Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További. 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén!

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További. 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén!"

Átírás

1 Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További példák találhatók az fk.sze.hu oldalon a letöltések részben a közlekedési operációkutatásban 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! a, b, c, d, x 1 + x 2 2 2x 1 + x 2 6 x 1 + x 2 1 x 1 2, 5 z 1 = 4x 1 3x 2 max; z 2 = 4x 1 3x 2 min; z 3 = 4x 1 + 2x 2 max; 11x 1 7x x 1 + 9x x 1 + x 2 3 4x 1 + 7x 2 14 z 1 = 8x x 2 max; z 2 = 8x x 2 min; z 3 = 2x 1 + 8x 2 max; 3x 1 + 2x 2 6 x 1 + 6x 2 6 x x 1 + x 2 5 z 1 = 6x 1 + 4x 2 max; z 2 = 6x 1 + 4x 2 min; z 3 = x 1 2x 2 max; x 1 x 2 2 x 1 + x 2 2 x 1 + 3x 2 4 x 1 + x 2 8 z 1 = x 1 + 2x 2 max; z 2 = x 1 + 2x 2 min; z 3 = x 1 2x 2 max;

2 2. Oldja meg az alábbi feladatokat a szimplex módszerrel! Az összes optimális megoldást adja meg! Írja fel a feladat duálisát, és a duális feladat optimális megoldását is adja meg! a, b, c, d, 4x 1 + 4x 2 2x 3 12 x 1 + x 3 8 x 1 + x 2 + 1x 3 12, x 3 0 2x 1 + 6x 2 + 7x 3 max x 1 + x 3 40 x 2 + x x 1 + 2x 2 2x 3 36, x 3 0 4x 1 + 3x 3 max x 1 + 2x 2 + x 4 10 x 2 + x 3 12 x 1 + 2x 2 + x 3 + 2x 4 24, x 3 0, x 4 0 3x 1 + 4x 2 + 3x 3 + 5x 4 max x 1 x 2 + x 3 8 x 2 + x 3 x 4 11 x 1 + 2x 2 x 3 + x 4 10, x 3 0, x 4 0 6x 1 + 2x 2 + 5x 3 + 7x 4 max 3. Az alábbi szállítási feladatokban a raktárakból (R jelöli őket) szállítunk a felvevőkhöz (F -fel jelölve)! Az egységnyi szállítás költségét a következő táblázatok tartalmazzák! Határozza meg az optimális megoldást, és a hozzá tartozó szállítási összköltséget! A kiinduló megoldást a a,sorminimum; b, oszlopminimum c, Vogel-Korda módszerrel határozza meg! F 1 F 2 F 3 kapacitás R R R igények F 1 F 2 F 3 kapacitás R R R igények

3 F 1 F 2 F 3 kapacitás R R R igények F 1 F 2 F 3 kapacitás R R R igények a, Oldja meg a 3/a feladatot azzal a feltétellel, hogy R 1 -ből F 2 -be és F 3 -ba is legalább 20-at kell szállítani! b, Oldja meg a 3/b feladatot azzal a feltétellel, hogy R 3 -ból mindegyik felvevőhöz legalább 5 egységet el kell szállítani!! c, Oldja meg a 3/c feladatot azzal a feltétellel, hogy a raktárakból csak négyesével lehet a felvevőkhöz szállítani (azaz csak 0,4,8, 12 stb. árut szállíthatunk)! d, Oldja meg a 3/d feladatot azzal a feltétellel, hogy a raktárakból csak ötösével lehet a felvevőkhöz szállítani (azaz csak 0,5,10,15 stb. árut szállíthatunk)! 5. 5 alkatrészt kell megmunkálni 5 gép valamelyikén. Minden gépen csak 1 alkatrészt munkálhatunk meg, és minden alkatrészt csak 1 gépen munkálhatunk meg. A következő táblázat az alkatrészeknek az egyes gépeken való megmunkálási idejét jelzi percben megadva (az i. sor j. eleme az i. alkatrésznek a megmunkálási ideje a j. gépen. Melyik alkatrészt melyik gépen kell megmunkálni, hogy a megmunkálási idők összege minimális legyen? (Oldja meg a hozzárendelési feladatnál tanult módszerrel!) a, b, c,

4 d, a, Oldja meg az 5/a/b/c/d feladatokat úgy, hogy a 3. alkatrészt nem munkálhatjuk meg az 5. gépen! b, Oldja meg az 5/a/b/c/d feladatokat úgy, hogy a 2. alkatrészt vagy a második vagy a harmadik gépen kell megmunkálnunk! c, Az 5. feladatban elromlik a negyedik gép, a harmadik gépen viszont két alkatrészt is megmunkálhatunk. Oldja meg ezzel a feltétellel az 5/a/b/c/d feladatokat! 7. Egy vállalatnak 3 helyszínre kell kamiont küldenie. Mindegyik helyszínre pontosan két kamionnak kell mennie; egy kamion csak egy helyszínre mehet. A feladatra 6 kamion áll rendelkezésre, melyeknek az egyes helyszínektől való távolságát (10 km-ben) a következő táblázat tartalmazza: h 1 h 2 h 3 k k k k k k Melyik kamiont melyik helyszínre küldjük, hogy a kamionok által megtett távolságok összege minimális legyen? 8. Egy csapatversenyen 6 fős csapatok veszenek részt. A versenyen 6 feladat van. Mindegyik csapattagnak pontosan az egyik feladatot kell megcsinálnia. A magyar csapat esetén az egyes csapattagoknak az egyes feladatoknál várható pontszámát a következő táblázat tartalmazza (az i. sor j. eleme az i. csapattagnak a j. feladatnál várható pontszáma): A 2. csapattag sem a 4., sem a 6. feladatot nem szeretné csinálni. Melyik feladatot melyik csapattag végezze el, hogy a várható összpontszám maximális legyen? 9. Egy ügyfélszolgálaton 1 ablaknál várják az ügyfeleket. Az ügyfelek Poisson foyamat szerint érkeznek, óránként átlagosan 5 fő. Az ügyintézés átlagos ideje 10 perc. a, Mennyi a valószínűsége, hogy fél óra latt legalább 3 ügyfél érkezik? b, Mennyi az irodában tartózkodó személyek átlagos száma? c, Átlagosan mennyit időt tölt egy ügyfél az irodában? d, Átlagosan hányan várakoznak? e, Mennyi az átlagos várakozási idő? f, Véletlenszerűen érkezve mennyi a valószínűsége, hogy csak 1 ember van előttünk?

5 10. Egy ügyfélszolgálaton 1 ablaknál várják az ügyfeleket. Az ügyfelek Poisson foyamat szerint érkeznek, a kiszolgálási idő exponenciális eloszlású. Átlagosan 2 ügyfél tartózkodik az irodában. a, Átlagosan hányan várakoznak? b, Véletlenszerűen érkezve mennyi a valószínűsége, hogy egyből sorra kerülünk? 11. Egy ügyfélszolgálaton 1 ablaknál várják az ügyfeleket. Az ügyfelek Poisson foyamat szerint érkeznek, a kiszolgálási idő exponenciális eloszlású. Az ügyfélszolgálaton lévő ügyfelek átlagos száma négyszerese a várakozók átlagos számának. Az átlagos várakozási idő 10 perc. a, Átlagosan mennyi időt tölt egy ügyfél az irodában? b, Átlagosan hányan várakoznak? c, Mennyi az átlagos várakozási idő? d, Véletlenszerűen érkezve mennyi a valószínűsége, hogy egyből sorra kerülünk? e, Mennyi az átlagos kiszolgálási idő? 12. Egy kis postán egy alkalmazott dolgozik. Az ügyfelek Poisson foyamat szerint érkeznek, kétóránként átlagosan 16-an. Legfeljebb hány perc lehet az átlagos kiszolgálási idő, ha azt akarjuk, hogy az átlagos várakozási idő ne legyen 5 percnél több? 13. Egy kis postán egy alkalmazott dolgozik. Az ügyfelek Poisson foyamat szerint érkeznek. Tudjuk, hogy átlagosan 3 ember várakozik, és az átlagos várakozási idő 8 perc. a, Átlagosan mennyi időt tölt egy ügyfél az irodában? b, Átlagosan hány ügyfél van a postán? c, Véletlenszerűen érkezve mennyi a valószínűsége, hogy legfeljebb 2 ember van előttünk? 14. Egy raktárnál a raktározás költsége 50Ft/db,nap. A megrendelés fix költsége Ft. Egy termék rendelési ára 600 Ft. A napi fogyás 80 darab. A hiány költsége 100 Ft/db,nap. a, Ha a hiány nem megengedett, akkor mennyi az optimális rendelési tétel nagysága, és mennyi a periódusidő? Mennyi ebben az esetben az átlagköltség? b, Az optimális rendelési tételnagyságnál mennyi az átlagos napi költség? c, Mennyivel növekszik az átlagos napi költség, ha az optimálisnál 200-zal több terméket rendelünk? d, Mennyi lesz az optimális rendelési tételnagyság, ha hiányt is megengedünk? Mennyi lesz ekkor az átlagköltség? Mennyi lesz a maximális raktárkészlet? 15. Egy raktárnál a raktározás költsége 10Ft/db,nap. A megrendelés fix költsége Ft. A napi fogyás 50 darab. A termék rendelési egységára 400 Ft. A hiány költsége 20Ft/db,nap a, Hiányt nem megengedve átlagköltség szempontjából melyik a kedvezőbb: ha mindig 2400, vagy ha mindig 2800 terméket rendelünk? b, Ha hiányt is megngedünk akkor a következő két eset közül melyik a kedvezőbb: 1. Mindig 4000 db-ot rendelünk, és a maximális raktárkészlet 3000 darab lesz. 2. Mindig 3500 db-ot rendelünk, és a maximális raktárkészlet 2000 darab lesz. 16. Hogyan változik az optimális rendelési tétel nagysága, illetve a periódusidő, ha hiányt nem engedünk meg, és a, a raktározási költség a 4-szeresére nő b, a rendelési költség a kétszerese lesz c, a raktározási költség a 4-szerese, a rendelési költség a kétszerese lesz? 17. Egy raktárnál a raktározási költség 10 FT/db,nap, a hiány költsége 15 Ft/db,nap. Hogyan változik az optimális rendelési tétel nagysága, illetve a periódusidő a,ha hiányt nem engedünk meg, és a 1, a raktározási költség a 4-szeresére nő

6 a 2, a rendelési költség a kétszerese lesz a 3 a raktározási költség a 4-szerese, a rendelési költség a kétszerese lesz? Hogyan változik az optimális rendelési tétel nagysága, illetve a periódusidő b,ha megengedünk hiányt, és b 1, a hiány költsége 30FT/db,nap-ra változik; b 2, a rendelési költség a kétszerese lesz b 3 a raktározási költség 5 FT/db,nap-ra csökken?

1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! a, x 1 + x 2 2 2x 1 + x 2 6 x 1 + x 2 1. x 1 0, x 2 0

1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! a, x 1 + x 2 2 2x 1 + x 2 6 x 1 + x 2 1. x 1 0, x 2 0 Gyakorló feladatok Operációkutatás vizsgára 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! a, b, c, d, x 1 + x 2 2 2x 1 + x 2 6 x 1 + x 2 1 x 1 2, 5 z 1 = 4x 1 3x 2 max; z

Részletesebben

Operációkutatás példatár

Operációkutatás példatár 1 Operációkutatás példatár 2 1. Lineáris programozási feladatok felírása és megoldása 1.1. Feladat Egy gazdálkodónak azt kell eldöntenie, hogy mennyi kukoricát és búzát vessen. Ha egységnyi földterületen

Részletesebben

Gyakorló feladatok (szállítási feladat)

Gyakorló feladatok (szállítási feladat) Gyakorló feladatok (szállítási feladat) 1. feladat Egy élelmiszeripari vállalat 3 konzervgyárából lát el 4 nagy bevásárlóközpontot áruval. Az egyes gyárak által szállítható mennyiségek és az áruházak igényei,

Részletesebben

Gyakorló feladatok a Termelésszervezés tárgyhoz MBA mesterszak

Gyakorló feladatok a Termelésszervezés tárgyhoz MBA mesterszak Gazdaság- és Társadalomtudományi Kar Menedzsment és Vállalatgazdaságtan Tanszék Gyakorló feladatok a Termelésszervezés tárgyhoz MBA mesterszak Készítette: dr. Koltai Tamás egyetemi tanár Budapest, 2012.

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 16. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS,

Részletesebben

b) Írja fel a feladat duálisát és adja meg ennek optimális megoldását!

b) Írja fel a feladat duálisát és adja meg ennek optimális megoldását! 1. Három nemnegatív számot kell meghatározni úgy, hogy az elsőt héttel, a másodikat tizennéggyel, a harmadikat hattal szorozva és ezeket a szorzatokat összeadva az így keletkezett szám minél nagyobb legyen.

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga B csoport Budapesti Corvinus Egyetem 2007. január 16. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

10. Exponenciális rendszerek

10. Exponenciális rendszerek 1 Exponenciális rendszerek 1 Egy boltba exponenciális időközökkel átlagosan percenként érkeznek a vevők két eladó, ndrás és éla, átlagosan 1 illetve 6 vevőt tud óránként kiszolgálni mennyiben egy vevő

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

a = 2 + [ i] b = ahol 1 i 162 a hallgató sorszáma a csatolt névsorban, [x] az x szám

a = 2 + [ i] b = ahol 1 i 162 a hallgató sorszáma a csatolt névsorban, [x] az x szám Döntéselmélet házi feladat, 2011-12 tanév II. félév A házi feladat beadása az aláírás feltétele. A házi feladatra adott minősítés az (anyag első felére vonatkozó) jegyben 40% súllyal szerepel, ennek megfelelően

Részletesebben

Operációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit

Operációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu Budapest 200. október 10. Mit tanulunk ma? Szállítási feladat Megoldása Adott: Egy árucikk, T 1, T 2, T,..., T m termelőhely, melyekben rendre

Részletesebben

S Z Á L L Í T Á S I F E L A D A T

S Z Á L L Í T Á S I F E L A D A T Döntéselmélet S Z Á L L Í T Á S I F E L A D A T Szállítási feladat meghatározása Speciális lineáris programozási feladat. Legyen adott m telephely, amelyeken bizonyos fajta, tetszés szerint osztható termékből

Részletesebben

Gyakorló feladatok a 2. zh-ra MM hallgatók számára

Gyakorló feladatok a 2. zh-ra MM hallgatók számára Gyakorló feladatok a. zh-ra MM hallgatók számára 1. Egy vállalat termelésének technológiai feltételeit a Q L K függvény írja le. Rövid távon a vállalat 8 egységnyi tőkét használ fel. A tőke ára 000, a

Részletesebben

A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása

A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása azdaság- és Társadalomtudományi Kar Ipari Menedzsment és Vállakozásgazdaságtan Tanszék A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása Készítette: dr. Koltai Tamás egyetemi tanár Budapest,.

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

Szombathelyre és Kapuvárra rendelnek 8 autót, Pápára és Sárvárra pedig 10-t. Az egyes városok

Szombathelyre és Kapuvárra rendelnek 8 autót, Pápára és Sárvárra pedig 10-t. Az egyes városok Beküldendő Vezeteknev-keresztnev.doc nevű fileban a feladat matematikai modellje és megoldása, és Vezeteknev-keresztnev.gms fileban a gams file. Határidő dec. 5. 20 óra F1. Egy cég le akarja cserélni az

Részletesebben

Ütemezés gyakorlat. Termelésszervezés

Ütemezés gyakorlat. Termelésszervezés Ütemezés gyakorlat egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Feladattípusok Általános ütemezés Egygépes ütemezési problémák Párhuzamos erőforrások ütemezése Flow-shop és job-shop ütemezés

Részletesebben

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2?

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2? HIPERGEO. BINOM. POISSON 4.1. Egy üzletben 100-an vásárolnak, közülük 80-an rendelkeznek bankkártyával. A pénztárnál 10-en állnak sorba, mi a valószínűsége, hogy 7-nek lesz bankkártyája? 4.2. Egy üzletben

Részletesebben

Készítette: Juhász Ildikó Gabriella

Készítette: Juhász Ildikó Gabriella 14. tétel Egy kft. logisztikai költséggazdálkodása a számviteli adatok szerint nem megfelelő, ezért a számviteli vezetővel együttműködve a logisztikai vezető számára meghatározták a szolgáltatási rendszer

Részletesebben

SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE

SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE KÖRUTAZÁSI MODELL AVAGY AZ UTAZÓÜGYNÖK PROBLÉMÁJA Induló

Részletesebben

Győr Sopron Zalaegerszeg

Győr Sopron Zalaegerszeg Beküldendő Vezeteknev-keresztnev.doc nevű fileban a feladat matematikai modellje és szöveges (!)megoldása, és Vezeteknev-keresztnev.gms fileban a gams file. A doc file elejének tartalmaznia kell a beküldő

Részletesebben

Geometriai valo szí nű se g

Geometriai valo szí nű se g Geometriai valo szí nű se g Szűk elméleti áttekintő Klasszikus valószínűség: Geometriai valószínűség: - 1 dimenzióban: - dimenzióban: - + dimenzióban: jó esetek összes eset jó szakaszok teljes szakasz

Részletesebben

Anyagszükséglet-tervezés gyakorlat. Termelésszervezés

Anyagszükséglet-tervezés gyakorlat. Termelésszervezés Anyagszükséglet-tervezés gyakorlat egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Feladattípusok Egyszerű tételnagyság-képzési szabályok, heurisztikák, kapacitáskorlátos esetek (3 komponens,

Részletesebben

GYAKORLÓ FELADATOK 4: KÖLTSÉGEK ÉS KÖLTSÉGFÜGGVÉNYEK

GYAKORLÓ FELADATOK 4: KÖLTSÉGEK ÉS KÖLTSÉGFÜGGVÉNYEK GYAKORLÓ FELADATOK 4: KÖLTSÉGEK ÉS KÖLTSÉGFÜGGVÉNYEK 1. Egy terméket rövid távon a függvény által leírt költséggel lehet előállítani. A termelés határköltségét az összefüggés adja meg. a) Írja fel a termelés

Részletesebben

Gyakorlat. Szokol Patricia. September 24, 2018

Gyakorlat. Szokol Patricia. September 24, 2018 Gyakorlat (Geometriai valószínűség, feltételes valószínűség) September 24, 2018 Geometriai valószínűség 1 Az A és B helységet 5 km hosszú telefonvezeték köti össze. A vezeték valahol meghibásodik. A meghibásodás

Részletesebben

Villamos autókból álló taxi flotta számára létesítendő töltőállomások modellezése

Villamos autókból álló taxi flotta számára létesítendő töltőállomások modellezése Villamos autókból álló taxi flotta számára létesítendő töltőállomások modellezése 62. Vándorgyűlés, konferencia és kiállítás Siófok, 2015. 09. 16-18. Farkas Csaba egyetemi tanársegéd Dr. Dán András professor

Részletesebben

Logisztikai szimulációs módszerek

Logisztikai szimulációs módszerek Üzemszervezés Logisztikai szimulációs módszerek Dr. Juhász János Integrált, rugalmas gyártórendszerek tervezésénél használatos szimulációs módszerek A sztochasztikus külső-belső tényezőknek kitett folyamatok

Részletesebben

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket!

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket! 1. Név:......................... Egy szabályos pénzérmét feldobunk, ha az els½o FEJ az i-edik dobásra jön, akkor a játékos nyereménye ( 1) i i forint. Vizsgálja szimulációval a játékot, különböz½o induló

Részletesebben

Készletgazdálkodás. 1. Előadás. K i e z? K i e z? Gépészmérnök (BME), Gazdasági mérnök (Németo.) Magyar Projektmenedzsment Szövetség.

Készletgazdálkodás. 1. Előadás. K i e z? K i e z? Gépészmérnök (BME), Gazdasági mérnök (Németo.) Magyar Projektmenedzsment Szövetség. Készletgazdálkodás 1. Előadás K i e z? Kelemen Tamás BME Gépészmérnök (BME), Gazdasági mérnök (Németo.) Magyar Projektmenedzsment Szövetség K i e z? Kelemen Tamás Elérhetőség T. II. 4. Tel: 463-3775 Fax:

Részletesebben

Munkafüzet a Termelés- és szolgáltatásmenedzsment tárgyhoz

Munkafüzet a Termelés- és szolgáltatásmenedzsment tárgyhoz Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet Menedzsment és Vállalatgazdaságtan Tanszék Munkafüzet a Termelés- és szolgáltatásmenedzsment

Részletesebben

További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék

További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék További forgalomirányítási és szervezési játékok 1. Nematomi forgalomirányítási játék A forgalomirányítási játékban adott egy hálózat, ami egy irányított G = (V, E) gráf. A gráfban megengedjük, hogy két

Részletesebben

Termelés- és szolgáltatásmenedzsment Részidős üzleti mesterszakok

Termelés- és szolgáltatásmenedzsment Részidős üzleti mesterszakok egyetemi docens Menedzsment és Vállalatgazdaságtan Tanszék kallo@mvt.bme.hu Tudnivalók Segédanyagok Jegyzet, előadásvázlatok, munkafüzet Példatár, konzultáció, képletgyűjtemény Elméleti kérdések kidolgozása

Részletesebben

Bevezetés Standard 1 vállalatos feladatok Standard több vállalatos feladatok 2017/ Szegedi Tudományegyetem Informatikai Intézet

Bevezetés Standard 1 vállalatos feladatok Standard több vállalatos feladatok 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 10. Előadás Vállalatelhelyezés Vállalatelhelyezés Amikor egy új telephelyet kell nyitni,

Részletesebben

A BUBU-t kell választani!!!!!!!!!!!!!!!

A BUBU-t kell választani!!!!!!!!!!!!!!! Gyakorlási mix Szállító értékelés TATU KFT. 400 BÓL 12 ROSSZ MINŐSÉG, 6 KÉSVE KSZÁLLÍTOTT, ÁR A 35 $, AZ ADOTT TERMÉK LEGOLCSÓBB ÁRA A PIACON 25 $. BUBU KFT. 350 DB TERMÉKBŐL 30 DB-OT KÉSVE SZÁLLÍTOTT,2

Részletesebben

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ.

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ. Termelői magatartás II. A költségfüggvények: A költségek és a termelés kapcsolatát mutatja, hogyan változnak a költségek a termelés változásával. A termelési függvényből vezethető le, megkülönböztetünk

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

NEVEZETES FOLYTONOS ELOSZLÁSOK

NEVEZETES FOLYTONOS ELOSZLÁSOK Bodó Beáta - MATEMATIKA II 1 NEVEZETES FOLYTONOS ELOSZLÁSOK EXPONENCIÁLIS ELOSZLÁS 1. A ξ valószínűségi változó eponenciális eloszlású 80 várható értékkel. (a) B Adja meg és ábrázolja a valószínűségi változó

Részletesebben

A 29/2016 (VIII. 26.) NGM valamint a 25/2017. (VIII.31.) NGM rendelet szakmai és vizsgakövetelménye alapján.

A 29/2016 (VIII. 26.) NGM valamint a 25/2017. (VIII.31.) NGM rendelet szakmai és vizsgakövetelménye alapján. A 29/2016 (VIII. 26.) NGM valamint a 25/2017. (VIII.31.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 841 11 Logisztikai és szállítmányozási ügyintéző

Részletesebben

IDEGENNYELVŰ ÜGYVITELI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

IDEGENNYELVŰ ÜGYVITELI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ IDEGENNYELVŰ ÜGYVITELI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ 1 / 7 I. MINTAFELADAT Választást, rövid, egyszerű választ igénylő feladatok. 1. Sorolja fel

Részletesebben

Termelés- és szolgáltatásmenedzsment Részidős üzleti mesterszakok

Termelés- és szolgáltatásmenedzsment Részidős üzleti mesterszakok egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék kallo@mvt.bme.hu Tematika Bevezetés A termelési, szolgáltatási igény előrejelzése Alapfogalmak, az előrejelzési módszerek osztályozása Előrejelzési

Részletesebben

Beszerzési és elosztási logisztika. Előadó: Telek Péter egy. adj. 2008/09. tanév I. félév GT5SZV

Beszerzési és elosztási logisztika. Előadó: Telek Péter egy. adj. 2008/09. tanév I. félév GT5SZV Beszerzési és elosztási logisztika Előadó: Telek Péter egy. adj. 2008/09. tanév I. félév GT5SZV 7. Előadás Készáruraktár készletmenedzsmentje A készletmenedzsment feladata A készletmenedzsment feladata

Részletesebben

f x 1 1, x 2 1. Mivel > 0 lehetséges minimum. > 0, így f-nek az x 2 helyen minimuma van.

f x 1 1, x 2 1. Mivel > 0 lehetséges minimum. > 0, így f-nek az x 2 helyen minimuma van. 159 5. SZÉLSŐÉRTÉKSZÁMÍTÁS = + 1, R + 1 f = 1 R +,, f = R +, 1 Az 1 = 0 egyenlet gyökei : 1 1, 1. Mivel ezért az 1 helyen van az f-nek minimuma. 5.1. f f 1 0, 5.. Legyen az egyik szám, a másik pedig A.

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben

2. hét. 8. hét Elrejelzett igény Korábbi rendelés Készlet Rendelés beérkezés Rendelés feladás. 3. hét

2. hét. 8. hét Elrejelzett igény Korábbi rendelés Készlet Rendelés beérkezés Rendelés feladás. 3. hét Utolsó módosítás dátuma: szombat, 200 november Készletek - Id-vezérelt rendelési pont - 1 Az id-vezérelt rendelési rendszert (IVR) tulajdonképpen az MRP-re alapul, hiszen a becsült igényeket onnan kapjuk.

Részletesebben

Az általános szerződési feltételek ( ASZF) megtekintéséhez és letöltéséhez kattintson ide!

Az általános szerződési feltételek ( ASZF) megtekintéséhez és letöltéséhez kattintson ide! Webáruház használata, kezelési segédlet, - hasznos vásárlási, szállítási információk, módok, díjak - Általános szerződési feltételek (ASZF) - - Az áruházban feltüntetett árak bruttó árak, tehát áfával

Részletesebben

Mikroökonómia előadás. Dr. Kertész Krisztián

Mikroökonómia előadás. Dr. Kertész Krisztián Mikroökonómia előadás Dr. Kertész Krisztián k.krisztian@efp.hu A TERMELÉS KÖLTSÉGEI ÁRBEVÉTEL A termelés gazdasági költsége Gazdasági Explicit költség profit Gazdasági profit Számviteli költség Implicit

Részletesebben

NAGYFESZÜLTSÉGŰ ALÁLLOMÁSI SZERELVÉNYEK. Csősín csatlakozó. (Kivonatos katalógus) A katalógusban nem szereplő termékigény esetén forduljon irodánkhoz.

NAGYFESZÜLTSÉGŰ ALÁLLOMÁSI SZERELVÉNYEK. Csősín csatlakozó. (Kivonatos katalógus) A katalógusban nem szereplő termékigény esetén forduljon irodánkhoz. NAGYFESZÜLTSÉGŰ ALÁLLOMÁSI SZERELVÉNYEK Csősín csatlakozó (Kivonatos katalógus) A katalógusban nem szereplő termékigény esetén forduljon irodánkhoz. 1 A katalógus használata A táblázat tetején szerepel

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

Előadó: Dr. Kertész Krisztián

Előadó: Dr. Kertész Krisztián Előadó: Dr. Kertész Krisztián E-mail: k.krisztian@efp.hu A termelés költségei függenek a technológiától, az inputtényezők árától és a termelés mennyiségétől, de a továbbiakban a technológiának és az inputtényezők

Részletesebben

Közlekedési áramlatok MSc. Csomóponti-, útvonali eljutási lehetőségek minősítése

Közlekedési áramlatok MSc. Csomóponti-, útvonali eljutási lehetőségek minősítése Közlekedési áramlatok MSc Csomóponti-, útvonali eljutási lehetőségek minősítése minősítése jogszabályi esetben Az alárendelt áramlatból egy meghatározott forgalmi művelet csak akkor végezhető el, ha a

Részletesebben

1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI

1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI 1/12 Operációkutatás 5. gyakorlat Hiperbolikus programozási feladat megoldása Pécsi Tudományegyetem PTI 2/12 Ha az Hiperbolikus programozási feladat feltételek teljesülése mellett a A x b x 0 z(x) = c

Részletesebben

Számítógépes Hálózatok 2010

Számítógépes Hálózatok 2010 Számítógépes Hálózatok 2010 5. Adatkapcsolati réteg MAC, Statikus multiplexálás, (slotted) Aloha, CSMA 1 Mediumhozzáférés (Medium Access Control -- MAC) alréteg az adatkapcsolati rétegben Statikus multiplexálás

Részletesebben

Érzékenységvizsgálat

Érzékenységvizsgálat Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális

Részletesebben

ANYAGÁRAMLÁS ÉS MŰSZAKI LOGISZTIKA

ANYAGÁRAMLÁS ÉS MŰSZAKI LOGISZTIKA ANYAGÁRAMLÁS ÉS MŰSZAKI LOGISZTIKA Raktár készletek, raktározási folyamato ELŐADÁS I. é. Szabó László tanársegéd BME Közlekedésmérnöki és Járműmérnöki Kar Anyagmozgatási és Logisztikai Rendszerek Tanszék

Részletesebben

TERMELÉSIRÁNYÍTÁS A HERBÁRIUM2000 KFT.-BEN

TERMELÉSIRÁNYÍTÁS A HERBÁRIUM2000 KFT.-BEN TERMELÉSIRÁNYÍTÁS A HERBÁRIUM2000 KFT.-BEN Miben különbözik egy KKV és egy Multi optimalizálása? Tartalom Herbárium 2000. Kft bemutatása A készlet és a termelésirányítás kezelése a projekt előtt, problémák

Részletesebben

Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék

Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Hálózati Folyamok Alkalmazásai Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Maximális folyam 7 7 9 3 2 7 source 8 4 7 sink 7 2 9 7 5 7 6 Maximális folyam feladat Adott [N, A] digráf (irányított

Részletesebben

Pénzügy menedzsment. Hosszú távú pénzügyi tervezés

Pénzügy menedzsment. Hosszú távú pénzügyi tervezés Pénzügy menedzsment Hosszú távú pénzügyi tervezés Egy vállalat egyszerűsített mérlege és eredménykimutatása 2007-ben és 2008-ban a következőképpen alakult: Egyszerűsített eredménykimutatás (2008) Értékesítés

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék

Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Hálózati Folyamok Alkalmazásai Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Alsó felső korlátos maximális folyam 3,9 3 4,2 4,8 4 3,7 2 Transzformáljuk több forrást, több nyelőt tartalmazó

Részletesebben

Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)

Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok) Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)./ Egy televízió készülék meghibásodásainak átlagos száma óra alatt. A meghibásodások száma a vizsgált időtartam hosszától függ. Határozzuk

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

Beszerzési logisztikai folyamat tervezése

Beszerzési logisztikai folyamat tervezése 1 2 Beszerzési logisztikai folyamat tervezése 3 1. Igények meghatározása, előrejelzése. 2. Beszerzési piac feltárása. 3. Ajánlatkérés. 4. Ajánlatok értékelése, beszállítók kiválasztása. 5. Áruk megrendelése.

Részletesebben

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek Révész Sándor reveszsandor.wordpress.com 2011. december 20. Elmélet Termelési függvény Feladatok Parciális termelési függvény Adott a következ

Részletesebben

Növényvédő szerek A B C D

Növényvédő szerek A B C D A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.

Részletesebben

Készletezés. A készletezés hosszú távú döntései (a készletek nagysága és összetétele)

Készletezés. A készletezés hosszú távú döntései (a készletek nagysága és összetétele) Készletezés Árukészlet: a forgalom lebonyolítását biztosító áruállomány, árumennyiség. Készletezés: a készletekkel kapcsolatos döntések és gyakorlati teendők összessége. A készletezés hosszú távú döntései

Részletesebben

A lineáris programozás alapjai

A lineáris programozás alapjai A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris

Részletesebben

Dr. Fodor Zita egyetemi docens

Dr. Fodor Zita egyetemi docens Záróvizsga tételek Dr. Fodor Zita egyetemi docens 18. tétel Ismertesse a logisztikai és a marketingfunkciók kölcsönhatásait, valamint az integrált logisztikai (teljes)költségkoncepciót! Területek beszerzés

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

G Y A K O R L Ó F E L A D A T O K

G Y A K O R L Ó F E L A D A T O K Döntéselmélet G Y A K O R L Ó F E L A D A T O K Lineáris programozás I Egy vállalat kétféle terméket gyárt, az A és B termékeket. A következő adatok ismertek: A vállalat éves munkaóra-kapacitása 1440 óra,

Részletesebben

6. Előadás: Sorbanállási modellek, III.

6. Előadás: Sorbanállási modellek, III. 6. Előadás: Sorbanállási modellek, III..5. Az M/M//GD/c/ sorbanállási rendszer Az ebben a szakaszban vizsgált sorbanállási rendszer piktogrammja az. ábrán látható. Ennek értelmében a születési halálozási

Részletesebben

Deutsche Telebank besorolása

Deutsche Telebank besorolása 1. feladat Függvény segítségével számítsa ki az átlagokat és azt, hogy hány ország kapta meg a maximális 10 pontot. Az EU tagállamokat átlag pontszámuk alapján minősítik. Az alábbi segédtáblázat alapján

Részletesebben

A Lean alapelvének megvalósulása: Információ áramlás VSM

A Lean alapelvének megvalósulása: Információ áramlás VSM A Lean alapelvének megvalósulása: Információ áramlás VSM Péczely György A.A. Stádium Kft. gyorgy.peczely@aastadium.hu 20/330 5545 Tartalom Mi a Lean? Hatékonyság A vállalatról Előzmények A felmérés Az

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Esettanulmányok és modellek 2

Esettanulmányok és modellek 2 Esettanulmányok és modellek Kereskedelem Mezőgazdaság Készítette: Dr. Ábrahám István Kereskedelem. Kocsis Péter: Opt. döntések lin.pr. (. oldal) nyomán: Kiskereskedelmi cég négyféle üdítőt rendel, melyek

Részletesebben

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek Révész Sándor reveszsandor.wordpress.com 2011. december 17. Elmélet Termelési függvény Feladatok Parciális termelési függvény Adott a következ

Részletesebben

Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás

Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév

Részletesebben

KÉPZÉSI PROGRAM. LOGISZTIKAI ÜGYINTÉZŐ OKJ azonosító: 54 345 01. Szolnok

KÉPZÉSI PROGRAM. LOGISZTIKAI ÜGYINTÉZŐ OKJ azonosító: 54 345 01. Szolnok KÉPZÉSI PROGRAM LOGISZTIKAI ÜGYINTÉZŐ OKJ azonosító: 54 345 01 Szolnok 2014 Megnevezése A képzési program Logisztikai ügyintéző OKJ azonosító 54 345 01 A képzés során megszerezhető kompetenciák rendelések,

Részletesebben

Piaci szerkezetek VK. Gyakorló feladatok a 4. anyagrészhez

Piaci szerkezetek VK. Gyakorló feladatok a 4. anyagrészhez Piaci szerkezetek VK Gyakorló feladatok a 4. anyagrészhez Cournot-oligopólium Feladatgyűjtemény 259./1. teszt Egy oligopol piacon az egyensúlyban A. minden vállalat határköltsége ugyanakkora; B. a vállalatok

Részletesebben

Irodabútorok személyre szabottan...

Irodabútorok személyre szabottan... 4. kiegészítők Irodabútorok személyre szabottan... ÁLTALÁNOS TUDNIVALÓK Árak és árajánlat Áraink a mindenkori aktuális árlisták árai. Árengedményről kölcsönös megbeszélés alapján, a lehetőségeink szerint,

Részletesebben

A 10/2007 (II. 27.) 1/2006 (II. 17.) OM

A 10/2007 (II. 27.) 1/2006 (II. 17.) OM A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Raktározás számítási feladatok. Raktárüzemtani mutatók

Raktározás számítási feladatok. Raktárüzemtani mutatók Raktározás számítási feladatok Raktárüzemtani mutatók 1 1. Feladat Egy raktár havi záró készletszintje az alábbi táblázat szerint alakul. Az éves értékesítés: 1200ezer Ft. Számítsa ki a forgási sebességet

Részletesebben

A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 2016/2017 tanévi Országos özépiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató INFORMATIA II. (programozás) kategória 1. feladat: Legalább 2 bolygón volt élet

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

A mérlegterv nem más, mint a tervidőszak utolsó napjára vonatkozóan összeállított mérleg, amely a vállalat vagyonát mutatja be kétféle vetületben,

A mérlegterv nem más, mint a tervidőszak utolsó napjára vonatkozóan összeállított mérleg, amely a vállalat vagyonát mutatja be kétféle vetületben, A mérlegterv nem más, mint a tervidőszak utolsó napjára vonatkozóan összeállított mérleg, amely a vállalat vagyonát mutatja be kétféle vetületben, pénzértékben. Az üzleti terv-részek nem tartalmaznak olyan

Részletesebben

Kedvenc rejtvényeim Mit tudok és mit hiszek el?

Kedvenc rejtvényeim Mit tudok és mit hiszek el? Kedvenc rejtvényeim Mit tudok és mit hiszek el? Mottó A matematikus azt old meg, amit tud A mérnök azt old meg, amit kell Ebből következik, hogy Nem tudunk minden részletében tökéleteset csinálni Sok mindent

Részletesebben

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS 1. Kihasználva a hosszasan elhúzódó jó időt, kirándulást szeretnénk tenni az ország tíz legmagasabb csúcsa közül háromra az elkövetkezendő

Részletesebben

Döntéselőkészítés. VII. előadás. Döntéselőkészítés. Egyszerű Kőnig-feladat (házasság feladat)

Döntéselőkészítés. VII. előadás. Döntéselőkészítés. Egyszerű Kőnig-feladat (házasság feladat) VII. előadás Legyenek adottak Egyszerű Kőnig-feladat (házasság feladat) I, I 2,, I i,, I m személyek és a J, J 2,, J j,, J n munkák. Azt, hogy melyik személy melyik munkához ért ( melyik munkára van kvalifikálva)

Részletesebben

Egyenletek, egyenletrendszerek, matematikai modell. 1. Oldja meg az Ax=b egyenletrendszert Gauss módszerrel és adja meg az A mátrix LUfelbontását,

Egyenletek, egyenletrendszerek, matematikai modell. 1. Oldja meg az Ax=b egyenletrendszert Gauss módszerrel és adja meg az A mátrix LUfelbontását, Egyenletek egyenletrendszerek matematikai modell Oldja meg az A=b egyenletrendszert Gauss módszerrel és adja meg az A mátri LUfelbontását ahol 8 b 8 Oldja meg az A=b egyenletrendszert és határozza meg

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 4. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Tájékoztató. Füzet. Tájékoztató. Füzet

Tájékoztató. Füzet. Tájékoztató. Füzet Tájékoztató Tájékoztató Füzet Füzet Tisztelt Partnerünk! A kiadványt, amit a kezében tart, azért hoztuk létre, hogy bemutassuk Önnek az Országos Dohányboltellátó Kft-t, valamint, hogy megismertessük azzal,

Részletesebben

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm

Részletesebben

Logisztikai Csapatbajnokság esettanulmány leírás

Logisztikai Csapatbajnokság esettanulmány leírás Logisztikai Csapatbajnokság esettanulmány leírás Háttérinformáció: A gyártó az autóipar egyik vezető Tier 1 es beszállítója, mely globálisan végzi tevékenységét és a világ összes jelentős autógyártó cégének

Részletesebben

Elmer Kft. Cégbemutató

Elmer Kft. Cégbemutató Elmer Kft. Cégbemutató 2012 Elmer Kft. Cím: 1145 Budapest, Amerikai út 98. Tel: +36-1-445-1951 Fax: +36-1-445-1968 E-mail: elmer@ciklo-group.com Web: www.elmer.hu Küldetésünk: Magyarország egyik vezető

Részletesebben

OKTV 2005/2006 döntő forduló

OKTV 2005/2006 döntő forduló Informatika I. (alkalmazói) kategória feladatai OKTV 2005/2006 döntő forduló Kedves Versenyző! A megoldások értékelésénél csak a programok futási eredményeit vesszük tekintetbe. Ezért igen fontos a specifikáció

Részletesebben

ToolCare 2.1 FRAISA Szerszámmenedzsment. passion for precision

ToolCare 2.1 FRAISA Szerszámmenedzsment. passion for precision ToolCare 2.1 FRAISA Szerszámmenedzsment passion for precision [ 2 ] Produktívan ToolCare 2.1 -gyel A kifizetődő szolgáltatás A magas minőség, az innovatív termékek és a szolgáltatások átfogó kínálata jellemzi

Részletesebben

A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának megoldása. II. (programozás) kategória

A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának megoldása. II. (programozás) kategória Oktatási Hivatal A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának megoldása II. (programozás) kategória 1. feladat: Párok (15 pont) Egy rendezvényre sok vendéget hívtak meg.

Részletesebben

A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában

A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában Oktatási Hivatal A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a

Részletesebben