11. Előadás. 11. előadás Bevezetés a lineáris programozásba
|
|
- Mátyás Orbán
- 6 évvel ezelőtt
- Látták:
Átírás
1 11. Előadás
2 Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez tartozó sajátaltér egy bázisát. A = α α. A 5 pontosan akkor sajátértéke az A mátrixnak, ha az A ( 5)E mátrix determinánsa A+5E = 1 α α + 5 = α α 3 = (α 3)2 = 0. Tehát a 5 akkor lesz sajátértéke az A-nak, ha α = 3.
3 Gondolkodnivalók Sajátérték, Kvadratikus alak Az A mátrix (α = 3 esetén) 5 sajátértékéhez tartozó sajátalterének egy bázisa az (A + 5E)x T = 0 homogén lineáris egyenletrendszer fundamentális rendszere x 1 x 2 x 3 = x 1 + 3x 2 4x 3 x 1 + 3x 2 2x 3 2x 1 6x 2 + 8x 3 Ennek a homogén lineáris egyenletrendszernek az együtthatómátrixa, éppen az A mátrix (α = 3 esetén) Így a sajátaltér egy bázisa: ( 3, 1, 0) , = x 1 = 3x 2, x 3 = 0..
4 Gondolkodnivalók Sajátérték, Kvadratikus alak 2. Gondolkodnivaló Vegyük észre, hogy egy q kvadratikus alak pontosan akkor negatív definit, ha q pozitív definit. Ezt felhasználva adjuk meg a negatív definit kvadratikus alakok jellemzését a mátrixuk főminorai segítségével. A kvadratikus alakok értékkészlet szerinti jellemzése alapján: egy q kvadratikus alak pontosan akkor negatív definit, ha minden 0 vektortól különböző vektorra NEGATÍV értéket ad (természetesen 0-ra minden kvadratikus alak 0 értéket ad). Világos, hogy ekkor q pozitív definit lesz. Hogy néz ki a q (negatív definit) kvadratikus alak mátrixa? Éppen ( 1)-szerese q mátrixának. Márpedig q pozitív definit, így mátrixának minden főminora pozitív.
5 Gondolkodnivalók Sajátérték, Kvadratikus alak Tehát a következő: ha egy A mátrix minden főminora pozitív, akkor mit tudunk mondani a A mátrix főminorairól? Világos, hogy A k. főminora éppen A k. főminorának ( 1) k -szorosa, hiszen a megfelelő k k-as mátrix éppen a másik mátrix 1-szerese. Márpedig ha B egy k k-as mátrix, akkor B = ( 1) k B, hiszen ha a determinánst szorzom 1-gyel, akkor csak 1 sorát szorozzuk 1-gyel, azaz minden sorból ki tudjuk emelni a 1-et.
6 Gondolkodnivalók Sajátérték, Kvadratikus alak Ezen gondolkodnivaló állítását érdemes tételbe foglalni, mivel elég fontos: Tétel Egy q kvadratikus alak pontosan akkor negatív definit, ha mátrixának főminorai váltakozó előjelűek: az 1 1-es negatív, a 2 2-es pozitív, a 3 3-as negatív, stb. Fontos odafigyelni, hogy melyik főminorral kezdődik a sorozat, például a 3, 4, 4, 3 sorozat nem egy negatív definit kvadratikus alak főminor-sorozata, hiszen pozitív számmal kezdődik (természetesen a főminorokat úgy írjuk le, hogy az első mindig az 1 1-es).
7 Bevezetés a lineáris programozásba A gyakorlatban felmerülő konkrét problémák általában nem egyszerű lineáris egyenletrendszerekre vezetnek, hanem legtöbbször speciális feltételek is adottak: egyenletek helyett például egyenlőtlenségek szerepelhetnek, a változók általában nem negatívak. Ráadásul legtöbbször nem az összes megoldást keressük, hanem egy bizonyos szempontból optimális megoldást. Az ilyen problémák megoldásával foglalkozik a lineáris programozás.
8 Példa Egy gyárban 3 féle terméket gyártanak: széket (S), asztalt (A), ajtót (J), melyekhez 2 féle nyersanyag szükséges: faforgács (F) és ragasztó (R). Az egyes termékekhez szükséges nyersanyagmennyiségeket az alábbi mátrix tartalmazza: F R S 1 3 A 2 4. J 3 2 A cégnek a székeken 10 Ft, az asztalokon 4 Ft, az ajtókon pedig 3 Ft nyeresége van, míg a raktáraiban 100 egységnyi faforgácsa és 50 egységnyi ragasztója van. Melyik termékből mennyit állítson elő, hogy a profit maximális legyen?
9 A probléma az alábbi feladatra vezet: keressük azon (x 1, x 2, x 3 ) valós számokat (most tekintsünk el attól, hogy egészeket keresünk, hiszen az x i -k a termékek darabszámát jelölik), amelyekre: x 1 + 2x 2 + 3x x 1 + 4x 2 + 2x 3 50 x 1, x 2, x 3 0. Ezen (x 1, x 2, x 3 ) megoldások közül szeretnénk meghatározni egy olyat, amelyre a 10x 1 + 4x 2 + 3x 3 érték maximális.
10 Alapfeladat Alapfeladat A lineáris programozás az alábbi alakú problémákkal foglalkozik: a 11 x b 11 y ( ) c 1... x 1 ( ) d 1... d 11 x e 11 y 1 + min(max) Azaz lineáris egyenletek helyett egyenlőtlenségek szerepelnek, valamint némely változókra (x 1,...) vonatkoznak alsó illetve felső korlátok, más változókra (y 1,...) nincs semmilyen korlát. Ezen kívül adott egy függvény (az úgynevezett célfüggvény), és olyan megoldást keresünk, amelyre az adott függvény minimális (maximális) értéket vesz fel.
11 Az alapfeladat átalakítása A probléma megoldásához először átalakítjuk a feltételeket, a következőképpen: A joboldali konstansok legyenek nemnegatívak. A többváltozós egyenlőtlenségek helyett egyenletek szerepeljenek. MINDEN x változóra egy feltétel vonatkozzon csak: x 0. A célfüggvényt minimalizálni kelljen (ne maximalizálni). Az átalakítások legtöbbször természetesen adódnak, nézzünk most néhány példát.
12 Példa Ha egy egyenlőtlenség jobb oldala negatív, szorozzuk meg 1-gyel: x 1 2x 3 + x 3 3 helyett x 1 + 2x 3 x 3 3. Egyenlőtlenségeket új változók segítségével alakítsunk egyenletté: x 1 x 2 + 2x 3 3 helyett x 1 x 2 + 2x 3 3 helyett x 1 x 2 + 2x 3 x 4 = 3 x 4 0, x 1 x 2 + 2x 3 + x 4 = 3 x 4 0.
13 Korlát nélküli változókat helyettesítsünk két korlátos változóval: y helyett y = x 1 x 2 x 1, x 2 0. Ha a célfüggvényt maximalizálni kell, akkor szorozzuk meg 1-gyel: 10x 1 + 4x 2 + 3x 3 max helyett 10x 1 4x 2 3x 3 min. Ezen átalakítások előbb-utóbb véget érnek, vagyis ha valamit egy átalakítással kijavítunk, azzal nem rontunk el valami mást. Elvégezve a megfelelő átalakításokat, a feladat speciális alakú lesz: úgynevezett standard feladat.
14 Standard feladat Standard feladat Az alábbi alakú problémát nevezzük standard feladatnak: ahol b 1, a 11 x 1 + a 12 x = b 1. x 1, x 2, , c 1 x 1 + c 2 x min, Azaz standard feladat esetén MINDEN változóra az a feltétel, hogy nemnegatív, a célfüggvényt MINIMALIZÁLJUK, az egy változóra vonatkozó x i 0 feltételek kivételével csak egyenletek szerepelnek, NEMNEGATÍV jobboldallal.
15 Lehetséges kanonikus alakú feladat Lehetséges kanonikus alakú feladat Az alábbi alakú standard feladatokat hívjuk lehetséges kanonikus alakú feladatoknak (l.k.a.f.): ahol b 1, x 1 + a 11 y = b 1. x 1,..., y 1, , c 1 y min Azaz a l.k.a.f-ban minden egyenlethez tartozik egy változó, amely csak az adott egyenletben szerepel (még a célfüggvényben sem!), és az adott egyenletben az együtthatója 1, ezek az úgynevezett kiemelt változók.
16 példa A következő feladat lehetséges kanonikus alakú feladat: 2x 1 + x 2 2x 3 2x 6 = 3 2x 1 + x 3 + x 4 3x 6 = 4 3x 1 3x 3 + x 5 2x 6 = 5 x 1, x 2, x 3, x 4, x 5, x 6 0 2x 1 + 3x 3 + 5x 6 min Ugyanis: x 2 + 2x 1 2x 3 2x 6 = 3 x 4 + 2x 1 + x 3 3x 6 = 4 x 5 + 3x 1 3x 3 2x 6 = 5 x 1, x 2, x 3, x 4, x 5, x 6 0 2x 1 + 3x 3 + 5x 6 min kiemelt változók: x 2, x 4, x 5.
17 A lehetséges kanonikus alakú feladat egy fontos jellemzője, hogy könnyen leolvasható belőle az egyenlőtlenség-rendszer egy megoldása. Bázismegoldás Bázismegoldásnak nevezzük, ha a kiemelt változók az egyenletek jobboldali konstansaival egyenlők, a többi változó pedig 0 értéket vesz fel. A példa esetén: x 2 + 2x 1 2x 3 2x 6 = 3 x 4 + 2x 1 + x 3 3x 6 = 4 x 5 + 3x 1 3x 3 2x 6 = 5 x 1, x 2, x 3, x 4, x 5, x 6 0 2x 1 + 3x 3 + 5x 6 min a bázismegoldás: x 2 = 3, x 4 = 4, x 5 = 5, x 1 = x 3 = x 6 = 0.
18 Szimplex algoritmus A módszer lényege, hogy a lehetséges kanonikus alakú feladatokat elemi bázistranszformációk sorozatával oldjuk meg: első lépésként felírjuk a feladat szimplex tábláját. A táblázat sorai az egyenleteknek felelnek meg, a sorok elején most nem a bázis vektorok, hanem a definícióban szereplő kiemelt változók, a célfüggvényt pedig egy külön sorba írjuk.
19 A példa: x 2 + 2x 1 2x 3 2x 6 = 3 x 4 + 2x 1 + x 3 3x 6 = 4 x 5 + 3x 1 3x 3 2x 6 = 5 x 1, x 2, x 3, x 4, x 5, x 6 0 2x 1 + 3x 3 + 5x 6 min Szimplex táblája: x 1 x 3 x 6 x x x
20 A szimplex algoritmus vége Az algoritmus lényege, hogy a fenti táblázatban megfelelő generáló elemet választva egyre közelebb kerülünk az optimális megoldáshoz. A szimplex algoritmus vége Az algoritmus kétféle eredménnyel érhet véget: 1 Ha a célfüggvényben nincs negatív együttható: ekkor a bázismegoldás optimális. A célfüggvény optimumának 1-szerese a jobb alsó sarokban szereplő szám. 2 Ha a célfüggvényben van olyan negatív együttható, melynek oszlopában nincs pozitív szám: ekkor a célfüggvény alulról nem korlátos, tehát bármilyen kis értéket felvehet. Az első esetre példa a l.k.a.f.
21 Példa x 1 x 2 = 0 x 1, x 2 0 x 2 min lehetséges kanonikus alakú feladat esetén a célfüggvény alulról nem korlátos, tehát bármilyen kis értéket felvehet. Ugyanis a szimplex táblája: x 2 x tehát a célfüggvény negatív együtthatójánál nincs pozitív szám, így az előző dián szereplő 2. eset áll fenn.
22 Generáló elem kiválasztása A generáló elem kiválasztása többféleképpen történhet, a legegyszerűbb algoritmus: Generáló elem kiválasztása Ha a célfüggvényben nincs negatív együttható, vagy van olyan negatív együttható, melynek oszlopában nincs pozitív szám, akkor az algoritmus véget ért (ld.: "A szimplex algoritmus vége" dia). Ha nem teljesülnek az előző feltételek, akkor van olyan negatív célfüggvény-együttható, melynek oszlopában szerepel pozitív szám: 1 keressük meg ezen célfüggvény-együtthatók közül a legkisebbet, 2 majd az oszlopában válasszuk azt a pozitív együtthatót generáló elemnek, melynek kiválasztása esetén a jobboldali konstansok egyike sem válik negatívvá, ehhez azt az elemet kell választani, ahol a konstans/együttható hányados a legkisebb lesz.
23 Példa x 4 x 5 x 6 x 7 arány x /1 x /2 x / A 3 a legkisebb olyan negatív célfüggvény-együttható, amelynek oszlopában szerepel pozitív szám. Az utolsó oszlop tartalmazza a konstans/együttható hányadosokat, ezek közül a 3-hoz tartozó hányados a legkisebb, így azt választjuk generáló elemnek. Ha a 3 oszlopában más generáló elemet választottunk volna, akkor a konstans oszlopban a következő lépésben megjelennének negatív számok.
24 Generáló elemet addig kell választanunk, míg az algoritmus véget nem ér (ld.: "A szimplex algoritmus vége" dia). Megjegyzések Az algoritmus hibája, hogy előfordulhat, hogy végtelen ciklusba esik, vagyis folyamatosan választva generáló elemeket, mindig visszatérünk egy korábbi esethez. A generáló elem kiválasztásának bonyolításával az algoritmus gyorsítható, valamint a végtelen ciklusok elkerülhetők.
25 Példa Oldjuk meg az x 1 + x 3 = 3 x 2 + 2x 3 + 2x 4 = 8 x 1, x 2, x 3, x 4 0 2x 3 x 4 min lehetséges kanonikus alakú feladatot szimplex algoritmus segítségével. x 3 x 4 x x x 1 x 4 x x x 1 x 2 x x Nincs negatív célfüggvény-együttható, ezért a bázismegoldás: (0, 0, 3, 1) optimális, a célfüggvény értéke ezen a helyen: 7.
26 Példa Oldjuk meg az x 1 + x 3 x 4 = 3 x 2 + 2x 3 3x 4 = 8 x 1, x 2, x 3, x 4 0 2x 3 x 4 min lehetséges kanonikus alakú feladatot szimplex algoritmus segítségével. x 3 x 4 x x x 1 x 4 x x Mivel a célfüggvényben van olyan negatív együttható, melynek oszlopában nincs pozitív szám, így a célfüggvény alulról nem korlátos, bármilyen kis értéket felvehet.
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +
1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex
Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás
Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
A szimplex algoritmus
. gyakorlat A szimplex algoritmus Az előző órán bevezetett feladat optimális megoldását fogjuk megvizsgálni. Ehhez új fogalmakat, és egy algoritmust tanulunk meg. Hogy az algoritmust alkalmazni tudjuk,
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
11. Előadás. Megyesi László: Lineáris algebra, oldal. 11. előadás Kvadratikus alakok, Stratégiai viselkedés
11. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Leontyev-modell, Sajátérték 1. Gondolkodnivaló Határozzuk meg, hogy az x valós paraméter mely értékeire lesz az alábbi A mátrix
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek
8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer
8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2
9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35
9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje
Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.
5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39
5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
7. Előadás. Megyesi László: Lineáris algebra, oldal. 7. előadás Elemi bázistranszformáció
7. Előadás Megyesi László: Lineáris algebra, 57. 61. oldal. Gondolkodnivalók Bázis, dimenzió 1. Gondolkodnivaló Legyenek a v vektor koordinátái a v 1,..., v n bázisban: (1, α 2,..., α n ). Igazoljuk, hogy
Kétfázisú szimplex algoritmus és speciális esetei
5. gyakorlat Kétfázisú szimplex algoritmus és speciális esetei. Emlékeztető Standard alak, áttérés Standard alak Minden feltétel et tartalmaz csak. A célfüggvényünket maximalizáljuk. A b vektor (jobb oldalon
Érzékenységvizsgálat
Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális
3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)
Opkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
A szimplex tábla. p. 1
A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
Szélsőérték-számítás
Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y
A dualitás elve. Készítette: Dr. Ábrahám István
A dalitás elve Készítette: Dr. Ábrahám István A dalitás fogalma, alapösszefüggései Definíció: Adott a lineáris programozás maimm feladata: 0 A b f()=c* ma Ekkor felírható a kővetkező minimm feladat: y
Lineáris algebra. (közgazdászoknak)
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval
Bázistranszformáció és alkalmazásai 2.
Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja
1. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: ; B = 8 7 2, 5 1. Számítsuk ki az A + B, A B, 3A, B mátrixokat!
. Mátrixok. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: [ ] [ ] π a A = ; B = 8 7, 5 x. 7, 5 ln y. Legyen 4 A = 4 ; B = 5 5 Számítsuk ki az A + B, A B, A, B mátrixokat!. Oldjuk
Bevezetés az operációkutatásba A lineáris programozás alapjai
Bevezetés az operációkutatásba A lineáris programozás alapjai Alkalmazott operációkutatás 1. elıadás 2008/2009. tanév 2008. szeptember 12. Mi az operációkutatás (operations research)? Kialakulása: II.
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport
Operációkutatás I. 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Számítógépes Optimalizálás Tanszék 6. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát
Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
Szöveges feladatok a mátrixaritmetika alkalmazására
Szöveges feladatok a mátrixaritmetika alkalmazására Bevezetés: Tekintsük az alábbi -es mátrixot: A. Szorozzuk meg ezt jobbról egy alkalmas méretű (azaz -es) oszlopvektorral, amely az R tér kanonikus bázisának
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak
LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
Lineáris algebra Gyakorló feladatok
Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések
Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )
Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor
1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI
1/12 Operációkutatás 5. gyakorlat Hiperbolikus programozási feladat megoldása Pécsi Tudományegyetem PTI 2/12 Ha az Hiperbolikus programozási feladat feltételek teljesülése mellett a A x b x 0 z(x) = c
Analízis I. Vizsgatételsor
Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2
Gauss-eliminációval, Cholesky felbontás, QR felbontás
Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei
1. feladatsor Komplex számok
. feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4
Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 6. Előadás Áttekintés Kezdjük újra a klasszikus erőforrás allokációs problémával (katonák,
Operációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit
Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu Budapest 200. október 10. Mit tanulunk ma? Szállítási feladat Megoldása Adott: Egy árucikk, T 1, T 2, T,..., T m termelőhely, melyekben rendre
Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
összeadjuk 0-t kapunk. Képletben:
814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha
Első zárthelyi dolgozat megoldásai biomatematikából * A verzió
Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő
Nemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
y + a y + b y = r(x),
Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan
Alkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok. Rétvári Gábor
Alkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok Rétvári Gábor retvari@tmit.bme.hu Feladatok Szöveges feladatok. Egy acélgyárban négyfajta zártszelvényt gyártanak: kis,
LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
5 = hiszen és az utóbbi mátrix determinánsa a középs½o oszlop szerint kifejtve: 3 7 ( 2) = (példa vége). 7 5 = 8. det 6.
A pivotálás hasznáról és hatékony módjáról Adott M mátrixra pivotálás alatt a következ½ot értjük: Kijelölünk a mátrixban egy nemnulla elemet, melynek neve pivotelem, aztán az egész sort leosztjuk a pivotelemmel.
Bázistranszformáció és alkalmazásai
Bázistranszformáció és alkalmazásai Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Elmélet Gyakorlati végrehajtás 2 Vektor bevitele a bázisba Rangszámítás Lineáris egyenletrendszer
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.
Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető
MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:.
MAv A. csoport Név:... Tekintsük az alábbi mátriot! A 7 a Invertálható-e az A mátri? Ha igen akkor bázistranszformációval határozza meg az inverzét! Ellenőrizze számításait! b Milyen egyéb mátritulajdonságokra
Matematika III. harmadik előadás
Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)
1. zárthelyi,
1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei
Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:
Optimumkeresés számítógépen
C Optimumkeresés számítógépen Az optimumok megtalálása mind a gazdasági életben, mind az élet sok más területén nagy jelentőségű. A matematikában számos módszert dolgoztak ki erre a célra, például a függvények
Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer
Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény
Operációkutatás példatár
1 Operációkutatás példatár 2 1. Lineáris programozási feladatok felírása és megoldása 1.1. Feladat Egy gazdálkodónak azt kell eldöntenie, hogy mennyi kukoricát és búzát vessen. Ha egységnyi földterületen
Problémás regressziók
Universitas Eotvos Nominata 74 203-4 - II Problémás regressziók A közönséges (OLS) és a súlyozott (WLS) legkisebb négyzetes lineáris regresszió egy p- változós lineáris egyenletrendszer megoldása. Az egyenletrendszer
Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla
Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és
Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000
A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.
6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió
6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V
8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.
8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
A lineáris programozás 1 A geometriai megoldás
A lineáris programozás A geometriai megoldás Készítette: Dr. Ábrahám István A döntési, gazdasági problémák optimalizálásának jelentős részét lineáris programozással oldjuk meg. A módszer lényege: Az adott
Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,
1. Homogén lineáris egyenletrendszer megoldástere
X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor
EuroOffice Optimalizáló (Solver)
1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer
Matematika III előadás
Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy
Függvény határérték összefoglalás
Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis
A lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris
Analízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
Mátrixjátékok tiszta nyeregponttal
1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják
Lineáris algebra. =0 iє{1,,n}
Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
12 48 b Oldjuk meg az Egyenlet munkalapon a következő egyenletrendszert az inverz mátrixos módszer segítségével! Lépések:
A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Egyenletrendszerek megoldása Excelben. Solver használata. Mátrixműveletek és függvények
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
egyenlőtlenségnek kell teljesülnie.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,