Érzékenységvizsgálat
|
|
- Barnabás Kerekes
- 9 évvel ezelőtt
- Látták:
Átírás
1 Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális megoldás, célfüggvény értéke változhat Az érzékenységvizsgálat olyan elemzı eljárás, amelynek során felderíthetı, hogy milyen hatással vannak az optimális megoldásra (optimális bázisra) a modell paramétereinek (b i, c j és a ij ) értékeiben bekövetkezett változások. Optimális bázis változatlansága = bázisváltozók továbbra is bázisváltozók maradnak (értékük változhat!)
2 Érzékenységvizsgálat grafikusan kapacitás változása z= 0x Alap feladat x x + x + 50x x x x max Az elsı erıforrás kapacitását 0 egységgel bıvítjük x + x 60 Optimális megoldás megváltozik! Az érzékenységvizsgálat esetei. Milyen mértékben módosíthatjuk a célfüggvény együtthatóit, hogy az optimális bázis ne változzon? Nembázis változó együtthatójának módosítása Bázis változó együtthatójának módosítása. A kapacitásvektor mely komponenseit és milyen mértékben változtathatjuk meg anélkül, hogy az optimális bázis ne változzon?. Nembázis változóhoz tartozó oszlopvektor módosítása 4. Hogyan változtatja meg az optimális megoldást, ha új feltételt írunk a modellbe? 5. Hogyan változtatja meg az optimális megoldást, ha új változót vezetünk be a modellbe?
3 A célfüggvény együtthatóinak változása Nembázis változó célfüggvény együtthatójának változása Ha egy nembázis változó célfüggvénybeli együtthatójának módosítása során optimális marad az eredeti bázis, akkor az optimális z érték és a döntési változók értékei sem változnak. Egy nembázis változó redukált költsége (maximumfeladat esetén) az a legnagyobb érték, amivel a változó célfüggvénybeli együtthatóját még növelhetjük, anélkül, hogy az aktuális bázis optimalitását elvesztené, és a nembázis változót az (új) optimális bázisba be kellene vonni. Bázis változó célfüggvény együtthatójának változása ha az eredeti bázis optimális marad: döntési változók értékei nem módosulnak, de az optimális z érték megváltozik (célfüggvény együttható változása miatt!) bázisváltozó célfüggvény együtthatójának módosítása után csak akkor marad az aktuális bázis továbbra is optimális, ha mindegyik célfüggvény együttható nemnegatív marad A kapacitásvektor komponenseinek változása Árnyékár: Az i-edik feltétel (i-edik erıforrás) árnyékára megmutatja, hogy mennyivel javul (maximumfeladatnál nı, minimumfeladatnál csökken) a célfüggvény optimális értéke, ha b i -t (az i-edik erıforrás kapacitását) -gyel növeljük (tehát b i helyett b i + lesz a korlát) csak akkor érvényes, ha az i-edik korlátozó feltétel jobb oldalának (kapacitás) növelése nem módosítja az optimális bázist. ha az optimális megoldásban az i-edik erıforrás árnyékára pozitív és értéke y 0i, akkor b i egy egységnyi változására a célfüggvény értéke y 0i -val változik, azaz b i érzékeny paraméter ha y 0i = 0, akkor az optimális megoldás nem változik a b i változtatására
4 Dakota probléma A Dakota Bútorkészítı Cég íróasztalokat, asztalokat és székeket gyárt. Mindegyik bútortípus gyártásához faanyag és kétféle szakmunka szükséges: durva asztalosmunka és felületkezelés. Az egyes bútortípusok elıállításához a különbözı erıforrásokból szükséges mennyiséget a táblázat adatai mutatják. Jelenleg 48 egység faanyag, 0 órányi felületkezelés és 8 órányi asztalosmunka kapacitás áll rendelkezésre. Egy íróasztal 60, egy asztal 0, egy szék pedig 0 dollárért adható el. Mivel az erıforrásokat már megvásárolták, a Dakota cég az összbevételét kívánja maximalizálni. Erıforrás Faanyag Íróasztal 8 egység Asztal 6 egység Szék egység Felületkezelés 4 óra óra,5 óra Asztalosmunka óra,5 óra 0,5 óra Forrás: Winston, o. alapján Dakota-probléma (primál feladat) x = a gyártott íróasztalok száma x = a gyártott asztalok száma x = a gyártott székek száma Erıforrás Faanyag Felületkezelés Asztalosmunka Eladási ár ($/db) Íróasztal 8 egység 4 óra óra 60 Asztal 6 egység óra,5 óra 0 A feladat matematikai modellje 8x + 6x + x 48 4x + x x +,5x 60x + 0x Szék egység,5 óra 0,5 óra 0 +,5x x, x, x + 0x ,5x Kapacitás (óra) max 4
5 Dakota probléma primál feladat megoldása Dakota probléma célegyüttható növelésének hatása I. c növelése 4-gyel x nem került be a bázisba 5
6 Dakota probléma célegyüttható növelésének hatása II. c növelése 5-tel x bekerült a bázisba, de értéke 0 Dakota probléma célegyüttható növelésének hatása III. c növelése 6-tal x bekerült a bázisba: az eredeti bázis már nem optimális 6
7 Dakota probléma megengedhetı növekedés I. Dakota probléma megengedhetı növekedés II. c növelése 0-zel (60 70) 7
8 Dakota probléma megengedhetı növekedés III. c növelése 0-szal (60 80) Optimális megoldás megváltozott! Paraméteres programozás Paraméteresnek nevezzük azokat a lineáris modelleket, amelyeknek A, b, c T elemei között függvények is szerepelnek. Ha ezek a függvények egyváltozósak és elsı fokúak, akkor a modellt egyparaméteres lineáris modellnek nevezzük. Paraméter a célfüggvényben x 0 A x b z= (p T + q T t) x max t skalár, α t β Keressük azokat a bázisokat és t-nek azon intervallumait, amelyekben a feladat optimális megoldásai vannak. 8
9 Paraméter a b vektorban Paraméteres programozás x 0 A x b+ d t z= c T x max α t β Duál párján keresztül oldjuk meg => paraméter a célfüggvénybe kerül Köszönöm a figyelmet! 9
Bevezetés az operációkutatásba A lineáris programozás alapjai
Bevezetés az operációkutatásba A lineáris programozás alapjai Alkalmazott operációkutatás 1. elıadás 2008/2009. tanév 2008. szeptember 12. Mi az operációkutatás (operations research)? Kialakulása: II.
RészletesebbenA lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
RészletesebbenA lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
Részletesebben11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
RészletesebbenA szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
RészletesebbenDualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
RészletesebbenA szimplex tábla. p. 1
A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex
RészletesebbenOptimumkeresés számítógépen
C Optimumkeresés számítógépen Az optimumok megtalálása mind a gazdasági életben, mind az élet sok más területén nagy jelentőségű. A matematikában számos módszert dolgoztak ki erre a célra, például a függvények
RészletesebbenNemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
RészletesebbenOperációkutatás példatár
1 Operációkutatás példatár 2 1. Lineáris programozási feladatok felírása és megoldása 1.1. Feladat Egy gazdálkodónak azt kell eldöntenie, hogy mennyi kukoricát és búzát vessen. Ha egységnyi földterületen
RészletesebbenLineáris programozási feladatok típusai és grafikus megoldása
Lineáris programozási feladatok típusai és grafikus megoldása Alkalmazott operáiókutatás. elıadás 8/9. tanév 8. szeptemer 9. Maimumfeladat grafikus megoldása lehetséges megoldások + 4 + () 8 + Optimális
RészletesebbenAz érzékenységvizsgálat jelentősége
Az érzékenységvizsgálat jelentősége (Tanulmány) Egyéb olyan fontos szempontok mellett, mint a stabilitás, rugalmasság, társadalmi elfogadottság, stb., az ipari menedzser fő célja, hogy növelje cége nyereségét.
RészletesebbenEgyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma
Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben
Részletesebbenb) Írja fel a feladat duálisát és adja meg ennek optimális megoldását!
1. Három nemnegatív számot kell meghatározni úgy, hogy az elsőt héttel, a másodikat tizennéggyel, a harmadikat hattal szorozva és ezeket a szorzatokat összeadva az így keletkezett szám minél nagyobb legyen.
RészletesebbenKövetelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
RészletesebbenKövetelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
RészletesebbenOpkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
RészletesebbenAlkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok. Rétvári Gábor
Alkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok Rétvári Gábor retvari@tmit.bme.hu Feladatok Szöveges feladatok. Egy acélgyárban négyfajta zártszelvényt gyártanak: kis,
Részletesebben3. előadás. Termelési és optimalizálási feladatok. Dr. Szörényi Miklós, Dr. Kallós Gábor
3. előadás Termelési és optimalizálási feladatok Dr. Szörényi Miklós, Dr. Kallós Gábor 2014 2015 1 Tartalom Matematikai alapok Matematikai modell Fontosabb feladattípusok Érzékenységvizsgálat Fontos fogalmak
RészletesebbenOperációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje
Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.
Részletesebben1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex
RészletesebbenEllenőrzés. Variáns számítás. Érzékenység vizsgálat
Ellenőrzés Variáns számítás Érzékenység vizsgálat Készítette: Dr Árahám István Az ellenőrzés A matematikai modell megoldása, a szimple tálák kitöltése közen könnyen elkövethetünk számolási hiát A kiindlási
RészletesebbenÁttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 6. Előadás Áttekintés Kezdjük újra a klasszikus erőforrás allokációs problémával (katonák,
RészletesebbenA szimplex algoritmus
. gyakorlat A szimplex algoritmus Az előző órán bevezetett feladat optimális megoldását fogjuk megvizsgálni. Ehhez új fogalmakat, és egy algoritmust tanulunk meg. Hogy az algoritmust alkalmazni tudjuk,
RészletesebbenOperációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás
Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév
RészletesebbenMatematikai modellek megoldása számítógéppel Solver Lingo
Matematikai modellek megoldása számítógéppel Solver Lingo Készítette: Dr. Ábrahám István A matematikai modellek számítógépes megoldásait példákkal mutatjuk be. Példa: Négy erőforrás felhasználásával négyféle
Részletesebben1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +
RészletesebbenOperációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit
Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu Budapest 200. október 10. Mit tanulunk ma? Szállítási feladat Megoldása Adott: Egy árucikk, T 1, T 2, T,..., T m termelőhely, melyekben rendre
RészletesebbenTartalom. Matematikai alapok. Fontos fogalmak Termékgyártási példafeladat
6. előadás Termelési és optimalizálási feladatok Dr. Szörényi Miklós, Dr. Kallós Gábor 2014 2015 1 Tartalom Matematikai alapok Matematikai modell Fontosabb feladattípusok Érzékenységvizsgálat Fontos fogalmak
RészletesebbenA dualitás elve. Készítette: Dr. Ábrahám István
A dalitás elve Készítette: Dr. Ábrahám István A dalitás fogalma, alapösszefüggései Definíció: Adott a lineáris programozás maimm feladata: 0 A b f()=c* ma Ekkor felírható a kővetkező minimm feladat: y
RészletesebbenAssignment problem Hozzárendelési feladat (Szállítási feladat speciális esete)
Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete) C költség mátrix költség Munkákat hozzá kell rendelni gépekhez: egy munka-egy gép c(i,j) mennyi be kerül i-dik munka j-dik
RészletesebbenG Y A K O R L Ó F E L A D A T O K
Döntéselmélet G Y A K O R L Ó F E L A D A T O K Lineáris programozás I Egy vállalat kétféle terméket gyárt, az A és B termékeket. A következő adatok ismertek: A vállalat éves munkaóra-kapacitása 1440 óra,
RészletesebbenDöntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba
I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30
RészletesebbenDr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
Részletesebben1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! a, x 1 + x 2 2 2x 1 + x 2 6 x 1 + x 2 1. x 1 0, x 2 0
Gyakorló feladatok Operációkutatás vizsgára 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! a, b, c, d, x 1 + x 2 2 2x 1 + x 2 6 x 1 + x 2 1 x 1 2, 5 z 1 = 4x 1 3x 2 max; z
RészletesebbenOptimalizálási problémák a liberalizált energiapiacon
Optimalizálási problémák a liberalizált energiapiacon Mádi-Nagy Gergely ELTE Operációkutatási Tanszék/IP Systems Informatikai Kft. Mádi-Nagy Gergely Optimalizálási problémák a liberalizált energiapiacon
RészletesebbenLINEÁRIS ALGEBRA ALKALMAZÁSA A KRITIKUS INFRASTRUKTÚRA KOCKÁZATÁNAK KEZELÉSÉBEN
VIII. Évfolyam 4. szám - 203. december Gyarmati József gyarmati.jozsef@uni-nke.hu LINEÁRIS ALGEBRA ALKALMAZÁSA A KRITIKUS INFRASTRUKTÚRA KOCKÁZATÁNAK KEZELÉSÉBEN Absztrakt A kockázatok becslése meghatározó
RészletesebbenTotális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
RészletesebbenBázistranszformáció és alkalmazásai 2.
Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja
RészletesebbenLineáris algebra gyakorlat
Lineáris algebra gyakorlat 7. gyakorlat Gyakorlatvezet : Bogya Norbert 2012. március 26. Ismétlés Tartalom 1 Ismétlés 2 Koordinátasor 3 Bázistranszformáció és alkalmazásai Vektorrendszer rangja Mátrix
RészletesebbenEuroOffice Optimalizáló (Solver)
1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer
RészletesebbenEgyenletek, egyenletrendszerek, matematikai modell. 1. Oldja meg az Ax=b egyenletrendszert Gauss módszerrel és adja meg az A mátrix LUfelbontását,
Egyenletek egyenletrendszerek matematikai modell Oldja meg az A=b egyenletrendszert Gauss módszerrel és adja meg az A mátri LUfelbontását ahol 8 b 8 Oldja meg az A=b egyenletrendszert és határozza meg
RészletesebbenOptimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
RészletesebbenLINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény
RészletesebbenEsettanulmányok és modellek 2
Esettanulmányok és modellek Kereskedelem Mezőgazdaság Készítette: Dr. Ábrahám István Kereskedelem. Kocsis Péter: Opt. döntések lin.pr. (. oldal) nyomán: Kiskereskedelmi cég négyféle üdítőt rendel, melyek
RészletesebbenOperációkutatás I. Bajalinov, Erik, Nyíregyházi Főiskola, Matematika és Informatika Intézete Bekéné Rácz, Anett, Debreceni Egyetem, Informatikai Kar
Operációkutatás I. Bajalinov, Erik, Nyíregyházi Főiskola, Matematika és Informatika Intézete Bekéné Rácz, Anett, Debreceni Egyetem, Informatikai Kar Operációkutatás I. írta Bajalinov, Erik és Bekéné Rácz,
RészletesebbenTANTÁRGYI ÚTMUTATÓ. Operációkutatás. tanulmányokhoz
II. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Operációkutatás tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Operációkutatás Tanszék: BGF Módszertani Intézeti
Részletesebben1. Optimumszámítási modellek
Előszó Ez a kézirat a szerző az Eszterházy Károly Főiskolán tartott Operációkutatás című előadásai vázlatának félkész vázlatát tartalmazza. Juhász Tibor 1. Optimumszámítási modellek 1.1. Mintafeladatok
RészletesebbenA Markowitz modell: kvadratikus programozás
A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer
Részletesebben2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 8. Előadás Bevezetés Egy olyan LP-t, amelyben mindegyik változó egészértékű, tiszta egészértékű
RészletesebbenKétfázisú szimplex algoritmus és speciális esetei
5. gyakorlat Kétfázisú szimplex algoritmus és speciális esetei. Emlékeztető Standard alak, áttérés Standard alak Minden feltétel et tartalmaz csak. A célfüggvényünket maximalizáljuk. A b vektor (jobb oldalon
RészletesebbenLineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer
Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény
RészletesebbenOperációkutatás II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2016/17 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:
RészletesebbenA Markowitz modell: kvadratikus programozás
A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,
RészletesebbenEgész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...
Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (
Részletesebbenoperációkutatás példatár
operációkutatás példatár . MŰVELETEK MÁTIXOKKAL. (Megoldás a.-es gyakorló ideóban.) Itt annak ezek a mátriok illete ektorok: A c B d * E f * Végezzük el a köetkező műeleteket: A B B E B c B A A E B d..
RészletesebbenOperációkutatás II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2015/16 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:
RészletesebbenA lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris
RészletesebbenTermelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak
Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak Dr. Koltai Tamás egyetemi tanár Menedzsment és Vállalatgazdaságtan Tanszék Tematika Kvantitatív eszközök használata Esettanulmányok
RészletesebbenOperációkutatás vizsga
Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 16. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS,
RészletesebbenLineáris algebra gyakorlat
Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)
RészletesebbenAlternatívák rangsora Rangsor módszerek. Debreceni Egyetem
Döntéstámogató Rendszerek VII. előadás Bekéné Rácz Anett Debreceni Egyetem Definíciók Példa rangsorfordulásra Rangsorokkal kapcsolatos fogalmak Condorcet nyertes: Az az alternatíva, amely az összes többi
RészletesebbenMátrixjátékok tiszta nyeregponttal
1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják
Részletesebben15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
RészletesebbenNem-lineáris programozási feladatok
Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens
Részletesebben1. zárthelyi,
1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y
RészletesebbenDR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék
FELTÉTELES OPTIMALIZÁLÁS DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként az Európai Unió támogatásával,
RészletesebbenLineáris programozási feladat megoldása Microsoft O ce EXCEL szoftverrel
Lineáris programozási feladat megoldása Microsoft O ce EXCEL szoftverrel 1. A lineáris programozási probléma de niálása Solverrel A Solver használatát három lineáris programozási feladaton keresztül fogjuk
RészletesebbenFeltételes és feltétel nélküli optimalizálás Microsoft O ce EXCEL szoftver segítségével
Feltételes és feltétel nélküli optimalizálás Microsoft O ce EXCEL szoftver segítségével Az Excel Solver programcsomagjának bemutatásaként két feltételes és egy feltétel nélküli optimalizálási feladatot
RészletesebbenElőadó: Dr. Kertész Krisztián
Előadó: Dr. Kertész Krisztián E-mail: k.krisztian@efp.hu A termelés költségei függenek a technológiától, az inputtényezők árától és a termelés mennyiségétől, de a továbbiakban a technológiának és az inputtényezők
RészletesebbenTovábbi programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy
Részletesebbenlineáris programozás esetében. Ennek ez idő szerint legkorábbi formalizálását
1. előadás Bevezetés Lehetetlen egészen pontosan megállapítani, mi tekinthető az operációkutatás első eredményeinek, hisz az optimalizálás mégcsak nem is az emberi faj kiváltsága. Kétségtelen viszont,
RészletesebbenE-tananyag Matematika 9. évfolyam 2014. Függvények
Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést
Részletesebben1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI
1/12 Operációkutatás 5. gyakorlat Hiperbolikus programozási feladat megoldása Pécsi Tudományegyetem PTI 2/12 Ha az Hiperbolikus programozási feladat feltételek teljesülése mellett a A x b x 0 z(x) = c
RészletesebbenDöntési módszerek Tantárgyi útmutató
Gazdálkodási és menedzsment alapszak Nappali tagozat Döntési módszerek Tantárgyi útmutató 2018/19. tanév II. félév 1 Tantárgy megnevezése Tantárgy jellege/típusa: Döntési módszerek. D Kontaktórák száma/hét:
RészletesebbenÜtemezési modellek. Az ütemezési problémák osztályozása
Ütemezési modellek Az ütemezési problémák osztályozása Az ütemezési problémákban adott m darab gép és n számú munka, amelyeket az 1,..., n számokkal fogunk sorszámozni. A feladat az, hogy ütemezzük az
RészletesebbenVajon, hogyan működne vállalata, ha a lehető leghatékonyabban használná ki a gyártás, logisztika során erőforrásait
Gondolt már arra, hogy még a legjobban szervezett folyamatok mellett is van tartalék cégében? Tudta, hogy a kihasználatlan erőforrásokban - melyek értéke akár 30% is lehet - mennyi pénz rejtőzik? Vajon,
RészletesebbenGyakorló feladatok Alkalmazott Operációkutatás vizsgára. További. 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén!
Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További példák találhatók az fk.sze.hu oldalon a letöltések részben a közlekedési operációkutatásban 1. Oldja meg grafikusan az alábbi feladatokat
RészletesebbenOperációkutatási feladatok megoldása QSB-vel
Operációkutatási feladatok megoldása QSB-vel Bevezetés A QSB a Quantitative Systems for Business (szabad fordításban: Kvantitatív módszerek a gazdaságban) kifejezés rövidítése. Ennek a programcsomagnak
Részletesebben2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető
. Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék
RészletesebbenJegyzet. az Operációkutatás II cím tantárgyhoz. Utolsó frissítés: május 20. Király Tamás el adásai alapján készítette Papp Olga
Jegyzet az Operációkutatás II cím tantárgyhoz Király Tamás el adásai alapján készítette Papp Olga Utolsó frissítés: 2011. május 20. Tartalomjegyzék 1. TU mátrixok: kerekítés és színezés 3 1.1. Emlékeztet......................................
RészletesebbenJegyzet. az Operációkutatás (elemz, programozó matematikus) tárgyhoz április. Fábián Csaba, Király Tamás, Papp Olga
Jegyzet az Operációkutatás (elemz, programozó matematikus) tárgyhoz Fábián Csaba, Király Tamás, Papp Olga 2015. április 1 Tartalomjegyzék 1. A lineáris programozási feladat 3 1.1. Bevezetés.......................................
RészletesebbenVektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
RészletesebbenGyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
RészletesebbenKamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény
Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény 84-85.) Bock Gyula [2001]: Makroökonómia feladatok. TRI-MESTER, Tatabánya. 38. o. 16-17. (Javasolt változtatások: 16. feladat: I( r) 500
Részletesebbenút hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.
1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost
RészletesebbenDiszkrét, egészértékű és 0/1 LP feladatok
Diszkrét, egészértékű és 0/1 LP feladatok In English Integer Programming - IP Zero/One (boolean) programming 2007.03.12 Dr. Bajalinov Erik, NyF MII 1 Diszkrét és egészértékű változókat tartalmazó feladatok
RészletesebbenMásodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:
RészletesebbenProblémás regressziók
Universitas Eotvos Nominata 74 203-4 - II Problémás regressziók A közönséges (OLS) és a súlyozott (WLS) legkisebb négyzetes lineáris regresszió egy p- változós lineáris egyenletrendszer megoldása. Az egyenletrendszer
RészletesebbenDr. Kalló Noémi. Termelésszervezés, Termelési és szolgáltatási döntések elemzése. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék
Termelésszervezés, Termelési és szolgáltatási döntések elemzése egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelésszervezés 17.Ismertesse az anyagszükséglet-tervezés input információit,
Részletesebben1. Előadás Lineáris programozás
1. Előadás Lineáris programozás Salamon Júlia Előadás II. éves gazdaság informatikus hallgatók számára Operációkutatás Az operációkutatás az alkalmazott matematika az az ága, ami bizonyos folyamatok és
RészletesebbenMikroökonómia előadás. Dr. Kertész Krisztián
Mikroökonómia előadás Dr. Kertész Krisztián k.krisztian@efp.hu A TERMELÉS KÖLTSÉGEI ÁRBEVÉTEL A termelés gazdasági költsége Gazdasági Explicit költség profit Gazdasági profit Számviteli költség Implicit
Részletesebben9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek
RészletesebbenNövényvédő szerek A B C D
A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.
RészletesebbenTóth Georgina Nóra 1-2. gyakorlat OPERÁCIÓKUTATÁS
Tóth Georgina Nóra toth.georgina@bgk.uni-obuda.hu -2. gyakorlat OPERÁCIÓKUTATÁS TÖRTÉNETI ÁTTEKINTÉS Ipari forradalom hatása a vállalatokra II. világháború Katonai hadműveletek (operációk) Kutatók alkalmazása
RészletesebbenLineáris programozási feladat duálisa/duálja
Dulitás Alklzott operáiókuttás 4. elıdás 008/009. tév 008. októer. Shó elid Shó elid Lieáris progrozási feldt duális/duálj Priál feldt iu feldt 0 A f () = T Duál feldt iiu feldt 0 A T g() = T i A u= oikus
RészletesebbenGépi tanulás a gyakorlatban SVM
Gépi tanulás a gyakorlatban SVM Klasszifikáció Feladat: előre meghatározott csoportok elkülönítése egymástól Osztályokat elkülönítő felület Osztályokhoz rendelt döntési függvények Klasszifikáció Feladat:
RészletesebbenJegyzet. az Operációkutatás II cím tantárgyhoz. Király Tamás és Papp Olga. Utolsó frissítés: február
Jegyzet az Operációkutatás II cím tantárgyhoz Király Tamás és Papp Olga Utolsó frissítés: 2015. február 2 Tartalomjegyzék 1. Lineáris programozás 7 1.1. TU mátrixok: kerekítés és színezés......................
Részletesebben1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
Részletesebbenszantai Az operációkutatás matematikai módszerei
http://wwwmathbmehu/ szantai Az operációkutatás matematikai módszerei Bővített óravázlat Összeállította: Szántai Tamás Budapest 1999 A bővített óravázlatot Prékopa Andrásnak a Bolyai János Matematikai
Részletesebben