Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás
|
|
- Krisztián Balog
- 6 évvel ezelőtt
- Látták:
Átírás
1 Operációkutatás Vaik Zsuzsanna ajánlott jegyzet: Szilágyi Péter: Operációkutatás
2 Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév végi ZH megírása minimum 5%os végeredménnyel Érdemjegy: 5% - 39% elégtelen 40% - 54% elégséges 55% - 69% közepes 70% - 84% jó 85% - 100% jeles
3 Lineáris Programozás - Bevezető lineáris egyenlőtlenségrendszer megoldások száma célfüggvény optimális megoldás, optimum érték
4 Lineáris Programozás Bevezető Lineáris Programozási feladat (LP) Meghatározandó egy adott lineáris célfüggvény optimuma egy adott lineáris egyenlőtlenségrendszer megoldásainak halmazán, és keresünk egy hozzá tartozó optimális megoldást is. Amennyiben az egyenlőtlenségrendszernek nincs megoldása, ill. nincs optimális megoldása, vagy a célfüggvény nem korlátos, akkor azt is meg kell tudnunk állapítani.
5 Lineáris Programozás Bevezető LP feladat általános alakja:
6 Lineáris Programozás Bevezető 1.2. Állítás: Bármely LP feladat esetén az alábbi három eset közül pontosan az egyik áll fenn. az LP feladatnak nincs megengedett megoldása az LP feladatnak van ugyan megengedett megoldása, de nincs optimális megoldása. az LP feladatnak van optimális megoldása egyetlen optimális megoldás van végtelen sok optimális megoldás van
7 Grafikus megoldás 2 változó esetén A síkon ábrázoljuk a megengedett megoldások halmazát. Ha ez a halmaz üres, akkor az eredeti feladatnak nincs megengedett megoldása. Ábrázoljuk a célfüggvény egy szintvonalát, majd meghatározzuk a célfüggvény legnagyobb növekedési/csökkenési irányát. A célfüggvény szintvonalát párhuzamosan eltoljuk a megfelelő irányba, amíg még van közös pontja a megengedett megoldások halmazával. Megállapítjuk mely két egyenes metszéspontja. Kiszámítjuk az optimális megoldást, majd az optimum értékét.
8 speciális normál feladat: a cél a maximalizálás a célfüggvényben nincs konstans tag az összes feltétel alakú minden változóra van nem-negativitási ( 0) kikötés a jobboldal-vektor nem-negatív vektor
9 normálfeladat és lényegében azonos átírása
10 normálfeladat és lényegében azonos átírása
11 Kanonikus alakú LP feladat: Egyenletrendszer megoldása Egyenletrendszer megengedett megoldása Egyenletrendszer bázismegoldása 1.4. Áll. Ha az egyenletrendszer egyértelműen megoldható, az A mátrix oszlopvektorainak bármely bázisa egyértelműen meghatározza a hozzá tartozó bázismegoldást.
12 Normál feladat triviális bázismegoldása megengedett megoldás is egyben
13 Vázlatosan: Kiindulunk az egységvektorok által alkotott bázisból, illetve az ehez tartozó megengedett bázismegoldásból. /induló bázis,bázismegoldás/ Elkészítjük eme bázishoz tartozó ún. szimplex táblát (amely a bázishoz tartozó bázistábla kibövítése). Leellenörizzük a szimplex-táblán az optimalitás egy elégséges feltételének teljesülését, ha ok :) ha nem: leellenörizzük a nemkorlátosság egy elégséges feltételének teljesülését, ha ok, leáll. ha nem: szimplex transzformáció (bázistranszformációhoz hasonló művelet)
14 Oldjuk meg szimplex transzformációval a következő feladatot!
15 1. lépés: normál feladat-e?
16 2. lépés: alakítsuk át egyenletrendszerré!
