Tóth Georgina Nóra 1-2. gyakorlat OPERÁCIÓKUTATÁS

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Tóth Georgina Nóra 1-2. gyakorlat OPERÁCIÓKUTATÁS"

Átírás

1 Tóth Georgina Nóra -2. gyakorlat OPERÁCIÓKUTATÁS

2 TÖRTÉNETI ÁTTEKINTÉS Ipari forradalom hatása a vállalatokra II. világháború Katonai hadműveletek (operációk) Kutatók alkalmazása Lendületes fejlődés Számítástechnika robbanásszerű fejlődése

3 OPERÁCIÓKUTATÁS CÉLJA, JELENTŐSÉGE Forráselosztás Bonyolultsági és szakosodási problémák megoldása Optimalizálási problémák

4 OPERÁCIÓKUTATÁS JELLEGZETESSÉGEI Operációkra (műveletekre) vonatkozó kutatás Vállalaton belüli tevékenységek/műveletek összehangolására alkalmazzák Tudományos megközelítés Vállalattól függetlenül alkalmazható Folyamat modell kialakítása lényeges vonások alapján Optimális megoldás keresése

5 MÓDSZEREK, SZABVÁNYOS ESZKÖZÖK Lineáris programozás Szimple módszer (George Dantzig 947) Dinamikus programozás Sorbanállás elmélete Raktározási problémák elmélete

6 OPERÁCIÓKUTATÁS DEFINICIÓJA A döntéshozás olyan tudományos megközelítéseként írhatjuk le, amely szervezeti rendszerek működésével áll kapcsolatban. operációkra vonatkozó kutatás

7 OPERÁCIÓKUTATÁS DEFINICIÓJA 2. Az operációkutatás a valóságos életből eredő determinisztikus és sztochasztikus rendszerek modellezésével és ezekre vonatkozó döntések meghozatalával foglalkozik.

8 PROBLÉMA MEGFOGALMAZÁSA Gyakorlati életben zavaros problémák Fontos tanulmányozni a rendszert Célok meghatározása Kényszerfeltételek Vizsgálandó és egyéb területek közötti kapcsolatok megadása Lehetséges cselekvéssorok Időkorlátok Cél: a probléma egy jól definiált megfogalmazása!

9 MATEMATIKAI MODELL FELÉPÍTÉSE Probléma átfogalmazása, hogy elemzésre alkalmas legyen Idealizált reprezentációk n összefüggő döntés -> döntési változók, 2,. n A hatékonyságot a döntési változók függvényeként fejezzük ki. CÉLFÜGGVÉNY

10 MATEMATIKAI MODELL FELÉPÍTÉSE Döntési változókra vonatkozó megszorítások KÉNYSZERFELTÉTELEK CÉLFÜGGVÉNY + KÉNYSZERFELTÉTELEK ÁLLANDÓI BEMENETI vagy MODELLPARAMÉTEREK

11 FELADATTÍPUSOK Termékek olyan keverékének meghatározása, amely maimalizálja a hasznot A földterület különböző termények vetésére vonatkozó olyan szétosztása, amely maimalizálja a nettó visszatérülést Szennyeződés kiküszöbölésére irányuló módszerek olyan kombinációja, amelynek segítségével a levegő minőségére vonatkozó szabvány a lehető legkisebb költséggel érhető el

12 A MODELL MEGOLDÁSÁNAK LEVEZETÉSE Cél: a modellből levezetni a probléma egy megoldását Szabványos algoritmusok Programcsomagok Idealizált modell Nem biztos, hogy a megoldás a valós problémánál optimális

13 A MODELL MEGOLDÁSÁNAK LEVEZETÉSE Optimális megoldás -> (Matematikai modell) kielégítő megoldás (VALÓSÁG)

14 A MODELL ÉS A BELŐLE SZÁRMAZÓ MEGOLDÁS KIPRÓBÁLÁSA Modell helyességének ellenőrzése (helytelen interpretáció, rossz bemenő paraméter értékek) Paraméter értékek megváltoztatása a hatás figyelemmel kísérése mellett Visszatekintő ellenőrzés (történeti adatok+rekonstrukció) Jelentős-e a javulás? Hátránya: a múlt hűen reprezentálja a jövőt?

15 A MEGOLDÁSRA VONATKOZÓ ELLENŐRZÉSEK LÉTREHOZÁSA CÉL: A valóság változásainak követése Rendszeres eljárások létrehozása Kritikus paraméterek azonosítása (érzékenység vizsgálat) Paraméterek statisztikailag szignifikáns változásának nyomon követése (folyamat ellenőrzési táblázatok, szabályozó kártyák) Cselekvéssor kiigazítása

16 A MEGOLDÁS MEGVALÓSÍTÁSA ( ÜZEMBE HELYEZÉS ) Kritikus fázis A siker függ a felső vezetés támogatásának mértékétől Támogatás mellett a részvétel is fontos

17 A MEGOLDÁS MEGVALÓSÍTÁSÁNAK LÉPÉSEI ( ÜZEMBE HELYEZÉS ) Bevezetendő megoldás, változtatás ismertetése Felelősség megosztása a bevezetést illetően Érintett munkavállalók oktatása (operatív vezetés) Változtatások elvégzése Szükség esetén módosítás Sikeres megoldás esetén periodikus alkalmazás

18 LINEÁRIS PROGRAMOZÁS

19 LINEÁRIS PROGRAMOZÁSI MODELL Célfüggvény Korlátozó feltételek LINEÁRIS A modellben szereplő összes függvény lineáris!

20 LINEÁRIS PROGRAMOZÁS LEGGYAKORIBB ALKALMAZÁSA Korlátozottan rendelkezésre álló források optimális elosztása egymással konkuráló célokat szolgáló tevékenységek között Pl.: termelőerők elosztása, nemzeti kincsek elosztása, kötvénycsomagok (portfolio) kiválasztása, logisztikai feladatok, szállítmányozás megszervezése, egészségügy (besugárzási terápia)

21 SZIMPLEX MÓDSZER Hatékony eljárás Lehetővé teszi óriási méretű lineáris programozási feladat megoldását

22 . PÉLDA WYNDOR ÜVEGGYÁRTÓ TÁRSASÁG Gyártott termékek: Üvegajtó Ablak 3 üzemben történik a gyártás:. üzem Alumínium keretek, szerelvények 2. üzem Fakeretek 3. üzem Üveg alkatrészek

23 . PÉLDA WYNDOR ÜVEGGYÁRTÓ TÁRSASÁG Veszteség miatt több termék gyártását beszűntetik Felszabadult kapacitás 2 új termék gyártására fordítják. termék 2m magas alumínium keretes ajtó 2. termék Fakeretes dupla ablak (,5m) Mindkét termék gyártása leköti a 3. sz. üzem bizonyos kapacitását.

24 . PÉLDA WYNDOR ÜVEGGYÁRTÓ TÁRSASÁG Milyen arányban keveredjék ennek a két terméknek a gyártása a legnagyobb profit elérése érdekében?

25 . PÉLDA WYNDOR ÜVEGGYÁRTÓ TÁRSASÁG Operációkutató csoport meghatározta:. Mindkét új termékre nézve a rendelkezésre álló százalékos kapacitást mind a három üzemben 2. Mindkét új termék esetében az egységnyi termék/perc termeléshez szükséges százalékos arányt 3. Egységnyi profitot mindkét termék esetén

26 . PÉLDA WYNDOR ÜVEGGYÁRTÓ TÁRSASÁG Üzem Termék Szabad. termék 2. termék kapacitás Profit/egység 3 5 -

27 . PÉLDA WYNDOR ÜVEGGYÁRTÓ TÁRSASÁG (MATEMATIKAI MODELL MEGFOGALMAZÁSA) Jelölések:, 2. ill. a 2. termék percenként termelt egységeinek száma / döntési változók Z percenkénti profithozzájárulás Célfüggvény: Z= ma Üzem Termék Szabad kapacitá s. termék 2. termék Profit/ egység 3 5 -

28 . PÉLDA WYNDOR ÜVEGGYÁRTÓ TÁRSASÁG (MATEMATIKAI MODELL MEGFOGALMAZÁSA) Megszorítások: Az termék minden percenként megtermelt egysége az,. Üzem % kapacitását venné el a rendelkezésre álló 4-ből Hasonlóan a 2. üzemre: Üzem Termék Szabad kapacitá s. termék 2. termék Profit/ egység 3 5 -

29 . PÉLDA WYNDOR ÜVEGGYÁRTÓ TÁRSASÁG (MATEMATIKAI MODELL MEGFOGALMAZÁSA) Hasonlóan a 3. üzemre: A termelés nem lehet negatív, tehát: Üzem Termék Szabad kapacitá s. termék 2. termék Profit/ egység 3 5 -

30 MATEMATIKAI MODELL MEGFOGALMAZÁSA Feltéve, hogy Z= ma Üzem Termék Szabad. termék 2. termék kapacitá s Profit/ egység 3 5 -

31 MEGOLDÁSOK KERESÉSE Célfüggvény Z= Lehetséges megoldások halmaza 4 6

32 LINEÁRIS PROGRAMOZÁSI MODELL ÁLTALÁNOSAN Jelölések: m db korlátozott forrás (, 2,,m) n db egymással konkuráló tevékenység (,2,,n) Döntési változó j (j=,2, n) Z együttes eredményesség megválasztott mértéke C j Z azon növekedése, amely j egységnyi növelése okozna (j=,2, n) b i i. forrásból rendelkezésre álló mennyiség (i=,2, n) a ij - i-ik forrásnak az egységnyi j-ik tevékenység által felhasznált mennyisége(i=,2, m)(j=,2, n)

33 LINEÁRIS PROGRAMOZÁSI MODELL ADATAI Forrás Tevékenység Szabad forráskapacitás 2.. n a a 2.. a n b 2 a 2 a 22. a 2n b m a m a m 2 a mn b m ΔZ/egységnyi tevékenység Tevékenység szintje c c 2. c n 2 n

34 A MODELL EGY STANDARD ALAKJA 0, 0,..., 0, és b a... a a b a... a a b a... a a feltéve,hogy ma c... c c Z n 2 m n mn 2 m2 m 2 n 2n n n 2 2 n n 2 2 Célfüggvény Megszorításo k/ funkcionális feltételek Nemnegatívitási feltételek

35 SZIMPLEX MÓDSZER Kezdő lépés Iteratív lépés Optimalitási vizsgálat Nem Elértük a kívánt eredményt? Igen STOP

36 SZIMPLEX MÓDSZER Lehetséges csúcspontmegoldások tulajdonságai: a) ha pontosan egy optimális megoldás létezik, akkor az szükségszerűen egy lehetséges csúcspontmegoldás b) ha egyszerre több optimális megoldás létezik, akkor kell lennie közöttük legalább két szomszédos lehetséges csúcspontmegoldásnak A lehetséges csúcspontmegoldások véges sokan vannak. Ha egy csúcspontmegoldás legalább olyan jó Z szempontjából mint a szomszédos lehetséges csúcspontmegoldások, akkor legalább olyan jó vagy jobb, mint az összes többi lehetséges csúcspontmegoldás, azaz optimális megoldás.

37 MEGOLDÁSOK KERESÉSE 2 Üzem Termék Szabad kapacitá s. termék 2. termék Profit/ egység Célfüggvény Z= Lehetséges megoldások halmaza 4 6

38 LINEÁRIS PROGRAMOZÁS ELŐFELTÉTELEI Arányosság Külön-külön minden egyes tevékenységre N db tevékenységből válasszunk egyet (k.) j =0, minden j=,2,..,n esetén és (j k) () Z kifejezhető c k k módon (2) i-ik forrás felhasználása a ik k Mindkét mennyiség arányos a k. tevékenység szintjével (minden k=,2,.,n esetén)

39 LINEÁRIS PROGRAMOZÁS ELŐFELTÉTELEI Additivitás Összes tevékenységre együtt vizsgáljuk Lehetséges kölcsönhatások vizsgálata Követelmény: Bármely, 2,., n ) tevékenységi szintek mellett mind a hatékonyság mértéke (Z), mind a források teljes felhasználása a megfelelő mennyiségek összegeként legyen kifejezhető (ne legyenek kevert tagok!)

40 LINEÁRIS PROGRAMOZÁS ELŐFELTÉTELEI Oszthatóság Valóságban a döntési változók értéke bizonyos esetekben csak egész értéket vehetnek fel. Sokszor az optimális eredményhez kapott számok nem egész értékek. Oszthatósági szabály: a tevékenységek egységei bármilyen arányban oszthatók, a döntési változók pedig tört értékeket is felvehetnek.

41 LINEÁRIS PROGRAMOZÁS ELŐFELTÉTELEI Bizonyosság Az összes paraméter (a ij, b i, c j ) mind ismert konstansok. Valós problémák esetében ritka Érzékenységi vizsgálat

42 TOVÁBBI PÉLDA LÉGSZENNYEZÉS- SZABÁLYOZÁS Nori&Leets Társaság Steeltown Légszennyezési probléma megoldása Legjelentősebb légszennyező anyagok Szennyező Éves kibocsájtás előírt csökkentése (millió pound) Por 60 Kéndioidok 50 Szénhidrogének 25

43 LÉGSZENNYEZÉS-SZABÁLYOZÁS (PÉLDA) 2 okozója a légszennyezésnek:. Olvasztókemencék 2. Nyílt-tüzelésű kohók Légszennyezés csökkentéséhez lehetőségek: () Kémények magasságának megnövelése (kétséges) (2) Szűrő (gázcsapdák) a kéményekben (3) Különböző hatásfokú tisztító anyagok keverése a kohók üzemanyagaihoz

44 LÉGSZENNYEZÉS-SZABÁLYOZÁS (PÉLDA) Magasabb kémények Nyílttüzelésű kohó Szűrők Nyílttüzelésű kohó Jobb tüzelőanyagok Olvasztókemence Olvasztókemence Olvasztókemence Nyílttüzelésű kohó Por Kéndioid Szénhidrogé n táblázat Az egyes módszerek korlátai A fenti megoldások az előző táblázatba foglalt határig bármilyen kapacitással alkalmazhatók. Együttes alkalmazása lehetséges.

45 LÉGSZENNYEZÉS-SZABÁLYOZÁS (PÉLDA) Módszer Olvasztókemence Nyílt-tüzelésű kohó Magasabb kémények 8 0 Szűrők 7 6 Jobb tüzelőanyagok 9 3. táblázat Az egyes módszerek éves költségei teljes kihasználtság mellett (millió $)

46 LÉGSZENNYEZÉS-SZABÁLYOZÁS (PÉLDA) Mikor az adatokat megvizsgálták, világossá vált, önmagában egyik módszer sem elegendő. Mindhárom módszer teljes kapacitásának bevetése, több mint elfogadható eredménnyel járna. (Nagyon magas költségek mellett.) Kombinációkat kell vizsgálni.

47 LÉGSZENNYEZÉS-SZABÁLYOZÁS (PÉLDA) Módszer Olvasztókemence Nyílt-tüzelésű kohó Magasabb kémény 2 Szűrő 3 4 Jobb tüzelőanyag 5 6 Döntési változók

48 LÉGSZENNYEZÉS-SZABÁLYOZÁS (PÉLDA) Hat döntési változó: j (j=,2,,6) Matematikai modell: Min Z= Szennyezés csökkentése:

49 LÉGSZENNYEZÉS-SZABÁLYOZÁS (PÉLDA) 2. Technológia: j minden (j=,2,,6) esetén 3. Nemnegatívitás: j 0 minden (j=,2,,6) esetén

50 LÉGSZENNYEZÉS-SZABÁLYOZÁS (PÉLDA) Módszer Olvasztókemence Nyílt-tüzelésű kohó Magasabb kémény 2 Szűrő 3 4 Jobb tüzelőanyag 5 6 Döntési változók Megoldás: (, 2, 3, 4, 5, 6 )= (, 0.623, 0.343,, 0.048, ) Érzékenységi vizsgálatot végeztek, majd a programot megvalósították.

51 SZÁLLÍTÁSI FELADAT Speciális lineáris programozási feladat Gyakori valós problémák Nagyszámú feltétel Sok döntési változó Sok 0 van a változók között (a ij többsége) Speciális szerkezet

52 SZÁLLÍTÁSI FELADAT Feltételek és együttható táblázata/mátria A= mn m m n n a a a a a a a a a

53 SZÁLLÍTÁSI FELADAT Nem nulla együtthatók kitűntetett helyen szerepelnek Számítási megtakarítás

54 SZÁLLÍTÁSI FELADAT MINTAPÉLDA Borsókonzerv A termelés 3 konzervgyárban folyik szállítás tehervonattal 4 értékesítő helyre Fő kiadás a szállítási költség Cél: szállítási költség csökkentése

55 SZÁLLÍTÁSI FELADAT MINTAPÉLDA Megbecsülték: A következő szezonra várható termelést Kihelyezés mennyiségét az adott árukból Egy tehervagonra eső szállítási költségét

56 Konzervgyár A P&T TÁRSASÁG SZÁLLÍTÁSI ADATAI Áruház Terme -lés Kihelyezés

57 SZÁLLÍTÁSI FELADAT MINTAPÉLDA Z a teljes szállítási költség X ij (i=,2,3 ; j=,2,3,4 ) az i-ik konzervgyárból a j-ik áruházba szállítandó Célfüggvény: Z Z min

58 SZÁLLÍTÁSI FELADAT MINTAPÉLDA Feltételek: Konzervgyár feltételei = = = = = =70 =85 Az áruház feltételei

59 SZÁLLÍTÁSI FELADAT MINTAPÉLDA Feltételek: ij 0, (i=,2,3; j=,2,3,4)

60 SZÁLLÍTÁSI FELADAT MINTAPÉLDA A

61 SZÁLLÍTÁSI FELADAT MINTAPÉLDA A feladat optimális megoldása: 0, 20, 0, , 45, 0, , 0, 70,

62 SZÁLLÍTÁSI FELADAT MODELLJE TERMINOLÓGIA Mintapélda Egy vagon borsókonzerv Három konzervgyár Négy áruház Az i-ik konzervgyár termelése A j-ik áruháznak történő juttatás Vagononkénti szállítási költség az i-ik konzervgyárból a j-ik áruházba Általános feladat Egységnyi áru m tárolóhely n felvevőhely s i, az i-ik tárolóhely készlete d j, a j-ik felvevőhely kereslete c ij, egységnyi áru szállítási költsége az i-ik tárolóhelyről a j-ik felvevőhelyre

63 SZÁLLÍTÁSI FELADAT MODELLJE Z-a teljes szállítási költség ij az i-ik tárolóhelyről a j-ik felvevőhelyre szállítandó egységek mennyisége Z m n i j c ij ij, feltéve, hogy n j ij s i, i,2,... m, m i ij d j, j,2,... n, és ij 0 minden i - re és j- re

64 Tárolóhely SZÁLLÍTÁSI FELADAT MODELLJE Felvevőhely 2 n Készle t c c 2 c n S 2.. m.. c m c m2 c mn s m.. Kereslet d d 2 d n

65 SZÁLLÍTÁSI FELADAT MODELLJE mn m m m n n A

66 SZÁLLÍTÁSI FELADAT MODELLJE Csak akkor létezik megengedett megoldása a modellnek ha m i s i n j d j A feltételek megkövetelik, hogy m i s i és n j d j egyenlő m n i j ij

67 OPERÁCIÓKUTATÁS OPTIMALIZÁLÁSI FELADATOK A matematikai (számoló) modell elkészítése Paraméterek elhelyezése Feltételezett megoldás(ok) elhelyezése Számoló cellák elkészítése (Kívánt értékek elhelyezése) Solver Megoldáskereső használata Paraméterek megadása Célcella megadása Ma, Min, vagy konkrét érték Változó cellák megadása Korlátozó feltételek Az eredmény, - ha van, - értékelése, magyarázata

68 A SOLVER HASZNÁLATA a megoldás menete, a modellek kialakítása és leképzése lineáris egyenletrendszerek megoldása egyszerű optimalizálási probléma megoldása

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor

Részletesebben

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor

Részletesebben

Bevezetés az operációkutatásba A lineáris programozás alapjai

Bevezetés az operációkutatásba A lineáris programozás alapjai Bevezetés az operációkutatásba A lineáris programozás alapjai Alkalmazott operációkutatás 1. elıadás 2008/2009. tanév 2008. szeptember 12. Mi az operációkutatás (operations research)? Kialakulása: II.

Részletesebben

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/ Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

Operációkutatás példatár

Operációkutatás példatár 1 Operációkutatás példatár 2 1. Lineáris programozási feladatok felírása és megoldása 1.1. Feladat Egy gazdálkodónak azt kell eldöntenie, hogy mennyi kukoricát és búzát vessen. Ha egységnyi földterületen

Részletesebben

A szimplex tábla. p. 1

A szimplex tábla. p. 1 A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

Vállalatgazdaságtan. Minden, amit a Vállalatról tudni kell

Vállalatgazdaságtan. Minden, amit a Vállalatról tudni kell Vállalatgazdaságtan Minden, amit a Vállalatról tudni kell 1 Termelési rendszer vizsgálata 2 képzeljük el az alábbi helyzetet örököltünk egy gyárat mit csináljunk vele? működtessük de hogyan? Hogyan működik

Részletesebben

3. előadás. Termelési és optimalizálási feladatok. Dr. Szörényi Miklós, Dr. Kallós Gábor

3. előadás. Termelési és optimalizálási feladatok. Dr. Szörényi Miklós, Dr. Kallós Gábor 3. előadás Termelési és optimalizálási feladatok Dr. Szörényi Miklós, Dr. Kallós Gábor 2014 2015 1 Tartalom Matematikai alapok Matematikai modell Fontosabb feladattípusok Érzékenységvizsgálat Fontos fogalmak

Részletesebben

Operációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit

Operációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu Budapest 200. október 10. Mit tanulunk ma? Szállítási feladat Megoldása Adott: Egy árucikk, T 1, T 2, T,..., T m termelőhely, melyekben rendre

Részletesebben

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Alkalmazásával 214 Monostori László egyetemi tanár Váncza József egyetemi docens 1 Probléma Igények

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 6. Előadás Áttekintés Kezdjük újra a klasszikus erőforrás allokációs problémával (katonák,

Részletesebben

Érzékenységvizsgálat

Érzékenységvizsgálat Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Méréselmélet MI BSc 1

Méréselmélet MI BSc 1 Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

Termelés- és szolgáltatásmenedzsment Részidős üzleti mesterszakok

Termelés- és szolgáltatásmenedzsment Részidős üzleti mesterszakok egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék kallo@mvt.bme.hu Tematika Bevezetés A termelési, szolgáltatási igény előrejelzése Alapfogalmak, az előrejelzési módszerek osztályozása Előrejelzési

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 8. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása

Részletesebben

Matematikai modellezés

Matematikai modellezés Matematikai modellezés Bevezető A diasorozat a Döntési modellek című könyvhöz készült. Készítette: Dr. Ábrahám István Döntési folyamatok matematikai modellezése Az emberi tevékenységben meghatározó szerepe

Részletesebben

Növényvédő szerek A B C D

Növényvédő szerek A B C D A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.

Részletesebben

1. Előadás Lineáris programozás

1. Előadás Lineáris programozás 1. Előadás Lineáris programozás Salamon Júlia Előadás II. éves gazdaság informatikus hallgatók számára Operációkutatás Az operációkutatás az alkalmazott matematika az az ága, ami bizonyos folyamatok és

Részletesebben

S Z Á L L Í T Á S I F E L A D A T

S Z Á L L Í T Á S I F E L A D A T Döntéselmélet S Z Á L L Í T Á S I F E L A D A T Szállítási feladat meghatározása Speciális lineáris programozási feladat. Legyen adott m telephely, amelyeken bizonyos fajta, tetszés szerint osztható termékből

Részletesebben

Mérés és modellezés Méréstechnika VM, GM, MM 1

Mérés és modellezés Méréstechnika VM, GM, MM 1 Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni

Részletesebben

Termelés- és szolgáltatásmenedzsment Részidős üzleti mesterszakok

Termelés- és szolgáltatásmenedzsment Részidős üzleti mesterszakok egyetemi docens Menedzsment és Vállalatgazdaságtan Tanszék kallo@mvt.bme.hu Tudnivalók Segédanyagok Jegyzet, előadásvázlatok, munkafüzet Példatár, konzultáció, képletgyűjtemény Elméleti kérdések kidolgozása

Részletesebben

Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék

Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Hálózati Folyamok Alkalmazásai Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Maximális folyam 7 7 9 3 2 7 source 8 4 7 sink 7 2 9 7 5 7 6 Maximális folyam feladat Adott [N, A] digráf (irányított

Részletesebben

További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás

További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben

b) Írja fel a feladat duálisát és adja meg ennek optimális megoldását!

b) Írja fel a feladat duálisát és adja meg ennek optimális megoldását! 1. Három nemnegatív számot kell meghatározni úgy, hogy az elsőt héttel, a másodikat tizennéggyel, a harmadikat hattal szorozva és ezeket a szorzatokat összeadva az így keletkezett szám minél nagyobb legyen.

Részletesebben

Mérés és modellezés 1

Mérés és modellezés 1 Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell

Részletesebben

Beszerzési és elosztási logisztika. Előadó: Telek Péter egy. adj. 2008/09. tanév I. félév GT5SZV

Beszerzési és elosztási logisztika. Előadó: Telek Péter egy. adj. 2008/09. tanév I. félév GT5SZV Beszerzési és elosztási logisztika Előadó: Telek Péter egy. adj. 2008/09. tanév I. félév GT5SZV 2. Előadás A beszerzési logisztika alapjai Beszerzési logisztika feladata/1 a termeléshez szükséges: alapanyagok

Részletesebben

Bevezetés Standard 1 vállalatos feladatok Standard több vállalatos feladatok 2017/ Szegedi Tudományegyetem Informatikai Intézet

Bevezetés Standard 1 vállalatos feladatok Standard több vállalatos feladatok 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 10. Előadás Vállalatelhelyezés Vállalatelhelyezés Amikor egy új telephelyet kell nyitni,

Részletesebben

EuroOffice Optimalizáló (Solver)

EuroOffice Optimalizáló (Solver) 1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer

Részletesebben

Tartalom. Matematikai alapok. Fontos fogalmak Termékgyártási példafeladat

Tartalom. Matematikai alapok. Fontos fogalmak Termékgyártási példafeladat 6. előadás Termelési és optimalizálási feladatok Dr. Szörényi Miklós, Dr. Kallós Gábor 2014 2015 1 Tartalom Matematikai alapok Matematikai modell Fontosabb feladattípusok Érzékenységvizsgálat Fontos fogalmak

Részletesebben

Logisztikai szimulációs módszerek

Logisztikai szimulációs módszerek Üzemszervezés Logisztikai szimulációs módszerek Dr. Juhász János Integrált, rugalmas gyártórendszerek tervezésénél használatos szimulációs módszerek A sztochasztikus külső-belső tényezőknek kitett folyamatok

Részletesebben

Vállalati modellek. Előadásvázlat. dr. Kovács László

Vállalati modellek. Előadásvázlat. dr. Kovács László Vállalati modellek Előadásvázlat dr. Kovács László Vállalati modell fogalom értelmezés Strukturált szervezet gazdasági tevékenység elvégzésére, nyereség optimalizálási céllal Jellemzői: gazdasági egység

Részletesebben

Megkülönböztetett kiszolgáló routerek az

Megkülönböztetett kiszolgáló routerek az Megkülönböztetett kiszolgáló routerek az Interneten Megkülönböztetett kiszolgálás A kiszolgáló architektúrák minősége az Interneten: Integrált kiszolgálás (IntServ) Megkülönböztetett kiszolgálás (DiffServ)

Részletesebben

Gyakorló feladatok (szállítási feladat)

Gyakorló feladatok (szállítási feladat) Gyakorló feladatok (szállítási feladat) 1. feladat Egy élelmiszeripari vállalat 3 konzervgyárából lát el 4 nagy bevásárlóközpontot áruval. Az egyes gyárak által szállítható mennyiségek és az áruházak igényei,

Részletesebben

Közgazdaságtan alapjai. Dr. Karajz Sándor Gazdaságelméleti Intézet

Közgazdaságtan alapjai. Dr. Karajz Sándor Gazdaságelméleti Intézet Közgazdaságtan alapjai Dr. Karajz Sándor Gazdaságelméleti 4. Előadás Az árupiac és az IS görbe IS-LM rendszer A rövidtávú gazdasági ingadozások modellezésére használt legismertebb modell az úgynevezett

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Outsourcing az optimalizálás lehetőségének egyik eszköze

Outsourcing az optimalizálás lehetőségének egyik eszköze Outsourcing az optimalizálás lehetőségének egyik eszköze Kissné Dézsi Erika MOL Csoport, Petrolkémia - Tiszai Vegyi Kombinát Nyrt. Logisztika menedzsmentvezető Debrecen, 2009.10.02. Outsourcing az optimalizálás

Részletesebben

Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000

Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000 A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.

Részletesebben

2651. 1. Tételsor 1. tétel

2651. 1. Tételsor 1. tétel 2651. 1. Tételsor 1. tétel Ön egy kft. logisztikai alkalmazottja. Ez a cég új logisztikai ügyviteli fogalmakat kíván bevezetni az operatív és stratégiai működésben. A munkafolyamat célja a hatékony készletgazdálkodás

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 1-2. Előadás Dr. Kulcsár Gyula egyetemi docens A tantárgy tematikája 1.

Részletesebben

Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6.

Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6. Programkonstrukciók Definíció Legyen π feltétel és S program A-n. A DO A A relációt az S-ből a π feltétellel képezett ciklusnak nevezzük, és (π, S)-sel jelöljük, ha 1. a / [π] : DO (a) = { a }, 2. a [π]

Részletesebben

A lineáris programozás alapjai

A lineáris programozás alapjai A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

Dinamikus programozás - Szerelőszalag ütemezése

Dinamikus programozás - Szerelőszalag ütemezése Dinamikus programozás - Szerelőszalag ütemezése A dinamikus programozás minden egyes részfeladatot és annak minden részfeladatát pontosan egyszer oldja meg, az eredményt egy táblázatban tárolja, és ezáltal

Részletesebben

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal

Részletesebben

Függvények növekedési korlátainak jellemzése

Függvények növekedési korlátainak jellemzése 17 Függvények növekedési korlátainak jellemzése A jellemzés jól bevált eszközei az Ω, O, Θ, o és ω jelölések. Mivel az igények általában nemnegatívak, ezért az alábbi meghatározásokban mindenütt feltesszük,

Részletesebben

Név KP Blokk neve KP. Logisztika I. 6 LOG 12 Dr. Kovács Zoltán Logisztika II. 6 Logisztika Dr. Kovács Zoltán

Név KP Blokk neve KP. Logisztika I. 6 LOG 12 Dr. Kovács Zoltán Logisztika II. 6 Logisztika Dr. Kovács Zoltán Név KP Blokk neve KP Felelıs vizsgáztató Kombinatorikus módszerek és algoritmusok 5 MAT 10 Dr. Tuza Zsolt Diszkrét és folytonos dinamikai rendszerek matematikai alapjai 5 Matematika Dr. Hartung Ferenc

Részletesebben

A szimplex algoritmus

A szimplex algoritmus . gyakorlat A szimplex algoritmus Az előző órán bevezetett feladat optimális megoldását fogjuk megvizsgálni. Ehhez új fogalmakat, és egy algoritmust tanulunk meg. Hogy az algoritmust alkalmazni tudjuk,

Részletesebben

operációkutatás példatár

operációkutatás példatár operációkutatás példatár . MŰVELETEK MÁTIXOKKAL. (Megoldás a.-es gyakorló ideóban.) Itt annak ezek a mátriok illete ektorok: A c B d * E f * Végezzük el a köetkező műeleteket: A B B E B c B A A E B d..

Részletesebben

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA SZDT-04 p. 1/30 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás

Részletesebben

Előadó: Dr. Kertész Krisztián

Előadó: Dr. Kertész Krisztián Előadó: Dr. Kertész Krisztián E-mail: k.krisztian@efp.hu A termelés költségei függenek a technológiától, az inputtényezők árától és a termelés mennyiségétől, de a továbbiakban a technológiának és az inputtényezők

Részletesebben

Makroökonómia. 8. szeminárium

Makroökonómia. 8. szeminárium Makroökonómia 8. szeminárium Jövő héten ZH avagy mi várható? Solow-modellből minden Konvergencia Állandósult állapot Egyensúlyi növekedési pálya Egy főre jutó Hatékonysági egységre jutó Növekedési ütemek

Részletesebben

1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! a, x 1 + x 2 2 2x 1 + x 2 6 x 1 + x 2 1. x 1 0, x 2 0

1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! a, x 1 + x 2 2 2x 1 + x 2 6 x 1 + x 2 1. x 1 0, x 2 0 Gyakorló feladatok Operációkutatás vizsgára 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! a, b, c, d, x 1 + x 2 2 2x 1 + x 2 6 x 1 + x 2 1 x 1 2, 5 z 1 = 4x 1 3x 2 max; z

Részletesebben

Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11.

Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11. 11. gyakorlat Branch-and-Bound a korlátozás és szétválasztás módszere 1. Az egészértéketű programozás 1.1. Bevezető Bizonyos feladatok modellezése kapcsán előfordulhat olyan eset, hogy a megoldás során

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Újrahasznosítási logisztika. 7. Gyűjtőrendszerek számítógépes tervezése

Újrahasznosítási logisztika. 7. Gyűjtőrendszerek számítógépes tervezése Újrahasznosítási logisztika 7. Gyűjtőrendszerek számítógépes tervezése A tervezési módszer elemei gyűjtési régiók számának, lehatárolásának a meghatározása, régiónként az 1. fokozatú gyűjtőhelyek elhelyezésének

Részletesebben

A DREHER hazai ellátási hálózatának optimalizálása

A DREHER hazai ellátási hálózatának optimalizálása Partner in Change A DREHER hazai ellátási hálózatának optimalizálása www.integratedconsulting.hu 1 Supply Chain Management Purchase Production Distribution Service Strategic Planning Supply Chain Optimization

Részletesebben

Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás

Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév

Részletesebben

Optimumkeresés számítógépen

Optimumkeresés számítógépen C Optimumkeresés számítógépen Az optimumok megtalálása mind a gazdasági életben, mind az élet sok más területén nagy jelentőségű. A matematikában számos módszert dolgoztak ki erre a célra, például a függvények

Részletesebben

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm

Részletesebben

Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával

Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával * Pannon Egyetem, M szaki Informatikai Kar, Számítástudomány

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Döntéselőkészítés. VII. előadás. Döntéselőkészítés. Egyszerű Kőnig-feladat (házasság feladat)

Döntéselőkészítés. VII. előadás. Döntéselőkészítés. Egyszerű Kőnig-feladat (házasság feladat) VII. előadás Legyenek adottak Egyszerű Kőnig-feladat (házasság feladat) I, I 2,, I i,, I m személyek és a J, J 2,, J j,, J n munkák. Azt, hogy melyik személy melyik munkához ért ( melyik munkára van kvalifikálva)

Részletesebben

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek

Részletesebben

Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További. 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén!

Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További. 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További példák találhatók az fk.sze.hu oldalon a letöltések részben a közlekedési operációkutatásban 1. Oldja meg grafikusan az alábbi feladatokat

Részletesebben

I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE

I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE Komplex termékek gyártására jellemző, hogy egy-egy termékbe akár több ezer alkatrész is beépül. Ilyenkor az alkatrészek általában sok különböző beszállítótól érkeznek,

Részletesebben

Készítette: Juhász Ildikó Gabriella

Készítette: Juhász Ildikó Gabriella 14. tétel Egy kft. logisztikai költséggazdálkodása a számviteli adatok szerint nem megfelelő, ezért a számviteli vezetővel együttműködve a logisztikai vezető számára meghatározták a szolgáltatási rendszer

Részletesebben

A dualitás elve. Készítette: Dr. Ábrahám István

A dualitás elve. Készítette: Dr. Ábrahám István A dalitás elve Készítette: Dr. Ábrahám István A dalitás fogalma, alapösszefüggései Definíció: Adott a lineáris programozás maimm feladata: 0 A b f()=c* ma Ekkor felírható a kővetkező minimm feladat: y

Részletesebben

TestLine - Gazdasági és jogi ismeretek Minta feladatsor

TestLine - Gazdasági és jogi ismeretek Minta feladatsor soport: Felnőtt Név: Ignécziné Sárosi ea Tanár: Kulics György Kidolgozási idő: 68 perc lapfogalmak 1. z alábbi táblázatban fogalmakat és azok meghatározásait találja. definíciók melletti cellák legördülő

Részletesebben

A termeléstervezés alapjai -- termelés és kapacitás tervezés

A termeléstervezés alapjai -- termelés és kapacitás tervezés A termeléstervezés alapjai -- termelés és kapacitás tervezés BMEGEGTMGTG 2015 Dr. Váncza József Gyártástudomány és -technológia Tanszék http://www.manuf.bme.hu Váncza J. 1 Termelési paradigmák [Koren,

Részletesebben

Operációkutatási modellek

Operációkutatási modellek Operációkutatási modellek Alkalmazott matematika A sorozat kötetei: Kóczy T. László Tikk Domonkos: Fuzzy rendszerek (2000) Elliott, J. R. Kopp, P. E.: Pénzpiacok matematikája (2000) Michelberger Szeidl

Részletesebben

Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak

Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak Dr. Koltai Tamás egyetemi tanár Menedzsment és Vállalatgazdaságtan Tanszék Tematika Kvantitatív eszközök használata Esettanulmányok

Részletesebben

Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék

Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Hálózati Folyamok Alkalmazásai Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Alsó felső korlátos maximális folyam 3,9 3 4,2 4,8 4 3,7 2 Transzformáljuk több forrást, több nyelőt tartalmazó

Részletesebben

Döntéselméleti modellek

Döntéselméleti modellek Döntéselméleti modellek gyakorlat Berta Árpád Követelmények A félév során 40 pont szerezhető 0-19 pont : elégtelen (1) 20-24 pont : elégséges (2) 25-29 pont : közepes (3) 30-34 pont : jó (4) 35-40 pont

Részletesebben

Számítógépes döntéstámogatás. Genetikus algoritmusok

Számítógépes döntéstámogatás. Genetikus algoritmusok BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as

Részletesebben

Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete)

Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete) Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete) C költség mátrix költség Munkákat hozzá kell rendelni gépekhez: egy munka-egy gép c(i,j) mennyi be kerül i-dik munka j-dik

Részletesebben

Készletgazdálkodás. 1. Előadás. K i e z? K i e z? Gépészmérnök (BME), Gazdasági mérnök (Németo.) Magyar Projektmenedzsment Szövetség.

Készletgazdálkodás. 1. Előadás. K i e z? K i e z? Gépészmérnök (BME), Gazdasági mérnök (Németo.) Magyar Projektmenedzsment Szövetség. Készletgazdálkodás 1. Előadás K i e z? Kelemen Tamás BME Gépészmérnök (BME), Gazdasági mérnök (Németo.) Magyar Projektmenedzsment Szövetség K i e z? Kelemen Tamás Elérhetőség T. II. 4. Tel: 463-3775 Fax:

Részletesebben

Kvantitatív módszerek

Kvantitatív módszerek Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék E-mail: kovacsz@gtk.uni-pannon.hu URL: http://almos/~kovacsz Mennyiségi problémák megoldása analitikus numerikus szimuláció

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Programozási módszertan

Programozási módszertan 1 Programozási módszertan 1. Alapfogalmak Feldhoffer Gergely 2012 Féléves tananyag terve 2 Program helyességének bizonyítása Reprezentáció Logikai-matematikai eszköztár Programozási tételek bizonyítása

Részletesebben

(Diszkrét idejű Markov-láncok állapotainak

(Diszkrét idejű Markov-láncok állapotainak (Diszkrét idejű Markov-láncok állapotainak osztályozása) March 21, 2019 Markov-láncok A Markov-láncok anaĺızise főként a folyamat lehetséges realizációi valószínűségeinek kiszámolásával foglalkozik. Ezekben

Részletesebben

OPERÁCIÓKUTATÁS, AZ ELFELEDETT TUDOMÁNY A LOGISZTIKÁBAN (A LOGISZTIKAI CÉL ELÉRÉSÉNEK ÉRDEKÉBEN)

OPERÁCIÓKUTATÁS, AZ ELFELEDETT TUDOMÁNY A LOGISZTIKÁBAN (A LOGISZTIKAI CÉL ELÉRÉSÉNEK ÉRDEKÉBEN) OPERÁCIÓKUTATÁS, AZ ELFELEDETT TUDOMÁNY A LOGISZTIKÁBAN (A LOGISZTIKAI CÉL ELÉRÉSÉNEK ÉRDEKÉBEN) Fábos Róbert 1 Alapvető elvárás a logisztika területeinek szereplői (termelő, szolgáltató, megrendelő, stb.)

Részletesebben

Adaptív menetrendezés ADP algoritmus alkalmazásával

Adaptív menetrendezés ADP algoritmus alkalmazásával Adaptív menetrendezés ADP algoritmus alkalmazásával Alcím III. Mechwart András Ifjúsági Találkozó Mátraháza, 2013. szeptember 10. Divényi Dániel Villamos Energetika Tanszék Villamos Művek és Környezet

Részletesebben

Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak

Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak Dr. Koltai Tamás egyetemi tanár Menedzsment és Vállalatgazdaságtan Tanszék Tematika Kvantitatív eszközök használata Esettanulmányok

Részletesebben

egy szisztolikus példa

egy szisztolikus példa Automatikus párhuzamosítás egy szisztolikus példa Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus

Részletesebben

Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus

Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus Csíkszereda IRT-. kurzus 3. Előadás: A mohó algoritmus 1 Csíkszereda IRT. kurzus Bevezetés Az eddig tanult algoritmus tipúsok nem alkalmazhatók: A valós problémák nem tiszta klasszikus problémák A problémák

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben