Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje
|
|
- Fruzsina Deák
- 10 évvel ezelőtt
- Látták:
Átírás
1 Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) (30) takach@inf.nyme.hu takach 4. konzultáció: Szállítási feladat Mintafeladat. Két raktárban (feladóhelyek) rendre 20 illetve 25 raklap áru van, ezeket kell elszállítani három üzletbe (rendeltetési helyek), amelyek rendre 10, 20 illetve 15 raklap áruratartanak igényt. A szállítási költségek táblázata: F Hogyan szervezzük a szállítást, hogy minimális legyen a szállítási összköltség? Visszavezetés a hozzárendelési feladatra. Ez egy ös hozzárendelési feladat, F 1 -nek 25 sor felel meg, R 1 -nek 10 oszlop, stb. A feladat LP modellje A költségek és kapacitások: F Az LP model: A szállított mennyiségek: F 1 x 11 x 12 x F 2 x 21 x 22 x x 11 + x 12 + x 13 = 20 x 21 + x 22 + x 23 = 25 x 11 + x 21 = 10 x 12 + x 22 = 20 x 13 + x 23 = 15 2x x x x 21 + x x 23 min
2 LP modell általánosan 2 Adott m feladóhely: F 1,..., F m, és n rendeltetési hely: R 1,..., R n. Az i-edik feladóhelyen f i mennyiségű homogén áru áll rendelkezésre, ezeket kell elszállítani a rendeltetési helyekre. A j-edik rendeltetési hely r j árumennyiséget igényel. Feltételezzük, hogy a készletek és az igények összhangban vannak, azaz m f i = i=1 r j. Jelölje c ij az egységnyi áru szállítási költségét az i-edik feladóhelyről a j-edik rendeltetési helyre történő szállításkor: R 1 R 2... R n F 1 c 11 c c 1n F 2 c 21 c c 2n.... F m c m1 c m2... c mn Jelölje x ij az i-edik feladóhelyről a j-edik rendeltetési helyre szállítandó árumennyiséget: R 1 R 2... R n F 1 x 11 x x 1n f 1 F 2 x 21 x x 2n f F m x m1 x m2... x mn f m r 1 r 2... r n A következő feltételek azt fejezik ki, hogy a feladóhelyekről minden árut el kell szállítani, és a rendeltetési helyek igényét ki kell elégíteni: m x ij = R j (j = 1,..., n) i=1 x ij = F i (i = 1,..., m) x ij 0 (i = 1,..., m; j = 1,..., n) A célfüggvény, aminek a minimumát keressük, K = i=m c ij x ij min. Ez egy lineáris programozási feladat: mn változó, m + n feltétel. A mátrixos alak feleslegesen sok nullát tartalmaz, hiszen egy egyenlőtlenségben m vagy n 1-es szerepel, a többi elem nulla. Ezért célszerűbb a bázistáblánál tömörebb írásmód használata: disztribúciós táblázat. Ez nem jelent mást, mint hogy a költségmátrixban bekeretezzük azon viszonylatoknak megfelelő elemeket, ahol szállítunk és azt is melléírjuk, hogy abban a viszonylatban mennyit szállítunk. Tétel. Ha feladóhelyek száma m arendeltetési helyek száma n, akkor az (m+n) (mn)-es együtthatómátrix rangja m+n 1. Bizonyítás. Könyvben (2.1. Tétel). Tétel. A szállítási feladatnak mindig van lehetséges megoldása. Bizonyítás. A bizonyításban módszert is adunk egy lehetséges megoldás megkeresésére. (Disztribúciós módszer)
3 Disztribúciós módszer 3 A mintafeladaton: F F F F F F Disztribúciós módszer Válasszuk ki a C költségmátrix egy c ij elemét, s legyen A c ij elemet bekeretezzük, fölé írva x ij értékét. x ij = min(f i, r j ). Ha f i < r j, azaz x ij = f i, akkor az F i készlete kiürült, míg R j igénye x ij -vel csökkent. Ennek megfelelően az i-edik sort töröljük, r j -t pedig r j f i -re változtatjuk. Ha r j < f i, azaz x ij = r j, akkor az R j igényeit kielégítettük, míg F i készlete x ij -vel csökkent. Ennek megfelelően az j-edik oszlopot töröljük, f i -t pedig f i r j -re változtatjuk. Ha f i = r j : degeneráció, ld. később. Ezt ismételgetve m + n 2 lépés után egyetlen sor és oszlop marad, amit már egyszerre törölhetünk. Tehát mindig m + n 1 viszonylatban fogunk szállítani. Azon c ij ket, ahol szállítunk, kötött elemeknek, a többit szabad elemeknek nevezzük. Megjegyzés. Belátható (kell is, ld Tétel a könyvben), hogy az így kapott megoldás bázismegoldása a szállítási feladathoz tartozó LP feladatnak. Optimum létezése Tétel. A szállítási feladat célfüggvénye korlátos a lehetséges megoldások halmazán. Bizonyítás. Mivel n x ij = f i (i = 1,..., n), ezért K = c ij x ij i=m c ij x ij i=m max c ij x ij = max c ij j j és ez már konstans. = i=m i=m max c ij f i, j i=m x ij = Megjegyzés. A könyvbeli bizonyításban durvább becslés szerepel.
4 Optimális-e az aktuális program? 4 A mintafeladat LP modellje: Duálisának feltételrendszere: x 11 + x 12 + x 13 = 20 x 21 + x 22 + x 23 = 25 x 11 + x 21 = 10 x 12 + x 22 = 20 x 13 + x 23 = 15 2x x x x 21 + x x 23 min u i + v j c ij (i = 1,..., m; j = 1,..., n), ahol az u i -k a sorokhoz, v j -k az oszlopokhoz tartozó változók. Ismert, hogy ezek előjelkötetlen változók, mert egyenleteknek felelnek meg. A feltételrendszer eltérésvektorokkal: u i + v j + δ ij = c ij (i = 1,..., m; j = 1,..., n), ahol δ ij 0. A duál feladat eltérésvektorának azon komponensei nullák lesznek, amelyeknek megfelelő primál változók a programban vannak, azaz ha x ij kötött elem, akkor δ ij = 0, azaz u i + v j = c ij. Módszer. 1. Adjunk meg olyan u i és v j elemeket, hogy a költségmátrix kötött c ij elemeire u i + v j = c ij teljesüljön. Ebben az egyenletrendszerben van egy szabad változó, így egy ismeretlen értéke szabadon választható. Szokásosan: u 1 = Képezzük azt a mátrixot, amelynek elemei Nyilvánvalóan δ ij = 0 a kötött elemeknél. δ ij = c ij u i v j. 3. Ha minden δ ij 0, akkor a duál feladat egy lehetséges megoldásáról van szó, ami azt jelenti, hogy a primál feladat aktuális megoldása, tehát az aktuális szállítási program optimális. Ha nem JAVÍTÁS. Mintafeladat. u i -k és v j -k meghatározása: meghatározása: v 1 = 2 v 2 = 4 v 3 = 5 u 1 = u 2 = δ 11 = c 11 u 1 v 1 = = 0 δ 12 = c 12 u 1 v 2 = = 1. A 1 elem mutatja, hogy az aktuális megoldás nem optimális. = [ ],
5 Hurkok 5 Definíció. Huroknak nevezzük a költségmátrix elemeinek olyan sorozatát, ahol a szomszédos elemek felváltva vannak egy sorban ill. egy oszlopban (az utolsó elem szomszédosnak számít az elsővel), továbbá egyik sorban és oszlopban sincs kettőnél több kiválasztott elem. Tétel. Bármely hurok elemeihez tartozó a ij vektorok lineárisan függő rendszert alkotnak. Ha egy vektort elghagyunk közülük, akkor lineárisan független rendszert kapunk. Bizonyítás. Nem kell. Tétel. Ha egy m n-es disztribúció táblázatban m + n 1 kötött elem van, akkor minden szabad elemet pontosan egy olyan hurok tartalmaz, melynek összes többi eleme kötött Bizonyítás. Nem kell. A program javítása A javítás menete: 1. Válasszunk egy negatív δ ij -t. A költségmátrix ennek megfelelő szabad eleméből kötött elem lesz. 2. Keressük meg a megfelelő hurkot. 3. A hurok mentén felváltva növeljük ill. csökkentsük szállítandó mennyiséget (az új kötött elemen növeljük!). A növelés/csökkentés mértékét a legkisebb csökkentendő mennyiség adja (negatívba nem mehet át!); ez az átalakítás után szabad elem lesz A mintapéldán: = [ ] A 3 és a 2 költségen szállított mennyiség nő, az 1 és az 5 költségen szállított csökken. A szűk keresztmetszetet az jelenti, hogy az 5 költségű viszonylatban 10-nél többel nem lehet csökkenteni. Ez az elem tehát kikerül a programból: OPTIMUM!!! = Disztribúciós módszer (összefoglalás) [ ] 1. Indulóprogram meghatározása 2. u i -k és v j -k meghatározása a kötött elemek segítségével. 3. A mátrix meghatározása az u i -k és v j -k segítségével. 4. Ha -nak nincs negatív eleme, akkor a jelenlegi program optimális. STOP 5. Ha -nak van negatív eleme, akkor a. Keresünk egy hurkot a költségmátrix megfelelő elemén át. b. A hurok mentén javítjuk a programot, majd GOTO 2.
6 Redukálás 6 Tétel. Ha a költségmátrix egy sorának vagy oszlopának minden eleméhez ugyanazt a számot adjuk, vagy abból ugyanazt a számot kivonjuk, ekvivalens feladatot kapunk. Ugyanott lesz az optimum, csak értéke lesz más. Bizonyítás. Ha az i-edik sorból kivonunk c-t, akkor a célfüggvény értéke minden programban cf i -vel csökken, ami független a programtól. Módszer az indulóprogram meghatározására A fenti módszerben tetszőleges volt a költségmátrix elemeinek kiválsztása azokból a sorokból és oszlopokból, amiket még nem húztunk ki. Szeretnénk úgy választani, hogy már az indulóprogram is minél közelebb legyen az optimumhoz. Mohó módszer: mindig a legkisebb költségen szállítunk. Ez nem vált be! Vogel-Korda-módszer: mindig arra az elemre programozunk, amelyre ha nem programoznánk, rossz költségalakulást jelentene. Minden sorra és oszlopra meghatározzuk a legkisebb és a második legkisebb elem különbségét (0 is lehet!), és ahol ez a legnagyobb, arra a minimális elemre programozunk. Rendkívüli esetek. Degeneráció az indulóprogramban. Előfordulhat, hogy az indulóprogram meghatározásakor egy elem sorának és oszlopának aktuális kapacitása megegyezik. Ilyenkor csak a sorát vagy az oszlopát húzzuk ki, a másik kapacitása nulla lesz. Ilyenkor biztosan szükség lesz egy olyan viszonylat kiválasztására, amelyben nulla mennyiségű árut szállítunk. Degeneráció menet közben. Előfordulhat, hogy egy javításkor egy hurokban több helyen is megjelenik a szűk keresztmetszet. Fontos viszont, hogy ilyenkor csak az egyiket vegyük ki a programból, a másikat hagyjuk benne nulla szállított áruval. Mindkét előző esetben előfordulhat, hogy az optimális megoldás már nem lesz degenerált, de az is lehet, hogy az marad. Alternatív optimum. Ha a mátrixban nincs negatív elem, de szabad elemnek megfelelő helyen is van benne nulla, akkor a duál feladat degenerált, azaz a primál szállítási feladatnak altaernatív optimuma van. Ezt úgy lehet megtalálni, ha a "javítást" ennél a szabad elemnél végezzük el. Eltérő kereslet és kínálat. Ha pl. nagyobb a kereslet, mint a kínálat, akkor egy névleges feladóhelyet iktatunk be, akkora kapacitással, minta amekkora a túlkereslet. Azokat az igényeket, amiket innen kellene kielégíteni az optimális megoldásban, nem elégítjük ki. Tiltott viszonylatok. Ha egy feladóhely és egy rendeltetési hely között tilos a szállítás, akkor oda végtelen költséget kell írni. Ilyenkor szokás szerint c =. Korlátozott útvonal. Előfordulhat, hogy egy viszonylatban szállíthatunk ugyan, de csak korlátozott mennyiségben. ld Példa illetve 2.7. Tétel.
S Z Á L L Í T Á S I F E L A D A T
Döntéselmélet S Z Á L L Í T Á S I F E L A D A T Szállítási feladat meghatározása Speciális lineáris programozási feladat. Legyen adott m telephely, amelyeken bizonyos fajta, tetszés szerint osztható termékből
Operációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit
Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu Budapest 200. október 10. Mit tanulunk ma? Szállítási feladat Megoldása Adott: Egy árucikk, T 1, T 2, T,..., T m termelőhely, melyekben rendre
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer
Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény
A szállítási feladat. Készítette: Dr. Ábrahám István
A szállítási feladat Készítette: Dr Ábrahám István Bevezető A személyek, termékek, nyersanyagok szállításának lehető leggazdaságosabb megszervezése fontos kérdés Célunk lehet legkisebb összköltségre törekvés,
Döntéselmélet OPERÁCIÓKUTATÁS
Döntéselmélet OPERÁCIÓKUTATÁS Operációkutatás Az operációkutatás az a tudomány, amely az optimális döntések előkészítésében matematikai módszereket használ fel. Az operációkutatás csak a döntés-előkészítés
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek
1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:
Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés)
Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
Mátrixjátékok tiszta nyeregponttal
1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják
1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás
Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév
1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex
Szállítási feladat_1.
Szállítási feladat_. Bevezetés, a vállalkozás bemutatása A vállalkozás 992-ben alakult, mint egyszemélyes vállalkozás, majd évek során kinőtte magát, tevékenysége és vevőköre egyre kiszélesedett, így 2002-ben
út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.
1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost
Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált
Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
Opkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
Disztribúciós feladatok. Készítette: Dr. Ábrahám István
Disztribúciós feladatok Készítette: Dr. Ábrahám István Bevezető Az elosztási, szétosztási feladatok (szállítás, allokáció, stb.) leggazdaságosabb megoldása fontos kérdés. Célunk lehet legkisebb összköltségre
Érzékenységvizsgálat
Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális
Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete)
Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete) C költség mátrix költség Munkákat hozzá kell rendelni gépekhez: egy munka-egy gép c(i,j) mennyi be kerül i-dik munka j-dik
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2
5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39
5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es
A Szállítási feladat megoldása
A Szállítási feladat megoldása Virtuális vállalat 201-2014 1. félév 4. gyakorlat Dr. Kulcsár Gyula A Szállítási feladat Adott meghatározott számú beszállító (source) a szállítható mennyiségekkel (transportation
Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
Nemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
Összeállította: dr. Leitold Adrien egyetemi docens
Lineáris egyenletrendszerek Összeállított: dr. Leitold Adrien egyetemi docens 2008.09.08. Leontieff-modellek Leontieff-modellek: input-output modellek gzdság leírásár legyen n féle, egymássl összefüggésben
A szimplex tábla. p. 1
A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex
8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer
8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez
Operációkutatás vizsga
Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 16. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS,
Matematikai modellezés
Matematikai modellezés Bevezető A diasorozat a Döntési modellek című könyvhöz készült. Készítette: Dr. Ábrahám István Döntési folyamatok matematikai modellezése Az emberi tevékenységben meghatározó szerepe
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport
Operációkutatás I. 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Számítógépes Optimalizálás Tanszék 6. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát
összeadjuk 0-t kapunk. Képletben:
814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha
Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További. 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén!
Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További példák találhatók az fk.sze.hu oldalon a letöltések részben a közlekedési operációkutatásban 1. Oldja meg grafikusan az alábbi feladatokat
1. Homogén lineáris egyenletrendszer megoldástere
X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,
7. Előadás. Megyesi László: Lineáris algebra, oldal. 7. előadás Elemi bázistranszformáció
7. Előadás Megyesi László: Lineáris algebra, 57. 61. oldal. Gondolkodnivalók Bázis, dimenzió 1. Gondolkodnivaló Legyenek a v vektor koordinátái a v 1,..., v n bázisban: (1, α 2,..., α n ). Igazoljuk, hogy
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! a, x 1 + x 2 2 2x 1 + x 2 6 x 1 + x 2 1. x 1 0, x 2 0
Gyakorló feladatok Operációkutatás vizsgára 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! a, b, c, d, x 1 + x 2 2 2x 1 + x 2 6 x 1 + x 2 1 x 1 2, 5 z 1 = 4x 1 3x 2 max; z
A dualitás elve. Készítette: Dr. Ábrahám István
A dalitás elve Készítette: Dr. Ábrahám István A dalitás fogalma, alapösszefüggései Definíció: Adott a lineáris programozás maimm feladata: 0 A b f()=c* ma Ekkor felírható a kővetkező minimm feladat: y
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy
Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma
Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben
Operációkutatás példatár
1 Operációkutatás példatár 2 1. Lineáris programozási feladatok felírása és megoldása 1.1. Feladat Egy gazdálkodónak azt kell eldöntenie, hogy mennyi kukoricát és búzát vessen. Ha egységnyi földterületen
9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35
9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 6. Előadás Áttekintés Kezdjük újra a klasszikus erőforrás allokációs problémával (katonák,
Bázistranszformáció és alkalmazásai 2.
Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.
Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető
Operációkutatás. 1. konzultációs hét. Irodalom. A gráf definíciója. NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.
Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 22/2. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 94 Sopron, Bajcsy Zs. u. 9. GT fszt.. (99)
A lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris
Esettanulmányok és modellek 5
Esettanulmányok és modellek 5 Disztribúciós feladatok Egészségügy Készítette: Dr. Ábrahám István Disztribúció. Az alábbi szállítási feladatban az. és a 2. feladótól a teljes készletet el kell szállítani.
Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék
Hálózati Folyamok Alkalmazásai Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Maximális folyam 7 7 9 3 2 7 source 8 4 7 sink 7 2 9 7 5 7 6 Maximális folyam feladat Adott [N, A] digráf (irányított
a = 2 + [ i] b = ahol 1 i 162 a hallgató sorszáma a csatolt névsorban, [x] az x szám
Döntéselmélet házi feladat, 2011-12 tanév II. félév A házi feladat beadása az aláírás feltétele. A házi feladatra adott minősítés az (anyag első felére vonatkozó) jegyben 40% súllyal szerepel, ennek megfelelően
További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék
További forgalomirányítási és szervezési játékok 1. Nematomi forgalomirányítási játék A forgalomirányítási játékban adott egy hálózat, ami egy irányított G = (V, E) gráf. A gráfban megengedjük, hogy két
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten LINEÁRIS PROGRAMOZÁS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 4 A lineáris
A szimplex algoritmus
. gyakorlat A szimplex algoritmus Az előző órán bevezetett feladat optimális megoldását fogjuk megvizsgálni. Ehhez új fogalmakat, és egy algoritmust tanulunk meg. Hogy az algoritmust alkalmazni tudjuk,
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Matematikai modellek megoldása számítógéppel Solver Lingo
Matematikai modellek megoldása számítógéppel Solver Lingo Készítette: Dr. Ábrahám István A matematikai modellek számítógépes megoldásait példákkal mutatjuk be. Példa: Négy erőforrás felhasználásával négyféle
Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei
Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:
Diszkrét matematika II., 8. előadás. Vektorterek
1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba
I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30
Operációkutatás vizsga
Operációkutatás vizsga B csoport Budapesti Corvinus Egyetem 2007. január 16. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS
Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia
Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia Készítette: Dr. Ábrahám István A játékelmélet a 2. század közepén alakult ki. (Neumann J., O. Morgenstern). Gyakran
Alkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok. Rétvári Gábor
Alkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok Rétvári Gábor retvari@tmit.bme.hu Feladatok Szöveges feladatok. Egy acélgyárban négyfajta zártszelvényt gyártanak: kis,
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
A minimális költségűfolyam probléma megoldása hálózati szimplex-módszerrel
A minimális költségűfolyam probléma megoldása hálózati szimplex-módszerrel 1 A minimális költségűfolyam probléma megoldása hálózati szimplex-módszerrel DR. BENKŐJÁNOS GATE, Logisztikai Tanszék A hálózat
Bázistranszformáció és alkalmazásai
Bázistranszformáció és alkalmazásai Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Elmélet Gyakorlati végrehajtás 2 Vektor bevitele a bázisba Rangszámítás Lineáris egyenletrendszer
Nem-lineáris programozási feladatok
Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
11. Előadás. 1. Lineáris egyenlőség feltételek melletti minimalizálás
Optimalizálási eljárások MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2011. április 27. 1. Lineáris egyenlőség feltételek melletti minimalizálás Múlt héten nem szerepeltek
Bevezetés a lineáris programozásba
Bevezetés a lineáris programozásba 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Szimplex módszer p. 1/1 Az LP feladatok általános modellje A korlátozó feltételeket írjuk fel
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI
1/12 Operációkutatás 5. gyakorlat Hiperbolikus programozási feladat megoldása Pécsi Tudományegyetem PTI 2/12 Ha az Hiperbolikus programozási feladat feltételek teljesülése mellett a A x b x 0 z(x) = c
LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak
LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió
6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V
Lineáris algebra. (közgazdászoknak)
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Bevezetés az operációkutatásba A lineáris programozás alapjai
Bevezetés az operációkutatásba A lineáris programozás alapjai Alkalmazott operációkutatás 1. elıadás 2008/2009. tanév 2008. szeptember 12. Mi az operációkutatás (operations research)? Kialakulása: II.
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
Kétfázisú szimplex algoritmus és speciális esetei
5. gyakorlat Kétfázisú szimplex algoritmus és speciális esetei. Emlékeztető Standard alak, áttérés Standard alak Minden feltétel et tartalmaz csak. A célfüggvényünket maximalizáljuk. A b vektor (jobb oldalon
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
4. Előadás: Erős dualitás
Optimalizálási eljárások/operációkutatás MSc hallgatók számára 4. Előadás: Erős dualitás Előadó: Hajnal Péter 2018. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét d
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
egyenlőtlenségnek kell teljesülnie.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Valasek Gábor valasek@inf.elte.hu
Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz. Mindkét eliminációs módszer műveletigénye sokkal kisebb, mint a Cramer-szabályé:
Operációkutatás II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2016/17 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:
LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei
Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2