17 3. lépés: Bázistábla, Szimplextábla felírása a1 a2 a3 a4 a5 a6 b a a a
18 3. lépés: Bázistáblából Szimplextábla a1 a2 a3 a4 a5 a6 b 0 a a a
19 Leállási kritériumok: a célfüggvény sorában csupa nem negatív elem áll optimális megoldás, optimum létezik olyan negatív elem a célfüggvény sorában, amely elem oszlopában nincs pozitív elem nem korlátos a feladat
20 Ha nem teljesülnek a leállási kritériumok SZIMPLEX LÉPÉS: I.) Generáló elem oszlopát kiválasztani: célfüggvény sorában negatív szám II.) Generáló elem választása a) generáló elem MINDIG POZITíV, g>0!!! b) ezek közül az, melyre a hányados minimális (minimális hányados szabály)
21 4. lépés: Szimplex lépés a1 a2 a3 a4 a5 a6 b a a a
22 4. lépés: Szimplex lépés a1 a2 a3 a4 a5 a6 b a /1=6 a /2=4 a /2=
23 4. lépés: Szimplex lépés a1 a2 a3 a4 a5 a6 b a /1=6 a /2=4 a /2=
24 4. lépés: Szimplex lépés, transzformáció 1) generáló elem sorát elosztom a generáló elemmel a1 a2 a3 a4 a5 a6 b a a ,5 0 4 a
25 4. lépés: Szimplex lépés, transzformáció 2) generáló elem oszlopát kinullázom a1 a2 a3 a4 a5 a6 b a a ,5 0 4 a
26 4. lépés: Szimplex lépés, transzformáció 2) többi elemre a szokásos bázistranszformációs szabály a1 a2 a3 a4 a5 a6 b a a a
27 4. lépés: Szimplex lépés, transzformáció a célfüggvény sorát is! a1 a2 a3 a4 a5 a6 b a ,5 0 2 a ,5 0 4 a ,5 0 12
28 Normál feladat és a szimplex Optimális a tábla? a1 a2 a3 a4 a5 a6 b a ,5 0 2 a ,5 0 4 a ,5 0 12
29 Normál feladat és a szimplex Optimális a tábla? a1 a2 a3 a4 a5 a6 b a ,5 0 2 a ,5 0 4 a ,5 0 12
30 Normál feladat és a szimplex generáló elem választás min hányados sz. a1 a2 a3 a4 a5 a6 b a , /2=1 a , a /2= ,5 0 12
31 4. lépés: Szimplex lépés, transzformáció 1) generáló elem sorát elosztom a generáló elemmel a1 a2 a3 a4 a5 a6 b a3 0 0,5 1 0,5-0, a ,5 0 4 a ,5 0 12
32 4. lépés: Szimplex lépés, transzformáció 2) generáló elem oszlopát kinullázom a1 a2 a3 a4 a5 a6 b a3 0 0,5 1 0,5-0, a ,5 0 4 a ,5 0 12
33 4. lépés: Szimplex lépés, transzformáció a1 a2 a3 a4 a5 a6 b a3 0 0,5 1 0,5-0, a ,5 0 4 a , ,5 0 0,5 1,
34 Optimális a tábla? a1 a2 a3 a4 a5 a6 b a3 0 0,5 1 0,5-0, a ,5 0 4 a , ,5 0 0,5 1,
35 Optimális a tábla? IGEN! A célfüggvény sora mindenhol nem negatív! a1 a2 a3 a4 a5 a6 b a3 0 0,5 1 0,5-0, a ,5 0 4 a , ,5 0 0,5 1,
36 Az optimális megoldás és optimum leolvasása! a1 a2 a3 a4 a5 a6 b a3 0 0,5 1 0,5-0, a ,5 0 4 a , ,5 0 0,5 1,
37 Az optimális megoldás és optimum leolvasása! a1 a2 a3 a4 a5 a6 b a3 0 0,5 1 0,5-0, a ,5 0 4 a , ,5 0 0,5 1,
38 Operációkutatás Köszönöm a figyelmet! Vaik.Zsuzsanna@ymmfk.szie.hu
1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex
1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +
Operációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit
Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu Budapest 200. október 10. Mit tanulunk ma? Szállítási feladat Megoldása Adott: Egy árucikk, T 1, T 2, T,..., T m termelőhely, melyekben rendre
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény
1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI
1/12 Operációkutatás 5. gyakorlat Hiperbolikus programozási feladat megoldása Pécsi Tudományegyetem PTI 2/12 Ha az Hiperbolikus programozási feladat feltételek teljesülése mellett a A x b x 0 z(x) = c
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
Nem-lineáris programozási feladatok
Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens
A szimplex algoritmus
. gyakorlat A szimplex algoritmus Az előző órán bevezetett feladat optimális megoldását fogjuk megvizsgálni. Ehhez új fogalmakat, és egy algoritmust tanulunk meg. Hogy az algoritmust alkalmazni tudjuk,
Operációkutatás I. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdinfo nappali tagozat Operációkutatás I. Tantárgyi útmutató 2017/18 tanév 1. félév 1/4 Tantárgy megnevezése: Operációkutatás Tantárgy kódja: OPKU1KOMEMM Tanterv szerinti
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
A szimplex tábla. p. 1
A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
Lineáris algebra. (közgazdászoknak)
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy
A lineáris programozás 1 A geometriai megoldás
A lineáris programozás A geometriai megoldás Készítette: Dr. Ábrahám István A döntési, gazdasági problémák optimalizálásának jelentős részét lineáris programozással oldjuk meg. A módszer lényege: Az adott
Operációkutatás I. Bajalinov, Erik, Nyíregyházi Főiskola, Matematika és Informatika Intézete Bekéné Rácz, Anett, Debreceni Egyetem, Informatikai Kar
Operációkutatás I. Bajalinov, Erik, Nyíregyházi Főiskola, Matematika és Informatika Intézete Bekéné Rácz, Anett, Debreceni Egyetem, Informatikai Kar Operációkutatás I. írta Bajalinov, Erik és Bekéné Rácz,
TANTÁRGYI ÚTMUTATÓ. Operációkutatás. tanulmányokhoz
II. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Operációkutatás tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Operációkutatás Tanszék: BGF Módszertani Intézeti
Nemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer
8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez
Kétfázisú szimplex algoritmus és speciális esetei
5. gyakorlat Kétfázisú szimplex algoritmus és speciális esetei. Emlékeztető Standard alak, áttérés Standard alak Minden feltétel et tartalmaz csak. A célfüggvényünket maximalizáljuk. A b vektor (jobb oldalon
Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje
Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.
MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:.
MAv A. csoport Név:... Tekintsük az alábbi mátriot! A 7 a Invertálható-e az A mátri? Ha igen akkor bázistranszformációval határozza meg az inverzét! Ellenőrizze számításait! b Milyen egyéb mátritulajdonságokra
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
Operációkutatás példatár
1 Operációkutatás példatár 2 1. Lineáris programozási feladatok felírása és megoldása 1.1. Feladat Egy gazdálkodónak azt kell eldöntenie, hogy mennyi kukoricát és búzát vessen. Ha egységnyi földterületen
Opkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor
12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása
Operációkutatás gyakorlattámogató jegyzet
TÁMOP-4...F-4//KONV-05-0009 A GÉPÉSZETI ÉS INFORMATIKAI ÁGAZATOK DUÁLIS ÉS MODULÁRIS KÉPZÉSEINEK KIALAKÍTÁSA A PÉCSI TUDOMÁNYEGYETEMEN Király Balázs Operációkutatás gyakorlattámogató jegyzet Pécs 05 A
5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39
5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es
Bevezetés a lineáris programozásba
Bevezetés a lineáris programozásba 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Szimplex módszer p. 1/1 Az LP feladatok általános modellje A korlátozó feltételeket írjuk fel
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
Döntéselmélet OPERÁCIÓKUTATÁS
Döntéselmélet OPERÁCIÓKUTATÁS Operációkutatás Az operációkutatás az a tudomány, amely az optimális döntések előkészítésében matematikai módszereket használ fel. Az operációkutatás csak a döntés-előkészítés
Lineáris programozási feladatok típusai és grafikus megoldása
Lineáris programozási feladatok típusai és grafikus megoldása Alkalmazott operáiókutatás. elıadás 8/9. tanév 8. szeptemer 9. Maimumfeladat grafikus megoldása lehetséges megoldások + 4 + () 8 + Optimális
A lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris
1. Előadás Lineáris programozás
1. Előadás Lineáris programozás Salamon Júlia Előadás II. éves gazdaság informatikus hallgatók számára Operációkutatás Az operációkutatás az alkalmazott matematika az az ága, ami bizonyos folyamatok és
Bázistranszformáció és alkalmazásai 2.
Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja
EGYSZERŰSÍTETT ALGORITMUS AZ ELEMI BÁZISCSERE ELVÉGZÉSÉRE
Lipécz György* EGYSZERŰSÍTETT ALGORITMUS AZ ELEMI BÁZISCSERE ELVÉGZÉSÉRE AVAGY A SZÁMÍTÓGÉP-HASZNÁLAT LEHETŐSÉGE A LINEÁRIS ALGEBRA ÉS AZ OPERÁCIÓKUTATÁS ALAPJAINAK OKTATÁSÁBAN " Simplicitassigillum veri"
Alkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok. Rétvári Gábor
Alkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok Rétvári Gábor retvari@tmit.bme.hu Feladatok Szöveges feladatok. Egy acélgyárban négyfajta zártszelvényt gyártanak: kis,
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
Első zárthelyi dolgozat megoldásai biomatematikából * A verzió
Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő
Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.
Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer
Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11.
11. gyakorlat Branch-and-Bound a korlátozás és szétválasztás módszere 1. Az egészértéketű programozás 1.1. Bevezető Bizonyos feladatok modellezése kapcsán előfordulhat olyan eset, hogy a megoldás során
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35
9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen
Operációkutatás II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2016/17 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
Döntési módszerek Tantárgyi útmutató
Gazdálkodási és menedzsment alapszak Nappali tagozat Döntési módszerek Tantárgyi útmutató 2018/19. tanév II. félév 1 Tantárgy megnevezése Tantárgy jellege/típusa: Döntési módszerek. D Kontaktórák száma/hét:
Törtes egyenlőtlenségek
Törtes egyenlőtlenségek Egy tört értéke akkor pozitív, ha a számláló és a nevező egyező előjelű. Egy tört értéke akkor negatív, ha a számlálója és a nevezője ellentétes (különböző) előjelű. 1. Oldja meg
Operációkutatás II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2015/16 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:
4. Előadás. A legkisebb négyzetek problémája a következő optimalizálási alapfeladat: Minimalizáljuk
OPTIMALIZÁLÁSI ELJÁRÁSOK 4. Előadás Matematika MSc hallgatók számára Előadó: Hajnal Péter Jegyzetelő: Magyari Nikolett 2011. március 2. 1. A legkisebb négyzetek probléma A legkisebb négyzetek problémája
Érzékenységvizsgálat
Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális
Döntéselőkészítés. VII. előadás. Döntéselőkészítés. Egyszerű Kőnig-feladat (házasság feladat)
VII. előadás Legyenek adottak Egyszerű Kőnig-feladat (házasság feladat) I, I 2,, I i,, I m személyek és a J, J 2,, J j,, J n munkák. Azt, hogy melyik személy melyik munkához ért ( melyik munkára van kvalifikálva)
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
Lineáris programozás. A mese
Lineáris programozás A mese Célok Geometriai szemlélet (nem lesz matek ) Gakorlati kérdések Már megint a szendvics Kétfajta szendvicset szeretnénk készíteni, sonkásat és szalámisat. Lehetőleg minél többet.
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Számítási feladatok a Számítógépi geometria órához
Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát
LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL. 1. Paramétert nem tartalmazó eset
LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL 1.Példa: Oldjuk meg a következő lineáris egyenletrendszert: 1. Paramétert nem tartalmazó eset x 1 + 3x 2-2x 3 = 2-2x 1-5x 2 + 4x 3 = 0 3x 1
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 6. Előadás Áttekintés Kezdjük újra a klasszikus erőforrás allokációs problémával (katonák,
1. zárthelyi,
1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y
Egyenletek, egyenletrendszerek, matematikai modell. 1. Oldja meg az Ax=b egyenletrendszert Gauss módszerrel és adja meg az A mátrix LUfelbontását,
Egyenletek egyenletrendszerek matematikai modell Oldja meg az A=b egyenletrendszert Gauss módszerrel és adja meg az A mátri LUfelbontását ahol 8 b 8 Oldja meg az A=b egyenletrendszert és határozza meg
2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 8. Előadás Bevezetés Egy olyan LP-t, amelyben mindegyik változó egészértékű, tiszta egészértékű
A dualitás elve. Készítette: Dr. Ábrahám István
A dalitás elve Készítette: Dr. Ábrahám István A dalitás fogalma, alapösszefüggései Definíció: Adott a lineáris programozás maimm feladata: 0 A b f()=c* ma Ekkor felírható a kővetkező minimm feladat: y
Hiperbolikus programozás Elmélet, módszerek, alkalmazások, szoftver
Dr.Bajalinov Erik Debreceni Egyetem Informatikai Kara Bajalinov@Inf.UniDeb.Hu Hiperbolikus programozás Elmélet, módszerek, alkalmazások, szoftver mobidiák könyvtár Tartalomjegyzék I. Bevezetés a hiperbolikus
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós
Lineáris algebra és a rang fogalma (el adásvázlat, 2010. szeptember 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest
Jegyzet. az Operációkutatás (elemz, programozó matematikus) tárgyhoz április. Fábián Csaba, Király Tamás, Papp Olga
Jegyzet az Operációkutatás (elemz, programozó matematikus) tárgyhoz Fábián Csaba, Király Tamás, Papp Olga 2015. április 1 Tartalomjegyzék 1. A lineáris programozási feladat 3 1.1. Bevezetés.......................................
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
Döntéselméleti modellek
Döntéselméleti modellek gyakorlat Berta Árpád Követelmények A félév során 40 pont szerezhető 0-19 pont : elégtelen (1) 20-24 pont : elégséges (2) 25-29 pont : közepes (3) 30-34 pont : jó (4) 35-40 pont
Gazdasági matematika
Gazdasági matematika Tantárgyi útmutató Pénzügy és számvitel, Gazdálkodási és menedzsment, Emberi erőforrások alapképzési szakok nappali tagozat új tanrendűek számára 2017/18 tanév II. félév 1 Tantárgy
3. előadás. Termelési és optimalizálási feladatok. Dr. Szörényi Miklós, Dr. Kallós Gábor
3. előadás Termelési és optimalizálási feladatok Dr. Szörényi Miklós, Dr. Kallós Gábor 2014 2015 1 Tartalom Matematikai alapok Matematikai modell Fontosabb feladattípusok Érzékenységvizsgálat Fontos fogalmak
Glevitzky Béla. Operációkutatás I. mobidiák könyvtár
Glevitzky Béla Operációkutatás I. mobidiák könyvtár Glevitzky Béla Operációkutatás I. mobidiák könyvtár SOROZATSZERKESZTŽ Fazekas István Glevitzky Béla Operációkutatás I. mobidiák könyvtár Debreceni Egyetem
Mat. A2 3. gyakorlat 2016/17, második félév
Mat. A2 3. gyakorlat 2016/17, második félév 1. Hány megoldása lehet az alábbi lineáris egyenletrendszereknek a valós számok körében, ha a -ok tetszőleges (nem feltétlenül egyenlő) számokat jelölnek? 0
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
1. Bázistranszformáció
1. Bázistranszformáció Transzformáció mátrixa új bázisban A bázistranszformáció képlete (Freud, 5.8.1. Tétel) Legyenek b és d bázisok V -ben, ] v V és A Hom(V). Jelölje S = [[d 1 ] b,...,[d n ] b T n n
Operációkutatás alapjai
Operációkutatás alapjai interaktív tananyag Dr. Bánkuti Göngyi Dr. Kövér György Operációkutatás alapjai: interaktív tananyag írta Dr. Bánkuti Göngyi és Dr. Kövér György Tartalom Előszó... x 1. Lineáris
Approximációs algoritmusok
Approximációs algoritmusok Nehéz (pl. NP teljes) problémák optimális megoldásának meghatározására nem tudunk (garantáltan) polinom idejű algoritmust adni. Lehetőségek: -exponenciális futási idejű algoritmus
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,
Tartalom. Matematikai alapok. Fontos fogalmak Termékgyártási példafeladat
6. előadás Termelési és optimalizálási feladatok Dr. Szörényi Miklós, Dr. Kallós Gábor 2014 2015 1 Tartalom Matematikai alapok Matematikai modell Fontosabb feladattípusok Érzékenységvizsgálat Fontos fogalmak
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)
7. Előadás. Megyesi László: Lineáris algebra, oldal. 7. előadás Elemi bázistranszformáció
7. Előadás Megyesi László: Lineáris algebra, 57. 61. oldal. Gondolkodnivalók Bázis, dimenzió 1. Gondolkodnivaló Legyenek a v vektor koordinátái a v 1,..., v n bázisban: (1, α 2,..., α n ). Igazoljuk, hogy
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I. éves nappali programtervező informatikus hallgatóknak évi tanév I. félév
LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I éves nappali programtervező informatikus hallgatóknak 2010-2011 évi tanév I félév Vektoriális szorzat és tulajdonságai bizonyítás nélkül: Vegyes szorzat és tulajdonságai
Tartalom. Matematikai alapok. Termékgyártási példafeladat. Keverési példafeladat Szállítási példafeladat Hátizsák feladat, egészértékű feladat
6. előadás Termelési és optimalizálási feladatok Dr. Szörényi Miklós, Dr. Kallós Gábor 2013 2014 1 Tartalom Matematikai alapok Matematikai modell Fontosabb feladattípusok Érzékenységvizsgálat Termékgyártási
OPERÁCIÓKUTATÁS. No. 2. Komáromi Éva LINEÁRIS PROGRAMOZAS
OPERÁCIÓKUTATÁS No. 2. Komáromi Éva LINEÁRIS PROGRAMOZAS Budapest 2002 Komáromi Éva: LINEÁRIS PROGRAMOZÁS OPERÁCIÓKUTATÁS No.2 Megjelenik az FKFP 0231 Program támogatásával a Budapesti Közgazdaságtudományi
A minimális költségűfolyam probléma megoldása hálózati szimplex-módszerrel
A minimális költségűfolyam probléma megoldása hálózati szimplex-módszerrel 1 A minimális költségűfolyam probléma megoldása hálózati szimplex-módszerrel DR. BENKŐJÁNOS GATE, Logisztikai Tanszék A hálózat
Döntési módszerek Tantárgyi útmutató
Gazdálkodási és menedzsment alapszak Nappali tagozat Döntési módszerek Tantárgyi útmutató 2015/16 tanév II. félév 1 Tantárgy megnevezése Tantárgy jellege/típusa: Döntési módszerek. D Kontaktórák száma/hét:
LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak
LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: