Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6.
|
|
- Edit Juhászné
- 8 évvel ezelőtt
- Látták:
Átírás
1
2 Programkonstrukciók Definíció Legyen π feltétel és S program A-n. A DO A A relációt az S-ből a π feltétellel képezett ciklusnak nevezzük, és (π, S)-sel jelöljük, ha 1. a / [π] : DO (a) = { a }, 2. a [π] : DO (a) = { α A ( n N : α = χ n α 1, α 2,..., α n) α 1 S (a) i [1..n 1] : α i+1 S ( τ ( α i)) τ ( α i) [π] (α n A (α n A τ (α n ) / [π]))} { α A ( α = χ α 1, α 2,... ) α 1 S (a) i N : α i+1 S ( τ ( α i)) τ ( α i) [π] }.
3 Programkonstrukciók 1. Determinisztikus programból képezett ciklus is determinisztikus. 2. A ciklus értékkészlete tartalmazhat végtelen sorozatot akkor is, ha az S program csak véges sorozatokat generál (soha nem jutunk ki a π feltétel igazsághalmazából). A DO = (π, S) ciklus struktogramja: DO π S
4 Programkonstrukciók Tétel A szekvencia, az elágazás és a ciklus program. Bizonyítás Mindhárom program A A tipusú reláció és mindhárom esetben D S = A. A másik két tulajdonság igazolása a következő: 1. Szekvencia: a A, α S (a). Ha α S 1 (a), akkor S 1 program volta miatt α 1 = a és α = red (α). Ha α = χ 2 ( α 1, α 2), ahol α 1 S 1 (a) és α 2 S 2 ( τ ( α 1 )), akkor χ 2 definíciója miatt α redukált és α 1 = α 1 1 = a.
5 Programkonstrukciók Bizonyítás 2. Elágazás: a A, α IF (a). Ekkor α m i=0w i (a). Ha α w 0 (a), akkor α = a, a,... kielégíti a két kritériumot. Ha i [1..m] : α w i (a), akkor α S i (a) és mivel S i program, α 1 = a és α = red (α). 3. Ciklus: a A, α DO (a). Ha a / [π], akkor α = a, ami teljesíti a program követelményeit. Ha a [π], akkor két eset lehetséges: (a) Ha α A és n N : α = χ n ( α 1, α 2,..., α n), α 1 S (a), akkor χ n definiciója miatt α redukált és α 1 = α 1 1 = a. (b) Ha α A és α = χ ( α 1, α 2,... ), α 1 S (a), akkor χ n definíciója miatt α redukált és α 1 = α 1 1 = a.
6 A programkonstrukciók programfüggvényei Miután beláttuk, hogy meglevő programokból a programkonstrukciók segítségével új programokat készíthetünk, vizsgáljuk meg, hogy milyen kapcsolat van a konstruált programok programfüggvénye és az eredeti programok programfüggvénye között. A szekvencia a legegyszerűbb programkonstrukció, ennek megfelelően a programfüggvénye is egyszerűen felírható a két komponensprogram programfüggvényének segítségével. Mivel a szekvencia két program egymás utáni elvégzését jelenti, várható, hogy a programfüggvénye a két komponensprogram programfüggvényének kompozíciója. Tétel Legyen A állapottér, S 1, S 2 programok A-n, S = (S 1 ; S 2 ) a belőlük képezett szekvencia. Ekkor p (S) = p (S 2 ) p (S 1 ).
7 A programkonstrukciók programfüggvényei Bizonyítás Emlékeztetünk arra, hogy a programfüggvény definíciója: p (S) = {(a, b) S (a) A α S (a) : τ (α) = b}. Esetünkben (feltéve, hogy minden sorozat véges): (a, a ) p (S 2 ) p (S 1 ) b A : (a, b) p (S 1 ) (b, a ) p (S 2 ) α S 1 (a) : τ (α) = b β S 2 (b) : τ (β) = a χ 2 (α, β) S (a) τ (χ 2 (α, β)) = a (a, a ) p (S).
8 A programkonstrukciók programfüggvényei Mivel az elágazást több programból képezzük, a programfüggvényét is csak kissé körülményesebben tudjuk megfogalmazni. Hiszen az, hogy egy ponthoz az elágazás rendel-e végtelen sorozatot attól is függ, hogy mely feltételek igazak az adott pontban. Sőt, ha egy pontban egyetlen feltétel sem igaz, akkor a komponensprogramok programfüggvényétől függetlenül abban a pontban az elágazás programfüggvénye nem lesz értelmezve.
9 A programkonstrukciók programfüggvényei Tétel Legyen A állapottér, S 1, S 2,..., S m programok A-n, valamint π 1, π 2,..., π m : A L feltételek A-n, IF = (π 1 : S 1,..., π m : S m ). Ekkor 1 D p(if ) = { } a A a m i=1 [π i ] j [1..m] : a [π j ] a D p(sj) 2 a D p(if ) : ahol p (IF ) (a) = m i=1pw i (a), { p (Si ) (a), ha a [π pw i (a) = i ], különben
10 A programkonstrukciók programfüggvényei Bizonyítás a D p(if ) IF (a) A i [1..m] : a [π i ] m i=1 w i (a) A i : a [π i ] j [1..m] : a [π j ] a D p(sj). Legyen a D p(if ). Ekkor p (IF ) (a) = τ ( m i=1w i (a)) = m i=1pw i (a). Ha az elágazásfeltételek lefedik az egész állapotteret, akkor mindig van olyan π i állítás, amelyik igaz.
11 A programkonstrukciók programfüggvényei Definíció A p (S) reláció megszorítása a [π] igazsághalmazra: p (S) [π] = p (S) ([π] A). Tétel Legyen A tetszőleges állapottér, S A A program, π feltétel A-n, DO = (π, S). Ekkor D p(do) = [ π] Dp(S) és [π] p (DO) (a) = p (S) [π] (a) ( a Dp(DO) ).
12 Ebben a részben megvizsgáljuk a programkonstrukciók és a specifikáció kapcsolatát. Először azt fogjuk megvizsgálni, hogy a szekvencia adott utófeltételhez tartozó leggyengébb előfeltétele milyen kapcsolatban van az őt alkotó programok leggyengébb előfeltételével. Egy S program R utófeltételhez tartozó leggyengébb előfeltételének neveztük azt az lf (S, R) állítást, amelyre [lf (S, R)] = { a D p(s) p (S) (a) [R] }. Tétel (A szekvencia levezetési szabálya) Legyen S = (S 1 ; S 2 ) szekvencia, Q, R és Q állítások A-n. Ha 1 Q lf (S 1, Q ) és 2 Q lf (S 2, R), akkor Q lf (S, R).
13 Bizonyítás Legyen q [Q]. Ekkor (1) miatt q D p(s1 ) és p (S 1 ) (q) [Q ]. A (2) feltétel miatt [Q ] D p(s2 ) és q Q : p (S 2 ) (q ) [R]. Ezért p (S 2 ) p (S 1 ) (q) [R], azaz q [lf (S, R)]. Következmény A szekvencia levezetési szabálya és a specifikáció tétele alapján a következőt mondhatjuk: ha S 1 és S 2 olyan programok, amelyekre a paramétertér minden pontjában Q b lf ( S 1, Q b) és Q b lf (S 2, R b ) teljesül, akkor (S 1 ; S 2 ) megoldja a Q b, R b párokkal megadott feladatokat.
14 Tétel (A szekvencia levezetési szabályának megfordítása) Legyen S = (S 1 ; S 2 ) szekvencia, Q és R olyan állítások A-n, amelyekre Q lf (S, R). Ekkor Q : A L állítás, hogy 1 Q lf (S 1, Q ) és 2 Q lf (S 2, R).
15 Bizonyítás Legyen Q = lf (S 2, R). Ekkor (2) teljesül. Tfh. (1) nem teljesül. Ekkor q [Q] : q / [lf (S 1, lf (S 2, R))]. Két eset lehetséges: (a) q / D p(s1 ), ami ellentmondás a [Q] D p(s) D p(s1 ) feltétellel; (b) p (S 1 ) (q) [lf (S 2, R)]. Legyen r p (S 1 ) (q) \ [lf (S 2, R)]. Két eset lehetséges: r / D p(s2), ami ellentmond a q D p(s2) p(s 1) feltételnek. p (S 2 ) (r) [R]: Legyen s p (S 2 ) (r) \ [R]. Ekkor s p (S) (q) és s / [R], ami ellentmond a p (S) (q) [R] feltételnek.
16 Tétel (Az elágazás levezetési szabálya) Legyen IF = (π 1 : S 1,..., π m : S m ) elágazás, Q és R állítások A-n. Ha i [1..m] : Q π i lf (S i, R), akkor Q ( m i=1π i ) lf (IF, R).
17 Bizonyítás Legyen q [Q] és tfh. i [1..m] : q [π i ]. Ekkor q D p(if ), ui. j [1..m] : q [π j ] lf (S j, R) q D p(sj). Mivel j [1..m] : q [π j ] p (S j ) (q) [R], azért p (IF ) (q) = Tehát q [lf (IF, R)]. j [1..m] q [π j] p (S j ) (q) [R].
18 Következmény Felhasználva a specifikáció tételét és az elágazás levezetési szabályát azt mondhatjuk, hogy: Legyen adott az F feladat specifikációja (A, B, Q, R). Ekkor, ha b B paraméterre és S i programra Q b π i lf (S i, R b ), és b B paraméterhez van olyan π i feltétel, amelyre b [π i ], akkor az IF program megoldja a Q b, R b párokkal definiált feladatot.
19 Tétel (Az elágazás levezetési szabályának megfordítása) Legyen IF = (π 1 : S 1,..., π m : S m ) elágazás, Q és R olyan állítások A-n, amelyekre Q ( m i=1π i ) lf (IF, R). Ekkor i [1..m] : Q π i lf (S i, R).
20 Bizonyítás Indirekt: tfh. i [1..m] : [Q π i ] [lf (S i, R)]. Legyen q [Q π i ] \ [lf (S i, R)]. Két eset lehetséges: q / D p(si ), ami ellentmond a q D p(if ) feltevésnek. p (S i ) (q) [R]. Ekkor p (S i ) (q) p (IF ) (q) [R] miatt ellentmondás.
21 A ciklus levezetési szabálya bonyolultabb. A cél: DO véges lépésben termináljon. Olyan P feltételt keresünk, amely: 1 Igaz a ciklus/iteráció megkezdése előtt; 2 Igaz az iteráció alatt; 3 Igaz az iteráció befejezése után. A ciklus befejezésekor π, tehát P π igaz. Ha P π R, akkor a ciklus helyességét igazoltuk. A P feltétel elnevezése: invariáns feltétel/tulajdonság. Bevezetünk továbbá egy t : A Z egész értékű függvényt, amely 1 A program változóitól függ; 2 Korlátot ad a szükséges iterációk számára; 3 Minden végrehajtott iteráció legalább 1-el csökkenti t értékét; 4 t alulról korlátos: t > 0 terminálás előtt. A t függvény elnevezése: korlátozó/termináló függvény. A korlátozó függvény biztosítja, hogy a ciklusnak terminálnia kell.
22 Tétel (A ciklus levezetési szabálya) Legyen P állítás A-n, DO = (π, S) és t : A Z. Ha 1 P π t > 0, 2 P π lf (S, P), 3 P π t = t 0 lf (S, t < t 0 ), akkor P lf (DO, P π).
23 Következmény A ciklus levezetési szabályának és a specifikáció tételének felhasználásával elégséges feltételt adhatunk a megoldásra: ha adott azf feladat specifikációja (A, B, Q, R) és találunk olyan invariáns állítást és terminálófüggvényt, hogy a paramétertér minden elemére teljesül a ciklus levezetési szabályának öt feltétele, akkor a ciklus megoldja a (Q b, R b ) párokkal definiált feladatot. A ciklus levezetési szabálya visszafelé nem igaz, azaz van olyan ciklus, amit nem lehet levezetni. Ennek az az oka, hogy egy levezetett ciklus programfüggvénye mindig korlátos lezárt, hiszen az állapottér minden pontjában a terminálófüggvény értéke korlátozza a ciklusmag lefutásainak számát.
5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás
Elemi programok Definíció Az S A A program elemi, ha a A : S(a) { a, a, a, a,..., a, b b a}. A definíció alapján könnyen látható, hogy egy elemi program tényleg program. Speciális elemi programok a kövekezők:
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha
ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig
Programozási Módszertan definíciók, stb.
Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen
Bevezetés a programozáshoz I. Feladatok
Bevezetés a programozáshoz I. Feladatok 2006. szeptember 15. 1. Alapfogalmak 1.1. példa: Írjuk fel az A B, A C, (A B) C, és A B C halmazok elemeit, ha A = {0, 1}, B = {1, 2, 3}, C = {p, q}! 1.2. példa:
A = fx j P (x) igazg ; A = fx j 1 x 7; x prímszámg : A [ B = fx j x 2 A, vagy x 2 Bg ; [a::b] := [a; b] \ Z
1 Alapfogalmak Halmaz: Azonos tulajdonságú elemek összessége. Halmaz jelölése: Latin ABC nagybet½ui (általában). Halmaz elemeinek jelölése: Latin kisbet½uk (általában). Halmaz megadása: a) elemeinek felsorolásával,
3. előadás. Programozás-elmélet. A változó fogalma Kiterjesztések A feladat kiterjesztése A program kiterjesztése Kiterjesztési tételek Példa
A változó fogalma Definíció Legyen A = A 1 A 2... A n állapottér. A pr Ai projekciós függvényeket változóknak nevezzük: : A A i pr Ai (a) = a i ( a = (a 1, a 2,..., a n ) A). A változók jelölése: v i =
9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE. Szekvenciális programok kategóriái. Hoare-Dijkstra-Gries módszere
Szekvenciális programok kategóriái strukturálatlan strukturált NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE Hoare-Dijkstra-Gries módszere determinisztikus valódi korai nem-determinisztikus általános fejlett
Programozási módszertan
1 Programozási módszertan 1. Alapfogalmak Feldhoffer Gergely 2012 Féléves tananyag terve 2 Program helyességének bizonyítása Reprezentáció Logikai-matematikai eszköztár Programozási tételek bizonyítása
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
7.4. A programkonstrukciók és a kiszámíthatóság
H @ tj 68 7 PROGRAMKONSTRUKCIÓK 74 A programkonstrukciók és a kiszámíthatóság Ebben az alfejezetben kis kitérőt teszünk a kiszámíthatóság-elmélet felé, és megmutatjuk, hog az imént bevezetett három programkonstrukció
PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK
PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK Szerkesztette: Bókay Csongor 2012 tavaszi félév Az esetleges hibákat kérlek a csongor@csongorbokay.com címen jelezd! Utolsó módosítás: 2012. június
Bevezetés a programozásba 1
Bevezetés a programozásba 1 Fóthi Ákos, Horváth Zoltán 2005. április 22. ý 1 Az ELTE IK Elektronikus Könyvtár által közvetített digitális tartalmat a felhasználó a szerzői jogról szóló 1999. évi LXXVI.
f(x) a (x x 0 )-t használjuk.
5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Bevezetés az informatikába
Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.
Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
Kiterjesztések sek szemantikája
Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
Analízis I. Vizsgatételsor
Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2
Modellek ellenőrzése és tesztelése
Modellek ellenőrzése és tesztelése Rendszermodellezés imsc gyakorlat Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika
S0-01 Szintézis és verifikáció (Programozás elmélet)
S0-01 Szintézis és verifikáció (Programozás elmélet) Tartalom 1. Programozási alapfogalmak 2. Elemi programok és program konstrukciók definíciói 3. Nem-determinisztikus strukturált programok formális verifikációja
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
Markov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx.
1. Archimedesz tétele. Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx. Legyen y > 0, nx > y akkor és csak akkor ha n > b/a. Ekkor elég megmutatni, hogy létezik minden
Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka
Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza
BEVEZETÉS A PROGRAMOZÁSHOZ
FÓTHI ÁKOS BEVEZETÉS A PROGRAMOZÁSHOZ Harmadik, javított kiadás c Fóthi Ákos, 2012 Tartalomjegyzék 1. Alapfogalmak 11 1.1. Halmazok................................ 11 1.2. Sorozatok................................
A digitális számítás elmélete
A digitális számítás elmélete 8. előadás ápr. 16. Turing gépek és nyelvtanok A nyelvosztályok áttekintése Turing gépek és a természetes számokon értelmezett függvények Áttekintés Dominó Bizonyítások: L
Algoritmusok helyességének bizonyítása. A Floyd-módszer
Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk
Specifikáció. 5.1. A leggyengébb előfeltétel
Specifikáció A megoldás definíciója közvetlenül elég nehézkesen használható a programok készítése során, hiszen az, hogy egy program megold-e egy feladatot az a megoldás eddigi definíciója alapján csak
Molnár Bence. 1.Tétel: Intervallumon értelmezett folytonos függvény értékkészlete intervallum. 0,ami ellentmondás uis. f (x n ) f (y n ) ε > 0
Anlízis. Írásbeli tételek-bizonyítások Molnár Bence 1.Tétel: Intervllumon értelmezett folytonos függvény értékkészlete intervllum Legyen I R tetszőleges intervllum és f I R folytonos függvény R f intervllum
Alap fatranszformátorok II
Alap fatranszformátorok II Vágvölgyi Sándor Fülöp Zoltán és Vágvölgyi Sándor [2, 3] közös eredményeit ismertetjük. Fogalmak, jelölések A Σ feletti alaptermek TA = (T Σ, Σ) Σ algebráját tekintjük. Minden
BEVEZETÉS A PROGRAMOZÁSHOZ
FÓTHI ÁKOS BEVEZETÉS A PROGRAMOZÁSHOZ Harmadik, javított kiadás c Fóthi Ákos, 2012 Tartalomjegyzék 1. Alapfogalmak 11 1.1. Halmazok................................ 11 1.2. Sorozatok................................
A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió
6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V
Rekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26
Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő
8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus.
8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. Ágens rendszer definíciója. Példák. Fairness. (Fair tulajdonság). Gyenge fair követelmény. A fair nem determinisztikus szemantika definíciója
Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.
Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges
Metrikus terek, többváltozós függvények
Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész
Algoritmizálás, adatmodellezés tanítása 6. előadás
Algoritmizálás, adatmodellezés tanítása 6. előadás Tesztelési módszerek statikus tesztelés kódellenőrzés szintaktikus ellenőrzés szemantikus ellenőrzés dinamikus tesztelés fekete doboz módszerek fehér
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
Fourier sorok február 19.
Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható
A valós számok halmaza
VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben
Algoritmizálás, adatmodellezés tanítása 1. előadás
Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási
A Peano-görbe. Besenyei Ádám ELTE
A Peano-görbe Besenyei Ádám ELTE A folytonos görbe kifejezés hallatán hajlamosak vagyunk először egy, a szó szoros értelmében egybefüggően megrajzolható vonalra gondolni. A görbe fogalma azonban a vártnál
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Programozási tételek. PPT 2007/2008 tavasz.
Programozási tételek szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Strukturált programozás paradigma Alapvető programozási tételek Összetett programozási tételek Programozási
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Kiegészítő jegyzet a valós analízis előadásokhoz
Kiegészítő jegyzet a valós analízis előadásokhoz (Utolsó frissítés: 011. január 8., 0:30) Az előadásokon alapvetően a Laczkovich T. Sós könyvet követjük, de több témát nem úgy adtam elő, mint ahogy a könyvben
Sorozatok és Sorozatok és / 18
Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle
Számelméleti alapfogalmak
1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =
SHk rövidítéssel fogunk hivatkozni.
Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,
Függvények folytonosságával kapcsolatos tételek és ellenpéldák
Eötvös Loránd Tudományegyetem Természettudományi Kar Függvények folytonosságával kapcsolatos tételek és ellenpéldák BSc Szakdolgozat Készítette: Nagy-Lutz Zsaklin Matematika BSc, Matematikai elemz szakirány
Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév
Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?
1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
Analízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
Gyakorló feladatok I.
Gyakorló feladatok I. (Függvények határértéke és folytonossága) Analízis 2. (A,B, C szakirány, keresztfélév) Programtervező informatikus szak 2013-2014. tanév tavaszi félév Összeállította: Szili László
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Funkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz
Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis
26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA
26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma
Adatbázisok elmélete 12. előadás
Adatbázisok elmélete 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu http://www.cs.bme.hu/ kiskat 2005 ADATBÁZISOK ELMÉLETE
Komplex számok. A komplex számok algebrai alakja
Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Folytonosság H607, EIC 2019-03-07 Wettl Ferenc
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
Diszkrét Matematika MSc hallgatók számára. 4. Előadás
Diszkrét Matematika MSc hallgatók számára 4. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2012. február 28. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét
Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.
Fraktálok Hausdorff távolság Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. március 14. TARTALOMJEGYZÉK 1 of 36 Halmazok távolsága ELSŐ MEGKÖZELÍTÉS Legyen (S, ρ) egy metrikus tér, A, B S, valamint
út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.
1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost
A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.
Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ
Diszkrét matematika II., 8. előadás. Vektorterek
1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Haladók III. kategória 2. (dönt ) forduló
Haladók III. kategória 2. (dönt ) forduló 1. Tetsz leges n pozitív egész számra jelölje f (n) az olyan 2n-jegy számok számát, amelyek megegyeznek az utolsó n számjegyükb l alkotott szám négyzetével. Határozzuk
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor
Laplace-transzformáció. Vajda István február 26.
Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,
Nagyordó, Omega, Theta, Kisordó
A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,
2. Rekurzió. = 2P2(n,n) 2 < 2P2(n,n) 1
2. Rekurzió Egy objektum definícióját rekurzívnak nevezünk, ha a definíció tartalmazza a definiálandó objektumot. Egy P eljárást (vagy függvényt) rekurzívnak nevezünk, ha P utasításrészében előfordul magának
Az optimális megoldást adó algoritmusok
Az optimális megoldást adó algoritmusok shop ütemezés esetén Ebben a fejezetben olyan modellekkel foglalkozunk, amelyekben a munkák több műveletből állnak. Speciálisan shop ütemezési problémákat vizsgálunk.
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet
Java programozási nyelv
Java programozási nyelv 2. rész Vezérlő szerkezetek Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2005. szeptember A Java programozási nyelv Soós Sándor 1/23 Tartalomjegyzék
10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai
Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál
Egészrészes feladatok
Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges
Chomsky-féle hierarchia
http://www.cs.ubbcluj.ro/~kasa/formalis.html Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezet ), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.
Folyamatok specifikációja:
Folyamatok specifikációja: A specifikációs feltételek a programra fogalmaznak meg kikötéseket. Fontos különbséget tenni a specifikációs feltételek és a programtulajdonságok között: míg az előbbiek a program
Formális nyelvek - 9.
Formális nyelvek - 9. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Véges
1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1.
Határátmeet Határértékszámítás.. Tétel. (Nevezetes sorozatok) 005..5 Készítette: Dr. Toledo Rodolfo (a)... α (α > 0) (b) (c) 0 0... 0 (α > 0) α q (d) c (c > 0) ha q > = ha q = 0 ha q < diverges korlátos
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Javítókulcs, Válogató Nov. 25.
Javítókulcs, Válogató 2016. Nov. 25. 1. Az A, B, C pontok által meghatározott hegyesszögű háromszögben az egyes csúcsokhoz tartozó magasságvonalak talppontjait jelölje rendre T A, T B és T C. A T A T B
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2
Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK
30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá