = 4, c 3 = 1, d 0 = 3, d 1 = 3, d 2 = 7 és d 3 = 0 értékekkel alkalmazzuk a Lagrange-interpolációt. l 0(x) = (x 1)(x 4)(x+1) = 1 x 3 x 2 1 x + 1 (0 1)(0 4)(0+1) 4 4 l 1(x) = (x 0)(x 4)(x+1) = 1 x x x (1 0)(1 4)(1+1) l 2(x) = (x 0)(x 1)(x+1) = 1 x 3 1 x (4 0)(4 1)(4+1) l 3(x) = (x 0)(x 1)(x 4) = 1 x x 2 2 x ( 1 0)( 1 1)( 1 4)

15 Polinomok Diszkrét matematika 3. estis képzés ősz 10. Lagrange-interpoláció Példa Adjunk meg olyan f R[x] polinomot, amelyre f (0) = 3, f (1) = 3, f (4) = 7 és f ( 1) = 0! A feladat szövege alapján c 0 = 0, c 1 = 1, c 2 = 4, c 3 = 1, d 0 = 3, d 1 = 3, d 2 = 7 és d 3 = 0 értékekkel alkalmazzuk a Lagrange-interpolációt. l 0(x) = (x 1)(x 4)(x+1) = 1 x 3 x 2 1 x + 1 (0 1)(0 4)(0+1) 4 4 l 1(x) = (x 0)(x 4)(x+1) = 1 x x x (1 0)(1 4)(1+1) l 2(x) = (x 0)(x 1)(x+1) = 1 x 3 1 x (4 0)(4 1)(4+1) l 3(x) = (x 0)(x 1)(x 4) = 1 x x 2 2 x ( 1 0)( 1 1)( 1 4) f (x) = 3l 0(x) + 3l 1(x) + 7l 2(x) + 0l 3(x) = 22 x 3 3 x x

16 Polinomok Diszkrét matematika 3. estis képzés ősz 10. Lagrange-interpoláció Példa Adjunk meg olyan f R[x] polinomot, amelyre f (0) = 3, f (1) = 3, f (4) = 7 és f ( 1) = 0! A feladat szövege alapján c 0 = 0, c 1 = 1, c 2 = 4, c 3 = 1, d 0 = 3, d 1 = 3, d 2 = 7 és d 3 = 0 értékekkel alkalmazzuk a Lagrange-interpolációt. l 0(x) = (x 1)(x 4)(x+1) = 1 x 3 x 2 1 x + 1 (0 1)(0 4)(0+1) 4 4 l 1(x) = (x 0)(x 4)(x+1) = 1 x x x (1 0)(1 4)(1+1) l 2(x) = (x 0)(x 1)(x+1) = 1 x 3 1 x (4 0)(4 1)(4+1) l 3(x) = (x 0)(x 1)(x 4) = 1 x x 2 2 x ( 1 0)( 1 1)( 1 4) f (x) = 3l 0(x) + 3l 1(x) + 7l 2(x) + 0l 3(x) = 22 x 3 3 x x

17 Polinomok Diszkrét matematika 3. estis képzés ősz 10. Lagrange-interpoláció Példa Adjunk meg olyan f R[x] polinomot, amelyre f (0) = 3, f (1) = 3, f (4) = 7 és f ( 1) = 0! A feladat szövege alapján c 0 = 0, c 1 = 1, c 2 = 4, c 3 = 1, d 0 = 3, d 1 = 3, d 2 = 7 és d 3 = 0 értékekkel alkalmazzuk a Lagrange-interpolációt. l 0(x) = (x 1)(x 4)(x+1) = 1 x 3 x 2 1 x + 1 (0 1)(0 4)(0+1) 4 4 l 1(x) = (x 0)(x 4)(x+1) = 1 x x x (1 0)(1 4)(1+1) l 2(x) = (x 0)(x 1)(x+1) = 1 x 3 1 x (4 0)(4 1)(4+1) l 3(x) = (x 0)(x 1)(x 4) = 1 x x 2 2 x ( 1 0)( 1 1)( 1 4) f (x) = 3l 0(x) + 3l 1(x) + 7l 2(x) + 0l 3(x) = 22 x 3 3 x x

18 Polinomok Diszkrét matematika 3. estis képzés ősz 10. Lagrange-interpoláció Példa Adjunk meg olyan f R[x] polinomot, amelyre f (0) = 3, f (1) = 3, f (4) = 7 és f ( 1) = 0! A feladat szövege alapján c 0 = 0, c 1 = 1, c 2 = 4, c 3 = 1, d 0 = 3, d 1 = 3, d 2 = 7 és d 3 = 0 értékekkel alkalmazzuk a Lagrange-interpolációt. l 0(x) = (x 1)(x 4)(x+1) = 1 x 3 x 2 1 x + 1 (0 1)(0 4)(0+1) 4 4 l 1(x) = (x 0)(x 4)(x+1) = 1 x x x (1 0)(1 4)(1+1) l 2(x) = (x 0)(x 1)(x+1) = 1 x 3 1 x (4 0)(4 1)(4+1) l 3(x) = (x 0)(x 1)(x 4) = 1 x x 2 2 x ( 1 0)( 1 1)( 1 4) f (x) = 3l 0(x) + 3l 1(x) + 7l 2(x) + 0l 3(x) = 22 x 3 3 x x

19 Polinomok Diszkrét matematika 3. estis képzés ősz 11. Lagrange-interpoláció Alkalmazás A Lagrange-interpoláció használható titokmegosztásra a következő módon: legyenek 1 m < n egészek, továbbá s N a titok, amit n ember között akarunk szétosztani úgy, hogy bármely m részből a titok rekonstruálható legyen, de kevesebből nem. Válasszunk a titok maximális lehetséges értékénél és n-nél is nagyobb p prímet, továbbá a 1, a 2,..., a m 1 Z p véletlen együtthatókat, majd határozzuk meg az f (x) = a m 1 x m 1 + a m 2 x m a 1 x + s polinomra az f (i) értékeket, és adjuk ezt meg az i. embernek (i = 1, 2,..., n). Bármely m helyettesítési értékből a Lagrange-interpolációval megkapható a polinom, így annak konstans tagja is, a titok. Ha m-nél kevesebb helyettesítési értékünk van, akkor nem tudjuk meghatározni a titkot, mert tetszőleges t esetén az f (0) = t értéket hozzávéve a többihez létezik olyan legfeljebb m-ed fokú polinom, aminek a konstans tagja t, és az adott helyeken megfelelő a helyettesítési értéke.

20 Polinomok Diszkrét matematika 3. estis képzés ősz 12. Titokmegosztás Példa Legyen m = 3, n = 4, s = 5, p = 7, továbbá a 1 = 3 és a 2 = 4. Ekkor f (x) = 4x 2 + 3x + 5 Z 7 [x], a titokrészletek pedig f (1) = 5, f (2) = 6, f (3) = 1 és f (4) = 4. Ha rendelkezünk például az f (1) = 5, f (3) = 1 és f (4) = 4 információkkal, akkor c 0 = 1, c 1 = 3, c 2 = 4, d 0 = 5, d 1 = 1, és d 2 = 4 értékekkel alkalmazzuk a Lagrange-interpolációt.

21 Polinomok Diszkrét matematika 3. estis képzés ősz 12. Titokmegosztás Példa Legyen m = 3, n = 4, s = 5, p = 7, továbbá a 1 = 3 és a 2 = 4. Ekkor f (x) = 4x 2 + 3x + 5 Z 7 [x], a titokrészletek pedig f (1) = 5, f (2) = 6, f (3) = 1 és f (4) = 4. Ha rendelkezünk például az f (1) = 5, f (3) = 1 és f (4) = 4 információkkal, akkor c 0 = 1, c 1 = 3, c 2 = 4, d 0 = 5, d 1 = 1, és d 2 = 4 értékekkel alkalmazzuk a Lagrange-interpolációt. l 0 (x) = (x 3)(x 4) (1 3)(1 4) = 1 6 (x 2 7x + 12) = 1 1 ( 6x 2 2) = 6x 2 + 2

22 Polinomok Diszkrét matematika 3. estis képzés ősz 12. Titokmegosztás Példa Legyen m = 3, n = 4, s = 5, p = 7, továbbá a 1 = 3 és a 2 = 4. Ekkor f (x) = 4x 2 + 3x + 5 Z 7 [x], a titokrészletek pedig f (1) = 5, f (2) = 6, f (3) = 1 és f (4) = 4. Ha rendelkezünk például az f (1) = 5, f (3) = 1 és f (4) = 4 információkkal, akkor c 0 = 1, c 1 = 3, c 2 = 4, d 0 = 5, d 1 = 1, és d 2 = 4 értékekkel alkalmazzuk a Lagrange-interpolációt. l 0 (x) = (x 3)(x 4) (1 3)(1 4) = 1 6 (x 2 7x + 12) = 1 1 ( 6x 2 2) = 6x l 1 (x) = (x 1)(x 4) (3 1)(3 4) = 1 2 (x 2 5x + 4) = 4(x 2 + 2x + 4) = 3x 2 + 6x + 5

23 Polinomok Diszkrét matematika 3. estis képzés ősz 12. Titokmegosztás Példa Legyen m = 3, n = 4, s = 5, p = 7, továbbá a 1 = 3 és a 2 = 4. Ekkor f (x) = 4x 2 + 3x + 5 Z 7 [x], a titokrészletek pedig f (1) = 5, f (2) = 6, f (3) = 1 és f (4) = 4. Ha rendelkezünk például az f (1) = 5, f (3) = 1 és f (4) = 4 információkkal, akkor c 0 = 1, c 1 = 3, c 2 = 4, d 0 = 5, d 1 = 1, és d 2 = 4 értékekkel alkalmazzuk a Lagrange-interpolációt. l 0 (x) = (x 3)(x 4) (1 3)(1 4) = 1 6 (x 2 7x + 12) = 1 1 ( 6x 2 2) = 6x l 1 (x) = (x 1)(x 4) (3 1)(3 4) = 1 2 (x 2 5x + 4) = 4(x 2 + 2x + 4) = 3x 2 + 6x + 5 l 2 (x) = (x 1)(x 3) (4 1)(4 3) = 1 3 (x 2 4x + 3) = 5(x 2 + 3x + 3) = 5x 2 + x + 1

24 Polinomok Diszkrét matematika 3. estis képzés ősz 12. Titokmegosztás Példa Legyen m = 3, n = 4, s = 5, p = 7, továbbá a 1 = 3 és a 2 = 4. Ekkor f (x) = 4x 2 + 3x + 5 Z 7 [x], a titokrészletek pedig f (1) = 5, f (2) = 6, f (3) = 1 és f (4) = 4. Ha rendelkezünk például az f (1) = 5, f (3) = 1 és f (4) = 4 információkkal, akkor c 0 = 1, c 1 = 3, c 2 = 4, d 0 = 5, d 1 = 1, és d 2 = 4 értékekkel alkalmazzuk a Lagrange-interpolációt. l 0 (x) = (x 3)(x 4) (1 3)(1 4) = 1 6 (x 2 7x + 12) = 1 1 ( 6x 2 2) = 6x l 1 (x) = (x 1)(x 4) (3 1)(3 4) = 1 2 (x 2 5x + 4) = 4(x 2 + 2x + 4) = 3x 2 + 6x + 5 l 2 (x) = (x 1)(x 3) (4 1)(4 3) = 1 3 (x 2 4x + 3) = 5(x 2 + 3x + 3) = 5x 2 + x + 1 f (x) = 5l 0 (x)+l 1 (x)+4l 2 (x) = 30x x 2 +6x +5+20x 2 +4x +4 =

25 Polinomok Diszkrét matematika 3. estis képzés ősz 12. Titokmegosztás Példa Legyen m = 3, n = 4, s = 5, p = 7, továbbá a 1 = 3 és a 2 = 4. Ekkor f (x) = 4x 2 + 3x + 5 Z 7 [x], a titokrészletek pedig f (1) = 5, f (2) = 6, f (3) = 1 és f (4) = 4. Ha rendelkezünk például az f (1) = 5, f (3) = 1 és f (4) = 4 információkkal, akkor c 0 = 1, c 1 = 3, c 2 = 4, d 0 = 5, d 1 = 1, és d 2 = 4 értékekkel alkalmazzuk a Lagrange-interpolációt. l 0 (x) = (x 3)(x 4) (1 3)(1 4) = 1 6 (x 2 7x + 12) = 1 1 ( 6x 2 2) = 6x l 1 (x) = (x 1)(x 4) (3 1)(3 4) = 1 2 (x 2 5x + 4) = 4(x 2 + 2x + 4) = 3x 2 + 6x + 5 l 2 (x) = (x 1)(x 3) (4 1)(4 3) = 1 3 (x 2 4x + 3) = 5(x 2 + 3x + 3) = 5x 2 + x + 1 f (x) = 5l 0 (x)+l 1 (x)+4l 2 (x) = 30x x 2 +6x +5+20x 2 +4x +4 = = 53x x + 19 = 4x 2 + 3x + 5

26 Polinomok Diszkrét matematika 3. estis képzés ősz 13. Polinomok felbonthatósága Definíció Legyen R egységelemes integritási tartomány. Ha a 0 f R[x] polinom nem egység, akkor felbonthatatlannak (irreducibilisnek) nevezzük, ha a, b R[x]-re f = a b = (a egység b egység). Ha a 0 f R[x] polinom nem egység, és nem felbonthatatlan, akkor felbonthatónak (reducibilisnek) nevezzük. Megjegyzés Utóbbi azt jelenti, hogy f -nek van nemtriviális szorzat-előálĺıtása (olyan, amiben egyik tényező sem egység).

27 Polinomok Diszkrét matematika 3. estis képzés ősz 14. Polinomok felbonthatósága Álĺıtás Legyen (F ; +, ) test. Ekkor f F [x] pontosan akkor egység, ha deg(f ) = 0. Bizonyítás = Ha deg(f ) = 0, akkor f nem-nulla konstans polinom: f (x) = f 0. Mivel F test, ezért létezik f 1 0 F, amire f 0 f 1 0 = 1, így f tényleg egység. = Ha f egység, akkor létezik g F [x], amire f g = 1, és így deg(f ) + deg(g) = deg(1) = 0 (Miért?), ami csak deg(f ) = deg(g) = 0 esetén lehetséges.

28 Polinomok Diszkrét matematika 3. estis képzés ősz 15. Polinomok felbonthatósága Álĺıtás Legyen (F ; +, ) test, és f F [x]. Ha deg(f ) = 1, akkor f -nek van gyöke. Bizonyítás Ha deg(f ) = 1, akkor feĺırható f (x) = f 1 x + f 0 alakban, ahol f 1 0. Azt szeretnénk, hogy létezzen c F, amire f (c) = 0, vagyis f 1 c + f 0 = 0. Ekkor f 1 c = f 0 (Miért?), és mivel létezik f 1 1 F, amire f 1 f 1 1 = 1 (Miért?), ezért c = f 0 f 1 1 Megjegyzés ( ) = f0 f 1 gyök lesz. Ha (R; +, ) nem test, akkor egy R fölötti elsőfokú polinomnak nem feltétlenül van gyöke, pl. 2x 1 Z[x].

29 Polinomok Diszkrét matematika 3. estis képzés ősz 16. Polinomok felbonthatósága Álĺıtás Legyen (F ; +, ) test, és f F [x]. Ha deg(f ) = 1, akkor f felbonthatatlan. Bizonyítás Legyen f = g h. Ekkor deg(g) + deg(h) = deg(f ) = 1 (Miért?) miatt deg(g) = 0 deg(h) = 1 vagy deg(g) = 1 deg(h) = 0. Előbbi esetben g, utóbbiban h egység a korábbi álĺıtás értelmében. Megjegyzés Tehát nem igaz, hogy egy felbonthatatlan polinomnak nem lehet gyöke.

30 Polinomok Diszkrét matematika 3. estis képzés ősz 17. Polinomok felbonthatósága Álĺıtás Legyen (F ; +, ) test, és f F [x]. Ha 2 deg(f ) 3, akkor f pontosan akkor felbontható, ha van gyöke. Bizonyítás = Ha c gyöke f -nek, akkor az f (x) = (x c)g(x) egy nemtriviális felbontás (Miért?). = Mivel 2 = = 1 + 1, illetve 3 = = 1 + 2, és más összegként nem állnak elő, ezért amennyiben f -nek van nemtriviális felbontása, akkor van elsőfokú osztója. A korábbi álĺıtás alapján ennek van gyöke, és ez nyilván f gyöke is lesz.

31 Polinomok Diszkrét matematika 3. estis képzés ősz 18. Polinomok felbonthatósága Tétel f C[x] pontosan akkor felbonthatatlan, ha deg(f ) = 1. Bizonyítás = Mivel C a szokásos műveletekkel test, ezért korábbi álĺıtás alapján teljesül. = Indirekt tfh. deg(f ) 1. Ha deg(f ) < 1, akkor f = 0 vagy f egység, tehát nem felbonthatatlan, ellentmondásra jutottunk. deg(f ) > 1 esetén az algebra alaptétele értelmében van gyöke f -nek. A gyöktényezőt kiemelve az f (x) = (x c)g(x) alakot kapjuk, ahol deg(g) 1 (Miért?), vagyis egy nemtriviális szorzat-előálĺıtást, így f nem felbonthatatlan, ellentmondásra jutottunk.

32 Polinomok Diszkrét matematika 3. estis képzés ősz 19. Polinomok felbonthatósága Tétel f R[x] pontosan akkor felbonthatatlan, ha deg(f ) = 1, vagy deg(f ) = 2, és f -nek nincs (valós) gyöke. Bizonyítás = Ha deg(f ) = 1, akkor korábbi álĺıtás alapján f felbonthatatlan. Ha deg(f ) = 2, és f -nek nincs gyöke, akkor f nem áll elő két elsőfokú polinom szorzataként (Miért?), vagyis csak olyan kéttényezős szorzat-előálĺıtása lehet, melyben az egyik tényező foka 0, tehát egység. = Ha f felbonthatatlan, akkor nem lehet deg(f ) < 1. (Miért?) Ha f felbonthatatlan, és deg(f ) = 2, akkor tfh. van gyöke. Ekkor az ehhez tartozó gyöktényező kiemelésével egy nemtriviális felbontását kapjuk f -nek (Miért?), ami ellentmondás.

33 Polinomok Diszkrét matematika 3. estis képzés ősz 20. Polinomok felbonthatósága Bizonyítás folyt. Tfh. deg(f ) 3. Az algebra alaptétele értelmében f -nek mint C fölötti polinomnak van c C gyöke. Ha c R is teljesül, akkor a gyöktényező kiemelésével f egy nemtriviális felbontását kapjuk (Miért?), ami ellentmondás. Mivel f R[x], ezért c is gyöke, hiszen f (c) = deg(f ) j=0 f j (c) j = deg(f ) j=0 f j c j = deg(f ) j=0 deg(f ) f j c j = f j c j = f (c) = 0 = 0. Legyen g(x) = (x c)(x c) = x 2 2 Re(c)x + c 2 R[x]. f -et g-vel maradékosan osztva létezik q, r R[x], hogy f = qg + r. r = 0, mert deg(r) < 2, és r-nek gyöke c C \ R. Vagyis f = qg, ami egy nemtriviális felbontás, ez pedig ellentmondás. j=0

34 Polinomok Diszkrét matematika 3. estis képzés ősz 21. Polinomok felbonthatósága Definíció f Z[x]-et primitív polinomnak nevezzük, ha az együtthatóinak a legnagyobb közös osztója 1. Tétel (Schönemann-Eisenstein) Legyen f (x) = f n x n + f n 1 x n f 1 x + f 0 Z[x], f n 0 legalább elsőfokú primitív polinom. Ha található olyan p Z prím, melyre p f n, p f j, ha 0 j < n, p 2 f 0, akkor f felbonthatatlan Z fölött. Bizonyítás NB. (Lehet, hogy később igen.)

35 Polinomok Diszkrét matematika 3. estis képzés ősz 22. Polinomok felbonthatósága Megjegyzés A feltételben f n és f 0 szerepe felcserélhető. Megjegyzés A tétel nem használható test fölötti polinom irreducibilitásának bizonyítására, mert testben nem léteznek prímek, hiszen minden nem-nulla elem egység.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

1. Polinomok számelmélete

1. Polinomok számelmélete 1. Polinomok számelmélete Oszthatóság, egységek. Emlékeztető Legyen R a C, R, Q, Z egyike. Azt mondjuk, hogy (1) a g R[x] polinom osztója f R[x]-nek R[x]-ben, ha létezik olyan h R[x] polinom, hogy f (x)

Részletesebben

1. A maradékos osztás

1. A maradékos osztás 1. A maradékos osztás Egész számok osztása Példa 223 = 7 31+6. Visszaszorzunk Kivonunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a,b Z esetén, ahol b 0, létezik olyan q,r Z, hogy a = bq +

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis

Részletesebben

1. Egész együtthatós polinomok

1. Egész együtthatós polinomok 1. Egész együtthatós polinomok Oszthatóság egész számmal Emlékeztető (K3.1.3): Ha f,g Z[x], akkor f g akkor és csak akkor, ha van olyan h Z[x], hogy g = fh. Állítás (K3.1.6) Az f(x) Z[x] akkor és csak

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Polinomok (el adásvázlat, április 15.) Maróti Miklós

Polinomok (el adásvázlat, április 15.) Maróti Miklós Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Polinomok (előadásvázlat, október 21.) Maróti Miklós

Polinomok (előadásvázlat, október 21.) Maróti Miklós Polinomok (előadásvázlat, 2012 október 21) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: gyűrű, gyűrű additív csoportja, zéruseleme, és multiplikatív félcsoportja,

Részletesebben

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ B szakirány 2014 június Tartalom 1. Fák definíciója ekvivalens jellemzései... 3 2. Hamilton-kör Euler-vonal... 4 3. Feszítőfa és vágás... 6 4. Címkézett

Részletesebben

1. Hatvány és többszörös gyűrűben

1. Hatvány és többszörös gyűrűben 1. Hatvány és többszörös gyűrűben Hatvány és többszörös Definíció (K2.2.19) Legyen asszociatív művelet és n pozitív egész. Ekkor a n jelentse az n tényezős a a... a szorzatot. Ez az a elem n-edik hatványa.

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás március 24.

Klasszikus algebra előadás. Waldhauser Tamás március 24. Klasszikus algebra előadás Waldhauser Tamás 2014. március 24. Irreducibilitás 3.33. Definíció. A p T [x] polinom irreducibilis, ha legalább elsőfokú, és csak úgy bontható két polinom szorzatára, hogy az

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

1. A maradékos osztás

1. A maradékos osztás 1. A maradékos osztás Egész számok osztása. 223 = 7 31 + 6. Visszaszorzunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a, b Z esetén, ahol b 0, létezik olyan q, r Z, hogy a = bq + r és r < b.

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság

Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság Algebrai alapismeretek az Algebrai síkgörbék c tárgyhoz 1 Integritástartományok, oszthatóság 11 Definíció A nullaosztómentes, egységelemes kommutatív gyűrűket integritástartománynak nevezzük 11 példa Integritástartományra

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

0 ; a k ; :::) = ( 0: x = (0; 1; 0; 0; :::; 0; :::) = (0; 1)

0 ; a k ; :::) = ( 0: x = (0; 1; 0; 0; :::; 0; :::) = (0; 1) 3. EGYVÁLTOZÓS POLINOMOK 3.A.De níció. Komplex számok egy f = (a 0 ; a 1 ; :::; a k ; :::) végtelen sorozatáról azt mondjuk, hogy polinom, ha létezik olyan m 0 egész, hogy minden k m indexre a k = 0. Az

Részletesebben

Alapvető polinomalgoritmusok

Alapvető polinomalgoritmusok Alapvető polinomalgoritmusok Maradékos osztás Euklideszi algoritmus Bővített euklideszi algoritmus Alkalmazás: Véges testek konstrukciója Irodalom: Iványi Antal: Informatikai algoritmusok II, 18. fejezet.

Részletesebben

LÁNG CSABÁNÉ POLINOMOK ALAPJAI. Példák és megoldások

LÁNG CSABÁNÉ POLINOMOK ALAPJAI. Példák és megoldások LÁNG CSABÁNÉ POLINOMOK ALAPJAI Példák és megoldások Lektorálta Ócsai Katalin c Láng Csabáné, 008 ELTE IK Budapest 008-11-08. javított kiadás Tartalomjegyzék 1. El szó..................................

Részletesebben

1. A Horner-elrendezés

1. A Horner-elrendezés 1. A Horner-elrendezés A polinomok műveleti tulajdonságai Polinomokkal a szokásos módon számolhatunk: Tétel (K2.1.6, HF ellenőrizni) Tetszőleges f,g,h polinomokra érvényesek az alábbiak. (1) (f +g)+h =

Részletesebben

1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b).

1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b). 1. Polinomfüggvények Behelyettesés polinomba. Definíció Legyen b komplex szám. Az f (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n polinom b helyen felvett helyettesítési értéke f (b) = a 0 + a 1 b + a 2 b

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat 8.2. Gyűrűk Fogalmak, definíciók: Gyűrű, kommutatív gyűrű, integritási tartomány, test Az (R, +, ) algebrai struktúra gyűrű, ha + és R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ) félcsoport,

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét.

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét. Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a Számítsuk ki a 2i + 3j + 6k kvaternió inverzét. b Köbgyöktelenítsük a nevezőt az alábbi törtben: 1 3 3. Megoldás: a Egy q = a + bi + cj

Részletesebben

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2. TARTALOMJEGYZÉK Polinomok konvolúviója A DFT és a maradékos osztás Gyűrűk támogatás nélkül Második nekifutás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. október 2. TARTALOMJEGYZÉK Polinomok

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet. 1. A polinom fogalma Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1 = x egyenletet. Megoldás x + 1-gyel átszorozva x 2 + x + 1 = x 2 + x. Innen 1 = 0. Ez ellentmondás, így az

Részletesebben

1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.

1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők. 1. Interpoláció Az interpoláció alapproblémája. Feladat Olyan polinomot keresünk, amely előre megadott helyeken előre megadott értékeket vesz fel. A helyek: páronként különböző a 1, a,...,a n számok. Az

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest 2007-07-25 A 2. és a 4. fejezet feladatai megoldva megtalálhatók a Testb vítés, véges testek;

Részletesebben

Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 2. Függvények... 8 12 3. Elsőfokú egyenletek és egyenlőtlenségek... 13 16

Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 2. Függvények... 8 12 3. Elsőfokú egyenletek és egyenlőtlenségek... 13 16 Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 1.1. Gyökök és hatványozás... 1 3 1.1.1. Hatványozás...1 1.1.2. Gyökök... 1 3 1.2. Azonosságok... 3 4 1.3. Egyenlőtlenségek... 5 8 2. Függvények... 8

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével

Részletesebben

Alapfogalmak a Diszkrét matematika II. tárgyból

Alapfogalmak a Diszkrét matematika II. tárgyból Alapfogalmak a Diszkrét matematika II. tárgyból (A szakirány, 2015-2016 tavaszi félév) A számonkérés során ezeknek a definícióknak, tételkimondásoknak az alapos megértését is számon kérjük. A példakérdések

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 14.

Klasszikus algebra előadás. Waldhauser Tamás április 14. Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

Az eddig leadott anyag Diszkrét matematika II tárgyhoz tavasz

Az eddig leadott anyag Diszkrét matematika II tárgyhoz tavasz Az eddig leadott anyag Diszkrét matematika II tárgyhoz 2011. tavasz A (+)-szal jelzett tételek bizonyítással együtt, a (-)-szal anélkül értendők! A tételek esetleges neve, vagy száma a fóliákkal van szinkronban,

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Klasszikus algebra előadás. Waldhauser Tamás április 28. Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Kongruenciák. Waldhauser Tamás

Kongruenciák. Waldhauser Tamás Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek

Részletesebben

1. Gráfok alapfogalmai

1. Gráfok alapfogalmai 1. Gráfok alapfogalmai Definiáld az irányítatlan gráf fogalmát! Definiáld az illeszkedik és a végpontja fogalmakat! Definiáld az illeszkedési relációt! Definiáld a véges/végtelen gráf fogalmát! Definiáld

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Bevezetés az algebrába az egész számok

Bevezetés az algebrába az egész számok Bevezetés az algebrába az egész számok Wettl Ferenc V. 15-09-11 Wettl Ferenc Bevezetés az algebrába az egész számok V. 15-09-11 1 / 32 Jelölések 1 Egész számok és sorozataik 2 Oszthatóság 3 Közös osztók

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Irreducibilis polinomok szakkörre

Irreducibilis polinomok szakkörre Eötvös Loránd Tudományegyetem Természettudományi Kar Algebra és Számelmélet Tanszék Irreducibilis polinomok szakkörre Szakdolgozat Készítette Birtha Nikoletta Matematika Tanári BSc. Konzulens Dr. Zábrádi

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl

Részletesebben

Algoritmuselmélet gyakorlat (MMN111G)

Algoritmuselmélet gyakorlat (MMN111G) Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. A szakirány 11. előadás Ligeti Péter turul@cs.elte.hu www.cs.elte.hu/ turul Nagy hálózatok Nagy hálózatok jellemzése Internet, kapcsolati hálók, biológiai hálózatok,... globális

Részletesebben

Polinomosztás. Összeállította: Bogya Norbert. Diszkrét matematika I.gyakorlat

Polinomosztás. Összeállította: Bogya Norbert. Diszkrét matematika I.gyakorlat Diszkrét matematika I. gyakorlat Összeállította: Bogya Norbert Tartalom Elméleti bevezető 1 Elméleti bevezető 2 1. példa 2. példa 3. példa Elmélet I. Elméleti bevezető Definíció (polinom) p = a n x n +

Részletesebben

Diszkrét matematika alapfogalmak

Diszkrét matematika alapfogalmak 2014 tavaszi félév Diszkrét matematika alapfogalmak 1 GRÁFOK 1.1 GRÁFÁBRÁZOLÁSOK 1.1.1 Adjacenciamátrix (szomszédsági mátrix) Szomszédok felsorolása, csak egyszerű gráfok esetén használható 1.1.2 Incidenciamátrix

Részletesebben

Tartalom. Algebrai és transzcendens számok

Tartalom. Algebrai és transzcendens számok Nevezetes számelméleti problémák Tartalom 6. Nevezetes számelméleti problémák Számok felbontása hatványok összegére Prímszámok Algebrai és transzcendens számok 6.1. Definíció. Az (x, y, z) N 3 számhármast

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis. 1 Diagonalizálás Diagonalizálható mátrixok Ismétlés Legyen M,N T n n Az M és N hasonló, ha van olyan A lineáris transzformáció, hogy M is és N is az A mátrixa egy-egy alkalmas bázisban Az M és N pontosan

Részletesebben

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla Számelmélet (2017 február 8) Bogya Norbert, Kátai-Urbán Kamilla 1 Oszthatóság 1 Definíció Legyen a, b Z Az a osztója b-nek, ha létezik olyan c Z egész szám, melyre ac = b Jelölése: a b 2 Példa 3 12, 2

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc

Részletesebben

Analízis I. Vizsgatételsor

Analízis I. Vizsgatételsor Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2

Részletesebben

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet: Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. március 9. 1. Diszkrét matematika 2. 4. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. március 9. Gráfelmélet Diszkrét

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!! 4. Test feletti egyhatározatlaú poliomok Klasszikus algebra előadás Waldhauser Tamás 2013 április 11. Eddig a poliomokkal mit formális kifejezésekkel számoltuk, em éltük azzal a lehetőséggel, hogy x helyébe

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. - Vizsga anyag 1 EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Diszkrét matematika I. Vizsgaanyag Készítette: Nyilas Árpád Diszkrét matematika I. - Vizsga anyag 2 Bizonyítások 1)

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében? Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?

Részletesebben

Hatványozás. A hatványozás azonosságai

Hatványozás. A hatványozás azonosságai Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84

Részletesebben

Dierenciálhatóság. Wettl Ferenc el adása alapján és

Dierenciálhatóság. Wettl Ferenc el adása alapján és 205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási

Részletesebben