Markov-láncok stacionárius eloszlása
|
|
- Gyöngyi Soósné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás április 11.
2 Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius eloszlás Periodicitás
3 Sztochasztikus folyamatok, Markov láncok S állapottér, megszámlálható. n = 0, 1..., idő diszkrét. X n mindenre valószínűségi változó, S-be képez, ekkor X n sztochasztikus folyamat. X n markov lánc, ha P(X n = x n X n 1 = x n 1,..., X 0 = x 0 ) = P(X n = x n X n 1 = x n 1 )
4 Átmenet mátrix Markov lánc időben homogén, ha P(X n = α X n 1 = β) = P αβ, α, β S (a továbbiakban ezt feltesszük). P átmenet mátrix. X n eloszlása feĺırható a kezdeti eloszlás és az átmenetmátrix segítségével (elég ezeket vizsgálni). Pl.: P(X 1 = α) = β S P(X 1 = α X 0 = β) P(X 0 = β) P βα P(X 0 = β) β S
5 P tulajdonságai α, β S : P αβ 0 β S P αβ = 1 P (n) αβ := P(X j+n = β X j = α) Kolmogorov-Chapman egyenlőtlenség: P (n+m) αβ = σ S P(m) ασ P (n) σβ P (n) = P n
6 Példák Bolyongás a weben: S = weboldalak P ab = { 1 outdeg(a) Bolyongás Z d -n. S = Z d, ha létezik a-ból b-be él 0 egyébként P xy = 1, ha x y = 1 2 d
7 X n eloszlása Jelölje X 0 eloszlásvektorát µ, azaz P(X 0 = α) = µ α. Ekkor X n eloszlásvektora µ P n. π stacionárius eloszlás, ha π P = π. Kérdések: stacionárius eloszlás létezése, unicitás? Ha van konvergál-e hozzá valamilyen kezdeti eloszlásból? Milyen gyorsan?
8 Irreducibilis Markov láncok Egy i, j csúcspár egymással kommunikál, ha léteznek olyan n és m egészek, hogy P n ij, Pm ji > 0. Ez a reláció reflexív, szimmetrikus és tranzitív (Kolmogorov-Chapman). Tehát létezik olyan {C i, i = 1 } halmazok, hogy C i -k páronként diszjunktak, és uniójuk a teljes állapottér. Ha csak egyetlen osztály létezik, tehát minden csúcsból minden csúcsba el tudunk jutni pozitív valószínűséggel, akkor a Markov-láncot irreducibilisnek mondjuk.
9 Rekurrencia, tranziencia Tetszőleges i-re: τ ii := f i := P(τ ii < ) { min{n 1 : Xn = i X 0 = i}, ha X n i, n 1 Egy i állapot rekurrens, ha f i = 1, tehát egy valószínűséggel visszatér, egyébként tranziens. Ha a folyamat visszatér i-be, a Markov-tulajdonság miatt f i valószínűséggel visszatér ismét. Rekurrens i állapot esetén, a Markov-tulajdonság miatt a bolyongás egy valószínűséggel végtelen sokszor visszatér.
10 Tranziens eset Tfh. f i < 1. P(N i = n) = f n 1 i (1 f i ), n 1, ahol N i a visszatérések száma i-be. Tranziens állapot esetén a visszatérések száma geometriai eloszlást követ, egy valószínűséggel véges sokszor tér vissza.
11 Szükséges és eléges feltétel rekurrenciához N i = n=1 I {X n = i X 0 = i}, az i-be való visszatérések száma. E(N i ) = 1 1 f i E(I {X n = i X 0 = i}) = P(X n = i X 0 = i) = P n ii Monoton konvergencia tételől következik, E(N i ) = n=1 Pn ii. Azaz f i egyenlő 1-gyel (rekurrens) pontosan akkor, ha n=1 Pn ii =.
12 Irreducibilis halmaz ugyanazon rekurrencia osztályhoz tartozik Ha i rekurrens, és i, j kommunikálnak, akkor j is rekurrens (P (n+m+k) jj P (n) ji P (k) ii P (m) ij ). Egy osztályban lévő állapotok azonos rekurrencia típusúak. Irreducibilis Markov-lánc állapotai azonos típusúak. Ez alapján a Markov-lánc rekurrens, vagy tranziens. Véges állapottér esetén, nem lehet minden állapot tranziens (elég nagy n-re, minden csúcsban 0 valószínűséggel lennénk). Véges, irreducibilis Markov-lánc rekurrens.
13 Visszatérési idő várható értéke Általánosabban, τ ij := min{n 1 : X n = j X 0 = i}. Egy rekurrens i állapot pozitív rekurrens, ha E(τ ii ) <, egyébként null rekurrens. Tegyük fel hogy i j rekurrensek, és ugyanabban a kommunikációs osztályban vannak. Ekkor i és j egyszerre pozitív vagy null rekurrensek.
14 Stacionárius eloszlás, másik definíció Tekintsük a következő határértéket: 1 π ij = lim n n n m=1 I {X m = j X 0 = i}. Amennyiben a határérték létezik, a dominált konvergencia tétel alapján: π ij = lim n 1 n n m=1 Pm ij. Stacionárius eloszlás: ha a fenti határérték j S létezik és független i-től és j S π j = 1, akkor π = (π 0, π 1... )-t a Markov-lánc stacionárius eloszlásának nevezzük. 1 mátrixos alakban: lim n n n m=1 Pm = π π. = π 0, π 1, π 0, π 1,.
15 A stacionárius eloszlás egy szemléletes jelentése Legyen N egyenletes eloszlás {0, 1,..., n}-en, független X m -től és X 0 = i. Ekkor P(X N = j) = n P(X m = j X 0 = i) P(N = m) = m=1 n m=1 P m ij 1 n π j Tehát ha egy egyenletesen választott véletlen időpontban ránézünk a bolyongásra, akkor j-ben π j valószínűséggel vagyok.
16 Kapcsolat a visszatérési idő várható értékével Tétel Ha X n pozitív rekurrens, irreducibilis Markov-lánc, akkor létezik egyértelmű π stacionárius eloszlás, amelyre π j = 1 E(τ jj ), ha j S. Ha a folyamat null rekurrens, vagy tranziens nem létezik stacionárius eloszlás. Intuíció: #{Látogatások száma N idő alatt} #{Köztük eltelt idő} = N
17 Bizonyítás Tranziens esetben mivel a bolyongás csak véges sokszor tér vissza j-be, a határérték majdnem biztosan 0-hoz tart. Tegyük fel, hogy a lánc rekurrens. t 1 := min{k : X k = j} t n := min{k : X k = j k > t n 1 } Y n := t n t n 1, t n = n 1 n m=1 Y m π j = lim n n m=1 I {X m = j X 0 = i} = lim K j első elérési ideje i-ből. n n n m=1 Ym+K, ahol Az előbbi azt fejezi ki, hogy a j állapot meglátogatásának relatív gyakorisága egyenlő azzal, ahogy n aránylik az n. látogatás idejével. Ez határértékben egyenlő.
18 Y n eloszlása a Markov tulajdonság miatt megegyezik τ jj -vel és függetlenek is. A nagy számok erős törvényét használva: lim 1 n Ym n m=1 n + K n = 1 Eτ jj Pozitív rekurrens esetben, minden π j > 0. Null rekurrens esetben viszont azonosan 0 a határérték, nem létezik stacionárius eloszlás.
19 Stacionárius eloszlás számolása algebrailag Tétel Legyen X n egy irreducibilis, Markov-lánc P átmenet mátrixszal. X n pozitív rekurrens pontosan akkor, ha létezik egy nemnegatív, egyösszegű π vektor, ami megoldja πp = π egyenletet. Ekkor π a Markov-lánc egyértemű stacionárius eloszlása.
20 Bizonyítás Tegyük fel, hogy a lánc pozitív rekurrens, ekkor létezik stacionárius eloszlás. A mátrixos egyenlet mindkét oldalát P-vel beszorozva (majoráns kritérium használható a végtelen sorra): 1 lim n n n P (m+1) =. m=1 Az egyenlet első felét tovább alakítva: 1 lim n n n m=1 π π P P m 1 + lim n n (P(n+1) P) = π π.
21 Másik irány Tegyük fel, hogy π baloldali sajátvektora P-nek, nemnegatív és j S π j = 1. Ha a lánc nem pozitív rekurrens, akkor vagy tranziens vagy 1 null rekurrens. Tehát a korábbiakból: n n m=1 Pm = 0 π-vel beszorozva: 1 0 = π( lim n n n m=1 lim n P m 1 ) = lim n n n πp m m=1 ami ellentmondás. 1 lim n n n π = π m=1
22 Egyértelműség ˆπ legyen egy megoldása a xp = x egyenletnek, π stacionárius eloszlás. π 1 n ˆπ = ( lim ˆπP m 1 n ) = ˆπ( lim P m ) = ˆπ π n n n n m=1 m=1. Azaz ˆπ i = ( j S ˆπ j) π i De j S ˆπ j = 1. Azaz: ˆπ i = π i, i S-re. Következmény: véges állapotterű irreducibilis Markov-lánc pozitív rekurrens, és mindig létezik egyértelmű stacionárius eloszlása.
23 Konvergencia erősebb értelemben Következik-e a stacionárius eloszlás létezéséből a következő: lim n = j) = π j? n Pl: ( 0 ) M = ( gond: periodicitás ) (, P 2n 0 1 = 1 0 ) (, P 2n = 0 1 )
24 Periodicitás Egy α S állapot periódusa: per(α) = lnko({n : P n αα > 0}) Azonos kommunikációs osztályba tartozó állapotok periodicitása egyenlő. Irreducibilis Markov-láncnak létezik periódusa. Ha ez nagyobb mint 1 akkor a ML periodikus, egyébként aperiodikus. Irreducibilis Markov lánc esetén a periodikusság is a csúcsok egy osztályozását adja, α relációban van β-val ha P n αβ > 0 esetén per(α) n igaz. Pozitív rekurrens, aperiodikus ML esetn lim n P(X n = j) = π j.
25 Konvergencia sebessége, spektrális rés Tegyük fel hogy az állapottér véges. Az átmenetmátrix sajátértékei (spektruma), legfeljebb 1 abszolútértékűek. σ spec(p) σ 1 A Markov-lánc spektrális rése: r = 1 v v = max{σ : σ < 1, σ spec(p)} Becslés a konvergencia sebességére: µp n π 1 c (1 r) n
26 Spektrális rés becslése Tétel Ha ɛ 0, v N olyanok hogy P (v) ij ɛ, akkor r 1 (1 2 ɛ) 1 v, azaz µp n π 1 c (1 2 ɛ) n v
27 Felhasznált irodalom stochastic-i-mcii.pdf Tóth Bálint jegyzete: oktatas/sztochasztikus_folyamatok/
12. előadás - Markov-láncok I.
12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R
Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }.
. Markov-láncok. Definíció és alapvető tulajdonságok Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0,,,..., N}, {0,,,... }.. definíció. S értékű valószínűségi
(Diszkrét idejű Markov-láncok állapotainak
(Diszkrét idejű Markov-láncok állapotainak osztályozása) March 21, 2019 Markov-láncok A Markov-láncok anaĺızise főként a folyamat lehetséges realizációi valószínűségeinek kiszámolásával foglalkozik. Ezekben
0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)
Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses
előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás
13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét
Sztochasztikus folyamatok
Sztochasztikus folyamatok Benke János és Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet 2016. tavaszi félév Sztochasztikus folyamatok Deníció, példák Sztochasztikus folyamatok A továbbiakban legyen
Barczy Mátyás és Pap Gyula. Sztochasztikus folyamatok. (Diszkrét idejű Markov-láncok)
Barczy Mátyás és Pap Gyula Sztochasztikus folyamatok Példatár és elméleti kiegészítések II Rész (Diszkrét idejű Markov-láncok) mobidiák könyvtár Barczy Mátyás és Pap Gyula Sztochasztikus folyamatok Példatár
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.
Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ
Klasszikus algebra előadás. Waldhauser Tamás április 14.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,
Diszkrét és folytonos idej Markov-láncok. Csiszár Vill
Diszkrét és folytonos idej Markov-láncok Csiszár Vill Tartalomjegyzék 1. Bevezetés 1 2. Diszkrét idej Markov-láncok 3 2.1. Markov tulajdonság............................. 3 2.2. Az állapotok osztályozása.........................
Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n
Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer
Diszkrét idejű felújítási paradoxon
Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N
Véletlen bolyongás. 2. rész. Márkus László jegyzete alapján Tóth Tamás december 10.
2. rész 2012. december 10. Határeloszlás tételek a bolyongás funkcionáljaira 1 A bolygó pont helyzete: EX i = 0, D 2 X i = EX 2 = 1 miatt i ES n = 0, D 2 S n = n, és a centrális határeloszlás tétel (CHT)
Sztochasztikus folyamatok alapfogalmak
Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos
Eötvös Loránd Tudományegyetem Természettudományi Kar Valószínűségelméleti és Statisztika Tanszék. Csatolás
Eötvös Loránd Tudományegyetem Természettudományi Kar Valószínűségelméleti és Statisztika Tanszék Csatolás Michaletzky György egyetemi tanár Cséke Balázs Matematika BSc Budapest, 2014 Tartalomjegyzék Bevezetés
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
tudjuk-e osztani a Markov-lánc állapotterét annak alapján, hogy mely állapotból
Diszkrét idejű Markov-láncok vizsgálata. Tekintsünk egy diszkrét idejű X 0,X 1,... Markov-láncot P(j,k) = P(X n+1 = E k X n = j), n = 1, 2,..., átmenetvalószínűségekkel egy (Ω, A, P) valószínűségi mezőn,
Diszkrét és folytonos paraméter Markov láncok. Csiszár Vill
Diszkrét és folytonos paraméter Markov láncok Csiszár Vill Tartalomjegyzék 1. Bevezetés 1 I. Diszkrét paraméter Markov láncok 2 2. Visszatér ség 2 2.1. Markov-tulajdonság............................. 2
Markov láncok. jegyzet február 18. Honnan hová lehet eljutni? Hány lépésben? Van-e stacionárius kezdeti eloszlás? Hány?
Markov láncok jegyzet 2009. február 18. 1. Bevezetés Tekintsünk egy megszámlálható sok csúcspontú, irányított gráfot úgy, hogy minden élre egy nemnegatív szám van írva, és minden csúcs kimen éleire írt
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
Diszkrét matematika gyakorlat 1. ZH október 10. α csoport
Diszkrét matematika gyakorlat 1. ZH 2016. október 10. α csoport 1. Feladat. (5 pont) Adja meg az α 1 β szorzatrelációt, amennyiben ahol A {1, 2, 3, 4}. α {(1, 2), (1, 3), (2, 1), (3, 1), (3, 4), (4, 4)}
Sztochasztikus folyamatok
Sztochasztikus folyamatok Pap Gyula, Sz cs Gábor Szegedi Tudományegyetem Bolyai Intézet, Sztochasztika Tanszék Utolsó frissítés: 2014. február 8. Tartalomjegyzék Tartalomjegyzék 2 1. Sztochasztikus folyamatok
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Permutációk véges halmazon (el adásvázlat, február 12.)
Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz
Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz
Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis
Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (
FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.
2. Reprezentáció-függvények, Erdős-Fuchs tétel
2. Reprezentáció-függvények, Erdős-Fuchs tétel A kör-probléma a következőképpen is megközelíthető: Jelölje S a négyzetszámok halmazát. Jelölje r S (n) azt az értéket, ahány féleképpen n felírható két pozitív
Elméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
Saj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
MBNK12: Permutációk (el adásvázlat, április 11.) Maróti Miklós
MBNK12: Permutációk el adásvázlat 2016 április 11 Maróti Miklós 1 Deníció Az A halmaz permutációin a π : A A bijektív leképezéseket értjünk Tetsz leges n pozitív egészre az {1 n} halmaz összes permutációinak
egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Analízis I. Vizsgatételsor
Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján
Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Modellek és Algoritmusok - 2.ZH Elmélet
Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)
Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31
Márkus László Véletlen bolyongás 2015. március 17. 1 / 31 Véletlen bolyongás Márkus László 2015. március 17. Modell Deníció Márkus László Véletlen bolyongás 2015. március 17. 2 / 31 Modell: Egy egyenesen
Diszkrét matematika I. gyakorlat
Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.
Fraktálok Hausdorff távolság Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. március 14. TARTALOMJEGYZÉK 1 of 36 Halmazok távolsága ELSŐ MEGKÖZELÍTÉS Legyen (S, ρ) egy metrikus tér, A, B S, valamint
Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6.
Programkonstrukciók Definíció Legyen π feltétel és S program A-n. A DO A A relációt az S-ből a π feltétellel képezett ciklusnak nevezzük, és (π, S)-sel jelöljük, ha 1. a / [π] : DO (a) = { a }, 2. a [π]
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.
E.4 Markov-láncok Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével. Egy Markov-láncot (MC) meghatároznak az alapját adó sorbanállási hálózat állapotai és az ezek
4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.
1.1. Vektorok és operátorok mátrix formában
1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Funkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
Tömegkiszolgálás. Dr. Györfi László Győri Sándor Dr. Pintér Márta
Tömegkiszolgálás Dr. Györfi László Győri Sándor Dr. Pintér Márta Tartalomjegyzék Előszó 7. Diszkrét idejű Markov-láncok 9.. Markov-láncok fogalma....................... 0.2. Irreducíbilis és aperiodikus
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Bevezetés. Valószínűségszámítás 2 előadás III. alk. matematikus szak. Irodalom. Egyéb info., számonkérés. Cél. Alapfogalmak (ismétlés)
Valószínűségszámítás 2 előaás III. alk. matematikus szak 2016/2017 1. félév Zempléni Anrás Bevezetés Iroalom, követelmények A félév célja Alapfogalmak mértékelméleti alapon Kapcsolóás a val.szám. 1-hez
Alap fatranszformátorok II
Alap fatranszformátorok II Vágvölgyi Sándor Fülöp Zoltán és Vágvölgyi Sándor [2, 3] közös eredményeit ismertetjük. Fogalmak, jelölések A Σ feletti alaptermek TA = (T Σ, Σ) Σ algebráját tekintjük. Minden
Lineáris algebra. =0 iє{1,,n}
Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai
ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha
ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint
4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim
Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2
Centrális határeloszlás-tétel
13. fejezet Centrális határeloszlás-tétel A valószínűségszámítás legfontosabb állításai azok, amelyek független valószínűségi változók normalizált összegeire vonatkoznak. A legfontosabb ilyen tételek a
Debreceni Egyetem. Kalkulus I. Gselmann Eszter
Debreceni Egyetem Természettudományi és Technológiai Kar Kalkulus I. Gselmann Eszter Debrecen, 2011 A matematikában a gondolat, ami számít. (Szofja Vasziljevna Kovalevszkaja) Tartalomjegyzék 1. Halmazok,
1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.
1. Interpoláció Az interpoláció alapproblémája. Feladat Olyan polinomot keresünk, amely előre megadott helyeken előre megadott értékeket vesz fel. A helyek: páronként különböző a 1, a,...,a n számok. Az
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet
azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i
A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában
Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor
GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.
ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem
ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül
A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
Az impulzusnyomatékok általános elmélete
Az impulzusnyomatékok általános elmélete November 27, 2006 Az elemi kvantummechanika keretében tárgyaltuk már az impulzusnyomatékot. A továbbiakban általánosítjuk az impulzusnyomaték fogalmát a kvantummechanikában
1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis
Számelmélet. 1. Oszthatóság Prímszámok
Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen
Yule és Galton-Watson folyamatok
Dr. Márkus László Yule és ok 2015. március 9. 1 / 36 Yule és ok Dr. Márkus László 2015. március 9. Yule folyamat Dr. Márkus László Yule és ok 2015. március 9. 2 / 36 A független stacionárius növekmény
Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18
Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök
Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus
Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)
Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2011 tavasz
Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2011 tavasz Dátum Téma beadandó Feb 10Cs Konvolúció (normális, Cauchy,
Matematika szigorlat, Mérnök informatikus szak I máj. 29.
Matematika szigorlat, Mérnök informatikus szak I. 2007. máj. 29. Megoldókulcs 1. Adott az S : 3x 6y + 2z = 6 sík a három dimenziós térben. (a) Írja fel egy tetszőleges, az S-re merőleges S síknak az egyenletét!
Az MCMC algoritmus és néhány alkalmazása
Eötvös Loránd Tudományegyetem Természettudományi Kar Az MCMC algoritmus és néhány alkalmazása BSc Szakdolgozat Készítette: Kelemen Kitti Matematika BSc, matematikai elemző szakirány Témavezető: Csiszár
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Kovács Adrienn. Markov-lánc Monte Carlo módszerek és alkalmazásai gráfokon
Eötvös Loránd Tudományegyetem Természettudományi Kar Kovács Adrienn Markov-lánc Monte Carlo módszerek és alkalmazásai gráfokon Szakdolgozat Alkalmazott matematikus MSc., sztochasztika szakirány Témavezető:
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges
Függvény határérték összefoglalás
Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis