További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék
|
|
- Csilla Farkas
- 8 évvel ezelőtt
- Látták:
Átírás
1 További forgalomirányítási és szervezési játékok 1. Nematomi forgalomirányítási játék A forgalomirányítási játékban adott egy hálózat, ami egy irányított G = (V, E) gráf. A gráfban megengedjük, hogy két pont között több él is vezessen. Továbbá adottak (s 1, t 1, r 1 ),..., (s k, t k, r k ) igények, amik arra vonatkoznak, hogy a hálózatban szállítsunk el r i adatmennyiséget az s i pontból a t i pontba. A továbbiakban P i jelöli az s i -ből t i -be vezető utak halmazát. A forgalom költségét az élekhez rendelt költségfüggvények adják meg, minden élhez definiált egy c e (x) nemnegatív, folytonos, monoton növekvő költségfüggvény, amely azt adja meg mekkora az élen a késedelem, ha az élen átmenő forgalom x. Tehát egy forgalomirányítási játékot egy (G, r, c) hármas definiál. A nematomi játékban az egyes igények nem egy-egy játékosnak felelnek meg, hanem minden igényhez nagyon sok játékos tartozik, az egyes játékosok által igényelt adatmennyiség tetszőlegesen kicsi lehet. Ennek megfelelően az r i adatmennyiséget tetszőlegesen szétoszthatjuk a P i halmazba eső utakon. A játék egy megoldása egy hálózati folyam lesz, ahol minden élre megadjuk az élen átmenő adatmennyiséget (ami az élen átmenő utakhoz rendelt adatmennyiségek összege). A Nash egyensúlyi helyzet definiálásához jelölje egy tetszőleges f folyamra az e élen átmenő teljes adatmennyiséget f e. Ekkor az él késedelemi költsége c e (f e ). Továbbá egy P út költsége c P (f) = e P c e (f e ) az útra eső élek összköltsége. Egy folyam Nash egyensúly, ha egyik játékosnak sem éri meg változtatni az általa választott útvonalon, feltéve, hogy a többi játékos nem változtat, azaz P i egyetlen kiválasztott útjáról sem érdemes áttérni egy kis résznek egy másik P i -beli útra. Ez a c e függvények folytonossága miatt az alábbi formális definícióhoz vezet. Definíció Egy (G, r, c) nematomi forgalomirányítási játékra egy f folyam Nash egyensúly, ha minden i-re minden olyan P, P P i útra, ahol P -hez adatforgalom van rendelve c P (f) c P (f). A Nash egyensúly egy öncélú egyensúlyi helyzet, amelyben minden játékos csak a saját célját veszi figyelembe. A szociális optimum ezzel szemben egy koordinált megoldás, amely a teljes költséget minimalizálja. A forgalomirányítási játékban egy folyam teljes költségét a e E f e c e (f e ) összeg adja meg (az adott e élen a késedelem c e (f e ) és ezt f e adatmennyiség, azaz játékos
2 szenvedi el). Tehát az optimális folyam az, ami ezt a célfüggvényt minimalizálja. Az anarchia és a stabilitás ára azt vizsgálja mennyivel kaphatunk jobb eredményt a koordinált optimális megoldásban, mint a koordinálatlan Nash egyensúlyban. Definíció Egy (forgalomirányítási) játékban az anarchia ára a Nash egyensúlyi helyzetekben számolt teljes költségeknek és a szociális optimum teljes költségének a hányadosának a maximuma. Definíció Egy (forgalomirányítási) játékban a stabilitás ára a Nash egyensúlyi helyzetekben számolt teljes költségeknek és a szociális optimum teljes költségének a hányadosának a minimuma. Pigou példa Vegyük a hálózatot, ahol két él van s és t között, a felső él költsége 1, az alsó él költsége x. Egy egységnyi adatmennyiséget küldünk át a nematomi forgalomirányítási játékban s és t között. Ha egy folyamban valamennyi ε mennyiséget küldünk a felső élen, akkor ott a költség 1, alul a költség 1 ε, tehát a folyam nem Nash egyensúly. Így az egyetlen egyensúlyi helyzet, ha a teljes forgalom az alsó élen megy. Ennek teljes költsége 1. Igazolható, hogy a szociális optimum a forgalom felét a felső, felét az alsó élen küldi. Ennek teljes költsége 1/ /2 1/2 = 3/4. Tehát erre a példára mind az anarchia mind pedig a stabilitás ára 4/3. Braess paradoxon Vegyük a hálózatot, ahol négy pont van s, u, v, t és négy él (s, u), (s, v), (u, t), (v, t). Az élek költségfüggvényei c (s,u) = c (v,t) = x és c (s,v) = c (u,t) = 1. Egy egységnyi adatmennyiséget küldünk át a nematomi forgalomirányítási játékban s és t között. Az egyetlen Nash egyensúly az, hogy a forgalom fele a felső úton (s, u, t) a másik fele az alsó úton (s, v, t) megy, ekkor mindkét lehetséges úton egyenlő a késedelem. Az egyensúlyban mindkét úton 1 + 1/2 a késedelem, így a teljes költség 3/2. Most vegyünk fel egy új 0 költségű (u, v) élet a hálózatba. Ekkor az egyetlen Nash egyensúly a teljes forgalmat az s, u, v, t úton küldi. Az új él miatt a régi Nash egyensúly nem egyensúlyi helyzet, mert abban az s, u, v, t út költsége 1, ami kisebb, mint a használt utak költsége. Az úton a késedelem 2, és a teljes késedelem is 2. Tehát a 0 költségű él felvétele növelte a Nash egyensúly költségét. A megoldás létezésének vizsgálatához felhasználhatóak a marginális költségfüggvények. Egy c e (x) élköltséghez a marginális élfüggvény x c e (x) deriváltja, azaz c e(x) = (x c e (x)). A marginális célfüggvényekre teljesül a következő érdekes összefüggés.
3 Marginális élköltségek lemmája Legyen (G, r, c) egy olyan nematomi játék, amelyben minden e élre x c e (x) konvex és folytonosan differenciálható. Ekkor egy f folyam akkor és csak akkor szociális optimum a (G, r, c) játékra nézve, ha Nash egyensúly a (G, r, c ) játékra nézve, ahol c a marginális költségfüggvényeket jelöli. A lemma alapján (a vizsgált költségeket véve a marginális célfüggvényeknek és az integrált értékek minimumát keresve) igazolható a következő tétel. Unicitás és egzisztencia tétel Legyen (G, r, c) egy nematomi forgalomirányítási játék. Ekkor A játéknak van legalább egy Nash egyensúlyi helyzete. Ha f és f Nash egyensúlyi helyzetek, akkor c e (f e ) = c e (f e) teljesül minden e élre. 2. Atomi forgalomirányítási játék Az atomi forgalomirányítási játék hasonló a nematomi játékhoz, a különbség az, hogy az egyes igények egy játékost és az ahhoz tartozó sávszélességigényt jelentik nem pedig sok játékos összeségét. Ennek megfelelően egy kérés kiszolgálásához egy úton kell a teljes r i sávszélességet lefoglalni, és nem lehet szétosztani több út között. Itt csak tiszta stratégiákat vizsgálunk, nem engedjük meg, hogy a játékos több út között válasszon bizonyos valószínűséggel. Ennek megfelelően a szociális optimumban is csak olyan megoldásokat vizsgálunk, amelyek az i játékosra egy adott útvonalon foglalják le az r i sávszélességet és a Nash egyensúly fogalma is változik. Definíció Egy (G, r, c) atomi forgalomirányítási játékra egy f folyam Nash egyensúly, ha minden i-re és P P i útra, c P (f) c P (f ), ahol P az f-ben az i által választott út, és f az a folyam, amelyet úgy kapunk f-ből, hogy az i játékos választását kicseréljük P -ről P -re. Példa: Vegyünk egy kétirányú háromszöget, amelynek csúcsai u, v, w az élekhez rendelt költségfüggvények. c (v,u) = c (w,u) = 0 és c (u,v) = c (u,w) = c (v,w) = c (w,v) = x. A játékban négy játékos van, mindenki 1 adatmennyiséget akar átküldeni, a következő kezdő és célpontokkal u v, u w, w v, v w. Az optimális stratégia, ami Nash egyensúlyi helyzet is, ha minden játékos a közvetlen élet választja. Ekkor minden élen a késedelem 1, a teljes
4 költség 4. Másrészt egyszerűen látszik, hogy az is egy Nash egyensúly, ha mindenki két élen keresztül küldi a forgalmat az (u, w, v), (u, v, w), (w, u, v) és (v, u, w) utakon. Ennek a költsége 10, így azt kapjuk, hogy erre a példára az anarchia ára 10/4. Bizonyítás nélül megjegyezzük, hogy az atomi forgalomirányítási játék esetén előfordulhat, hogy egy játékban tiszta stratégiák mellett nincs Nash egyensúly. Másrészt bizonyos speciális esetekben igazolható Nash egyensúly létezése, amint azt az alábbi bizonyítás nélkül vett tételek mutatják. Tétel Legyen (G, r, c) egy olyan atomi forgalomirányítási játék, amelyben minden r i egyenlő egy adott pozitív R konstanssal. Ekkor (G, r, c)-nek van legalább egy Nash egyensúlyi helyzete. Tétel Legyen (G, r, c) egy olyan atomi forgalomirányítási játék, amelyben minden c e = a e x + b e valamilyen nemnegatív a e és b e értékekre. Ekkor (G, r, c)-nek van legalább egy Nash egyensúlyi helyzete. 3. Shapley féle hálózatépítő játék A Shapley féle hálózatépítő játék esetén adott egy irányított G gráf, és az élek mindegyikének van egy c e nemnegatív költsége. Továbbá adott k játékos az i-dik játékos az s i pontból a t i pontba akar csomagokat szállítani, ehhez egy utat választ ki a gráfban a két pont között. Miután minden játékos kiválasztja a saját P i utját, vesszük a kiválasztott hálózatot, ami i P i. A megkonstruált hálózat költsége a benne levő élek költségeinek összege. Feltesszük, hogy ez a költség a felhasználás arányában oszlik meg a játékosok között, azaz ha egy játékosra P i tartalmaz egy e élet, akkor a játékos c e /f e értéket fizet érte, ahol f e azon játékosok száma, akik olyan utat választottak, amelyek tartalmazzák az e élet. A játékban a tiszta stratégiákat vizsgáljuk. Nash egyensúly egy olyan útválasztása a játékosoknak, ahol egyik játékos sem tudja csökkenteni a költségét, ha másik utat választ. A szociális optimum a minimális költségű részgráf, amelyben minden játékos kérése kielégíthető. Példa az anarchia árára: Vegyünk egy két pontból s, t-ből álló hálózatot, amelyeket két párhuzamos (s, t) él köt össze, ahol a felső él költsége k az alsó él költsége 1 + ε. A játékban egy Nash egyensúlyi helyzet, ha minden játékos a drágább felső élet választja. Ekkor mindenki 1 költséget kap a teljes k költségből, így ha valaki áttérne a másik élre és azt egyedül fizetné, akkor növekedne a költsége. Az optimális megoldásban mindenki az alsó élet
5 választja és a költség 1 + ε. Megjegyezzük ez is egy Nash egyensúly. Tehát a példán az anarchia ára tetszőlegesen közel eshet k-hoz, a stabilitás ára viszont 1. Az alábbi példa mutatja, hogy a stabilitás árára sem adható a játékosok számától független konstans felső korlát. Példa a stabilitás árára: Vegyünk egy k + 2 pontból s 1,..., s k, t, v álló hálózatot a következő élekkel. Minden i = 1,..., k-ra megy egy (s i, t) él 1/i költséggel, továbbá (s i, v) él 0 költséggel, végül egy (v, t) él 1+ε költséggel. Az i-edik játékos s i -ből akar t-be csomagot küldeni. Ekkor a szociális optimumban az i-edik játékos az s i, v, t utat választja és a teljes hálózat költsége 1+ε. Másrészt ez nem Nash egyensúly. Egyszerűen látható, hogy egyetlen olyan útválasztás sem lehet Nash egyensúly, amelyben valahány játékos használja a (v, t) élet. Tegyük fel, hogy i játékos használja az élet, ekkor fejenként (1 + ε)/i a költségük. Viszont közülük a legnagyobb azonosítójú játékos esetén a közvetlen t-be vezető út költsége legfeljebb 1/i, így megéri neki inkább azt az utat választani. Tehát az egyetlen Nash egyensúlyi helyzet az,a miben minden játékos a közvetlen utat választja, és ennek költsége k i=1 1/i log k. Irodalom [1] T. Roughgarden, Routing Games, Chapter 18 in Algorithmic Game Theory, [2] T. Roughgarden and E. Tardos, Introduction to the Inefficiency of Equilibria, Chapter 17 in Algorithmic Game Theory,
1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok
1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok (x, y) valós számpárokból állnak, két (a, b) és (c, d) pontnak a távolsága (a c)
Online migrációs ütemezési modellek
Online migrációs ütemezési modellek Az online migrációs modellekben a régebben ütemezett munkák is átütemezhetőek valamilyen korlátozott mértékben az új munka ütemezése mellett. Ez csökkentheti a versenyképességi
Mátrixjátékok tiszta nyeregponttal
1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják
Általános algoritmustervezési módszerek
Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás
Sarokba a bástyát! = nim
Nim-összeadás, játékok összege Sarokba a bástyát! = nim Nim (két csomóval) Két kupac kaviccsal játszunk. Egy lépésben valamelyikből (de csak az egyikből!) elvehetünk bármennyit. Az nyer, aki az utolsó
út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.
1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
MATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai
Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:
Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +
Approximációs algoritmusok
Approximációs algoritmusok Nehéz (pl. NP teljes) problémák optimális megoldásának meghatározására nem tudunk (garantáltan) polinom idejű algoritmust adni. Lehetőségek: -exponenciális futási idejű algoritmus
1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex
JÁTÉKELMÉLET A KÖZLEKEDÉSBEN
JÁTÉKELMÉLET A KÖZLEKEDÉSBEN Diplomamunka Írta: Nagy Balázs Alkalmazott matematikus szak Témavezet k: Király Tamás, egyetemi adjunktus Operációkutatási Tanszék Eötvös Loránd Tudományegyetem, Természettudományi
1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007
Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii
Számítógép hálózatok, osztott rendszerek 2009
Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc
Algoritmuselmélet 18. előadás
Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok
Összefoglalás és gyakorlás
Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)
Kalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
Az optimális megoldást adó algoritmusok
Az optimális megoldást adó algoritmusok shop ütemezés esetén Ebben a fejezetben olyan modellekkel foglalkozunk, amelyekben a munkák több műveletből állnak. Speciálisan shop ütemezési problémákat vizsgálunk.
Dijkstra algoritmusa
Budapesti Fazekas és ELTE Operációkutatási Tanszék 201. július 1. Legrövidebb utak súlyozatlan esetben v 4 v 3 Feladat Hány élből áll a legrövidebb út ezen a gráfon az s és t csúcsok között? v v 6 v 7
Matematika B4 VIII. gyakorlat megoldása
Matematika B4 VIII. gyakorlat megoldása 5.április 7.. Eloszlás- és sűrűségfüggvény Ha az X egy folytonos valószínűségi változó, akkor X-et jól jellemzi az eloszlás illetve a sűrűségfüggvénye. Az eloszlásfüggvény
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
SHk rövidítéssel fogunk hivatkozni.
Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,
A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.
Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb
EuroOffice Optimalizáló (Solver)
1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer
Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje
Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.
Operációkutatás vizsga
Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus
Csíkszereda IRT-. kurzus 3. Előadás: A mohó algoritmus 1 Csíkszereda IRT. kurzus Bevezetés Az eddig tanult algoritmus tipúsok nem alkalmazhatók: A valós problémák nem tiszta klasszikus problémák A problémák
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:
Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév
Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?
GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus
GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,
11. Előadás. 1. Lineáris egyenlőség feltételek melletti minimalizálás
Optimalizálási eljárások MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2011. április 27. 1. Lineáris egyenlőség feltételek melletti minimalizálás Múlt héten nem szerepeltek
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
A számítástudomány alapjai
A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Háromszögek fedése két körrel
SZTE Bolyai Intézet, Geometria Tanszék 2010. április 24. Motiváció Jól ismert a kerületi szögek tétele, vagy más megfogalmazásban a látókörív tétel. Motiváció A tételből a következő állítás adódik: Motiváció
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
Alkuegyensúlyok és stabil halmazok
Alkuegyensúlyok és stabil halmazok Bednay Dezső Megjelent: Solymosi Tamás Temesi József (szerk.): Egyensúly és optimum. Tanulmányok Forgó Ferenc 70. születésnapjára. Aula Kiadó. Budapest. 2012. ISBN 978-963-339-018-4
2014. november Dr. Vincze Szilvia
24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata
1. A k-szerver probléma
1. A k-szerver probléma Az egyik legismertebb on-line probléma a k-szerver probléma. A probléma általános deníciójának megadásához szükség van a metrikus tér fogalmára. Egy (M, d) párost, ahol M a metrikus
A lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris
Operációkutatás vizsga
Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 16. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS,
Alap fatranszformátorok II
Alap fatranszformátorok II Vágvölgyi Sándor Fülöp Zoltán és Vágvölgyi Sándor [2, 3] közös eredményeit ismertetjük. Fogalmak, jelölések A Σ feletti alaptermek TA = (T Σ, Σ) Σ algebráját tekintjük. Minden
Gyakorló feladatok a 2. zh-ra MM hallgatók számára
Gyakorló feladatok a. zh-ra MM hallgatók számára 1. Egy vállalat termelésének technológiai feltételeit a Q L K függvény írja le. Rövid távon a vállalat 8 egységnyi tőkét használ fel. A tőke ára 000, a
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a
A merész játékok stratégiája A következő problémával foglalkozunk: Tegyük fel, hogy feltétlenül ki kell fizetnünk 000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a még
HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai
HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;
Ládapakolási játékok
Ládapakolási játékok 0.1 0.15 Dόsa György Pannon Egyetem Veszprém, Hungary XXXII. MOK, Cegléd, 2017 jun 14 1 A ládapakolási feladat n tárgy Sok láda (1 méretű) Tárgyak méretei: (0,1] Mindegyiket be kell
Függvények határértéke, folytonossága FÜGGVÉNYEK TULAJDONSÁGAI, SZÉLSŐÉRTÉK FELADATOK MEGOLDÁSA
Függvények határértéke, folytonossága FÜGGVÉNYEK TULAJDONSÁGAI, SZÉLSŐÉRTÉK FELADATOK MEGOLDÁSA Alapvető fogalmak: Függvény fogalma Függvény helyettesítési értéke (függvényérték) Függvény grafikonja A
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
HÁLÓZAT Maximális folyam, minimális vágás
HÁLÓZAT Maximális folyam, minimális vágás HÁLÓZAT informálisan Hálózat Irányított gráf Mindegyik élnek adott a (nemnegatív) kapacitása Spec csúcsok: Forrás (Source): a kiindulási pont csak ki élek Nyelő
4. Laplace transzformáció és alkalmazása
4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:
Elmaradó óra. Az F = (V,T) gráf minimális feszitőfája G-nek, ha. F feszitőfája G-nek, és. C(T) minimális
Elmaradó óra A jövő heti, november 0-dikei óra elmarad. Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v)
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges
Opkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
Nemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy
A szimplex algoritmus
. gyakorlat A szimplex algoritmus Az előző órán bevezetett feladat optimális megoldását fogjuk megvizsgálni. Ehhez új fogalmakat, és egy algoritmust tanulunk meg. Hogy az algoritmust alkalmazni tudjuk,
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
N-személyes játékok. Bársony Alex
N-személyes játékok Bársony Alex Előszó Neumann János és Oskar Morgenstern Racionális osztozkodás törvényeinek tanulmányozása Játékosok egy tetszőleges csoportjának ereje Nem 3 személyes sakk Definíció
Analízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.
Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb
Javítókulcs, Válogató Nov. 25.
Javítókulcs, Válogató 2016. Nov. 25. 1. Az A, B, C pontok által meghatározott hegyesszögű háromszögben az egyes csúcsokhoz tartozó magasságvonalak talppontjait jelölje rendre T A, T B és T C. A T A T B
Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar
Szélsőértékszámítás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Szélsőértékszámítás 1 / 21 2. SZÉLSOÉRTÉKSZÁMÍTÁS 2.1 A szélsőérték fogalma, létezése Azt
E-tananyag Matematika 9. évfolyam 2014. Függvények
Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További. 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén!
Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További példák találhatók az fk.sze.hu oldalon a letöltések részben a közlekedési operációkutatásban 1. Oldja meg grafikusan az alábbi feladatokat
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre
4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre Az értékelő függvény létezése (folytatás) p. 1/8 4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre
2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése
2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika Aa Analízis BMETE90AX00 Az exp és ln függvények H607, EIC 209-04-24 Wettl
Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.
Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész
Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )
Routing protokollok hatékonysága
Routing protokollok hatékonysága KURUC GÁBOR Vodafone Magyarország Rt. gabor.kuruc@vodafone.com LÓJA KRISZTINA BME, Távközlési és Médiainformatikai Tanszék loja@math.bme.hu Reviewed Kulcsszavak: késleltetés
Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n
Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának
Felügyelt önálló tanulás - Analízis III.
Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ.
Termelői magatartás II. A költségfüggvények: A költségek és a termelés kapcsolatát mutatja, hogyan változnak a költségek a termelés változásával. A termelési függvényből vezethető le, megkülönböztetünk
Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11.
11. gyakorlat Branch-and-Bound a korlátozás és szétválasztás módszere 1. Az egészértéketű programozás 1.1. Bevezető Bizonyos feladatok modellezése kapcsán előfordulhat olyan eset, hogy a megoldás során
26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA
26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma
bármely másikra el lehessen jutni. A vállalat tudja, hogy tetszőlegesen adott
. Minimális súlyú feszítő fa keresése Képzeljük el, hogy egy útépítő vállalat azt a megbízást kapja, hogy építsen ki egy úthálózatot néhány település között (a települések között jelenleg nincs út). feltétel
= x + 1. (x 3)(x + 3) D f = R, lim. x 2. = lim. x 4
Bodó Beáta Differenciálszámítás. B Írja fel az f() = függvény az a = és az helyekhez tartozó különbségi hányadosát. f() f(a) a = = (+)( ) = +. B Számolja ki az f() = függvény a = 3 helyhez tartozó differenciálhányadosát!
Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka
Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét Matematika MSc hallgatók számára. 11. Előadás. Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor november 29.
Diszkrét Matematika MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2010. november 29. 1. Gráfok metszési száma z előadás a metszési szám nevű gráfparaméterről szól. Ez
4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.
Rasmusen, Eric: Games and Information (Third Edition, Blackwell, 2001)
Játékelmélet szociológusoknak J-1 Bevezetés a játékelméletbe szociológusok számára Ajánlott irodalom: Mészáros József: Játékelmélet (Gondolat, 2003) Filep László: Játékelmélet (Filum, 2001) Csontos László
8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész
Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=
Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}
Mélységi keresés Ez az algoritmus a gráf pontjait járja be, eredményképpen egy mélységi feszítőerdőt ad vissza az Apa függvény által. A pontok bejártságát színekkel kezeljük, fehér= érintetlen, szürke=meg-
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet