Opkut deníciók és tételek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Opkut deníciók és tételek"

Átírás

1 Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét (minimumát vagy maximumát) értelmezési tartományának adott lineáris korlátokkal (feltételekkel) meghatározott részében. 2. Deníció (Lehetséges megoldás). Olyan x R n vektor, amely kielégíti a feladat feltételrendszerét jelölés: lehetséges megoldások halmaza: L ( R n ) 3. Deníció (Optimális megoldás). Olyan lehetséges megoldás, amelyen a célfüggvény felveszi a maximumát (minimumát). 4. Deníció (Lineáris feltétel). Olyan ' ', ' ' egyenl tlenség vagy egyenlet, amely csak lineáris illetve konstans tagokat tartalmaz. 5. Deníció (Standard alakú lineáris programozási feladat). a ij x i b i i = 1, 2,..., m x j 0 max c i x i = z i = 1, 2,..., n 6. Deníció (Szótár). x n+i = b i a ij x j z = c j x j 1 i = 1, 2,..., m

2 2 7. Deníció (Természetes (vagy döntési) változók). A standard alakú feladatban szerepl változók (x 1, x 2,..., x n ). 8. Deníció (Mesterséges (vagy slack) változók). A szótár felírásakor felvett új, nemnegatív változók (x n+1, x n+2,..., x n+m ) 9. Deníció (Bázisváltozók, más néven Bázis). A szótár feltétel egyenleteinek bal oldalán álló változók, jelölés - Bázisváltozók indexhalmaza: B 10. Deníció. A szótár feltételeinek jobb oldalán álló változók jelölés - Nembázisváltozók indexhalmaza: N 11. Deníció (Szótár bázismegoldása). Olyan x vektor, amelyben a bázisváltozók értékei az ket tartalmazó egyenletek jobb oldali konstansai, a nembázis változók értéke nulla. 12. Deníció (Lehetséges bázismegoldás). Olyan bázismegoldás, ami egyben lehetséges megoldás is, azaz a szótárra teljesül, hogy b i 0i = 1, 2,..., m 13. Deníció (Pivot lépés). Új szótár megadása egy bázis és nembázis változó szerepének felcserélésével 14. Deníció (Belép változó). A szimplex algoritmus egy iterációnak belép változója az a nembázis változó, ami a következ szótárra áttérés hatására bázisváltozóvá válik. 15. Deníció (Kilép változó). A szimplex algoritmus egy iterációnak belép változója az a nembázis változó, ami a következ szótárra áttérés hatására nembázis változóvá válik. 16. Deníció (Szótárak ekvivalenciája). Két szótár ekvivalens, ha lehetséges megoldásaik és a hozzájuk tartozó célfüggvényértékek rendre megegyeznek. 17. Deníció (Nem korlátos LP feladat). Ha az LP feladat maximalizálandó (minimalizálandó) és célfüggvénye tetsz legesen nagy (kicsi) értéket felvehet a lehetséges megoldásainak halmazán, akkor a feladatot nem korlátosnak nevezzük. 18. Deníció (Pivot szabály). Olyan szabály, ami egyértelm vé teszi, hogy a szimplex algoritmusban mely változók legyenek a belép - és a kilép változók, ha több változó is teljesíti az alapfeltételeket.

3 3 19. Deníció (Klasszikus Szimplex algoritmus pivot szabálya). - A lehetséges belép változók közül válasszuk a legnagyobb c k érték t, több ilyen esetén azok közül a legkisebb index t. - A lehetséges kilép változók köül válasszuk a legkisebb l index egyenlet változóját. 20. Deníció (Degenerált iterációs lépés). Olyan szimplex iteráció, amelyben nem változik a bázismegoldás. 21. Deníció (Degenerált bázismegoldás). Olyan bázismegoldás, amelyben egy vagy több bázisváltozó értéke Deníció (Ciklizáció). Ha a Szimplex algoritmus valamely iterációja végén egy korábbi iteráció szótárát kapjuk meg újra, akkor azt ciklizációnak nevezzük. 23. Deníció (Legkisebb index szabálya). - A lehetséges belép változók közül válasszuk a legkisebb index t. - A lehetséges kilép változók közül válasszuk a legkisebb index t. 24. Deníció (Lexikograkus rendezés). Egy x R n vektor lexikogra- kusan kisebb vagy egyenl, mint egy y R n vektor, ha létezik olyan i index, amelyre x i < y i és x j = y j j = 1, 2,..., i 1, vagy x = y - Dichotom, reexív, tranzitív és antiszimmetrikus - Teljes rendezés 25. Deníció. Egészítsük ki szimbolikus ɛ konstansokkal az induló szótárat, majd - A lehetséges belép változók közül válasszuk a legnagyobb c k érték t, több ilyen esetén azok közül a legkisebb index t. - A lehetséges kilép változók közül válasszuk azt, amelynek l index egyenletére a [a lɛ1 a lɛ2... a lɛm ] vektor lexikograkusan a legkisebb

4 4 26. Deníció (Primál duál feladatpár). a ij x i b i i = 1, 2,..., m Primál feladat x j 0 i = 1, 2,..., n max c i x i = z a ij y i c j j = 1, 2,..., n Duál feladat y i 0 j = 1, 2,..., m min b i y i = w 27. Deníció (Általános LP feladat dualitás esetben). a ij x j b i i I a ij x j = b i i E x j 0 max c j x j = z i R - Ámnf. hogy az egyenl tlenségek mind ' ', a korlátos változók 0 alsó korlátosak - Jelölje a szabad változók indexhalmazát F - Legyen összesen n váltzó és m feltétel

5 5 28. Deníció (Általános LP feladat duálisa dualitás esetben). a ij y i c j j R a ij y i = c j y i 0 min b i y i = w j F i I 29. Deníció (Inkonzisztencia). egyenletek és egyenl tlenségek egy m elem a ij x j b i i I a ij x j = b i i E rendszere inkonzisztens, ha léteznek olyan y 1, y 2,..., y m valós számok, amelyekre teljesül, hogy a ij y i = 0 b i y i < 0 y i 0 j = 1, 2,..., n i I 30. Deníció (R n ). n-dimenziós lineáris tér a valós számok felett - Elemei az n elem valós vektorok 31. Deníció (E n ). n-dimenziós euklideszi tér, olyan R n, amelyben értelmezett egy bels szorzat és egy távolság függvény a következ módon - (x, y) = x T y = x 1 y 1 + x 2 y x n y n - d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) (x n y n ) 2

6 6 32. Deníció (Pont). egy x E n vektor 33. Deníció. x 1 ( E n ) és x 2 ( E n ) különböz pontokat összeköt szakasz: ahol λ [0, 1] és tetsz leges. {x : x E n, x = λx 1 + (1 λ)x 2 }, 34. Deníció. x 1, x 2 végpontú szakasz felez pontja: 1 2 x x 2 pont 35. Deníció (Ponthalmaz csúcspontja). Olyan pont, amely nem áll el egyetlen ponthalmazbeli szakasz felez pontjaként sem. 36. Deníció (n-dimenziós sík). {x : x E n, a 1 x 1 + a 2 x a n x n = b}, ahol a 1, a 2,..., a n, b R és rögzítettek 37. Deníció. {x : x E n, a 1 x 1 + a 2 x a n x n b}, ahol a 1, a 2,..., a n, b R és rögzítettek 38. Deníció (Konvex ponthalmaz). Olyan ponthalmaz, amely tartalmazza bármely két pontját összeköt szakasz pontjait is. 39. Deníció (Zárt ponthalmaz). Olyan ponthalmaz, amely tartalmazza a pontjaiból képezhet tetsz leges konvergens sorozat határértékét is. 40. Deníció (Korlátos ponthalmaz). Olyan ponthalmaz, amelynek minden x pontjára teljesül, hogy d(0, x) K, ahol K egy rögzített valós szám. 41. Deníció (Poliéder). Zárt, véges sok csúcsponttal rendelkez ponthalmaz. 42. Deníció (Egy f függvény gradiens függvénye). [ f f(x) =, f,..., f ] x 1 x 2 x n 43. Deníció (Egy f függvény x pontjához tartozó Hesse mátrix). [ ] 2 f Hf(x) = x 1 x j

7 44. Deníció (Az optimalizálási feladathoz társított Log Barrier függvény). { log(bi a Φ i (x) = i x), a i x < b i i = 1, 2,..., m, a i x b i 45. Deníció (Az optimalizálási feladathoz társított Log Barrier feladat). max f(x) + Φ i (x) 46. Deníció (A standard alakú LP feladathoz társított Log Barrier feladat). Ax + w = b max c T x + µ log(x 1 ) + µ log(w j ) 47. Deníció (Mátrix játék kizetési mátrix). Olyan M mátrix, amelyben az m ij elemek a sor játékos nyereményei, amennyiben a sor játékos i-t, az oszlop játékos j-t lép a játékban. 48. Deníció (Tiszta stratégia). A kizetési mátrix sorait (oszlopait) a sor (oszlop) játékos tiszta stratégiáinak nevezzük. 49. Deníció (Sztochasztikus vektor). Olyan nem negatív vektor, amelyben az elemek össze Deníció (Kevert stratégia). Sztochasztikus vektor, amelynek i. eleme annak valószín sége, hogy a játékos az i tiszta stratégiát játssza egy fordulójában. 51. Deníció (Mátrix játék értéke). A játékhoz tartozó Minimax tétel szerinti z = w érték. 52. Deníció (Igazságos játék). Egy mátrix játék igazságos, ha értéke Deníció (Szimmetrikus játék). Egy mátrix játék szimmetrikus, ha mátrixának minden elemére teljesül, hogy a ij = a ji 54. Deníció (Dominancia). Egy Am n-es kizetési mátrix egy r sora dominálja az s sort, ha minden j = 1, 2,..., n-re a rj a sj, hasonlóan egy r oszlop dominálja az s oszlopot, ha minden i = 1, 2,..., m-re a ir a is 7

8 8 55. Deníció (Nyeregpont). Ha egy mátrix játékra M = m, akkor a mátrix a rs = m elemét a mátrix nyeregpontjának nevezzük. 56. Deníció (Nash egyensúly, equlibrium). Olyan stratégia pár, amely esetén egyik játékos sem tudja stratégiája változtatásával növelni a nyereségét, amennyiben a másik játékos nem változtat stratégiát. 57. Deníció (Prol). Egy döntéshozó egyéni preferencia sorrendje az alternatívák felett. 58. Deníció (Konszenzus függvény). Az F : P m P függvényt konszenzus függvénynek nevezzük. 59. Deníció (Egyszer többség). Helyezzük az a alternatívát a b elé, ha a döntéshozók többsége is ezt tette - Nem ad konszenzus függvényt. - Condorcet paradoxon. 60. Deníció. Jelölje b i (a) az i. prolban az a után következ alternatívák számát, és rendezzük az alternatívákat nagyság szerint a következ érték alapján b(a) = b i (a)

9 9 Tételek 1. Tétel. Minden lineáris programozási feladathoz megadható egy vele ekvivalens standard alakú feladat. 2. Tétel. A pivot lépés el tti és az utána el álló új szótár. 3. Tétel. Ha egy szótárban nincs pozitív c j j = 1, 2..., n + m célfüggvény együttható és negatív b i i = 1, 2,..., m konstans a feltételek egyenleteiben, akkor a szótár bázismegoldása. 4. Tétel. Ha egy szótárban van olyan pozitív c j j = 1, 2,..., n + m célfüggvény együttható, hogy minden a ij i = 1, 2,..., m együttható pozitív, akkor az LP feladat, amihez a szótár tartozik, nem korlátos 5. Tétel (Ciklizáció). Ha a szimplex algoritmus nem áll meg, akkor ciklizál. 6. Tétel (Bland szabály). A szimplex algoritmus véget ér, ha a legkisebb index szabályt használjuk. 7. Tétel (Szimplex módszer). Egy standard feladatnak akkor és csak akkor létezik lehetséges megoldása, ha 0 a hozzá felírt segédfeladat optimuma. 8. Tétel. Tetsz leges standard alakú lineáris programozási feladatra teljesülnek az alábbi állítások: - Ha nincs optimális megoldása, akkor vagy nem korlátos vagy nincs lehetséges megoldása. - Ha van lehetséges megoldása, akkor van lehetséges bázismegoldása is. - Ha van optimális megoldása, akkor van optimális bázismegoldása is. 9. Tétel (Gyenge dualitás tétele). Ha [x 1 x 2... x n ] a primál feladat lehetséges megoldása és [y 1 y 2... y m ] a duál feladat lehetséges megoldása, akkor c j x j b i y i 10. Tétel (Er s dualitás tétele). Ha x = [x 1 x 2... x n] a primál feladat egy optimális megoldása, akkor létezik a duális feladatnak egy y = [y1 y2... ym] optimális megoldása, amelyre teljesül, hogy c j x j b i yi

10 Tétel (1. Komplementaritás tétel). Egy x = [x 1 x 2... x n] primál lehetséges megoldás és egy y = [y 1 y 2... y m] duális lehetséges megoldás akkor és csak akkor optimálisak, ha teljesülnek a következ feltételek 1. Feltétel a ij yi = c j és/vagy x j = 0 igaz j = 1, 2,..., n 2. Feltétel a ij x j = b i és/vagy yi = 0 igaz i = 1, 2,..., m 12. Tétel (2. Komplementaritás tétel). Egy x = [x 1 x 2... x n] primál lehetséges megoldás akkor és csak akkor optimális, ha léteznek olyan y1y 2... ym valós számok, amelyekre teljesülnek az alább feltételek 1. Feltétel x j > 0 a ij yi = c j 2. Feltétel 3. Feltétel a ij x j < b i yi = 0 a ij yi c j j = 1, 2,..., n 4. Feltétel y i 0 i = 1, 2,..., m 13. Tétel. Ha egy LP feladatnak van legalább egy nem degenerált optimális megoldása, akkor létezik olyan pozitív ɛ, hogy a ij x i b i + t i i = 1, 2,..., m

11 11 x j 0 j = 1, 2,..., n max t i i = 1, 2,..., m c i x i = z LP feladatseregnek is van optimális megoldása, és az optimum értéke z (t 1, t 2,... t m ) = z + t i yi ahol z az eredeti LP feladat optimuma, y 1y 2... y m pedig a duális feladat optimális megoldása. 14. Tétel (Általános er s dualitás tétele). Ha egy lineáris programozási feladatnak van optimális megoldása, akkor a duálisának is, és ezek az optimumok megegyeznek. 15. Tétel (Tucker lehetetlenségi tétele egyenlet és egyenl tlenség rendszerekre). Egyenletek és egyenl tlenségek egy rendszere akkor és csak akkor megoldhatatlan, ha inkonzisztens 16. Tétel. Ha a g i feltételek lineárisak, akkor az f függvénynek az x pontban lokális maximum helye van, ha valahányszor egy ξ 0 vektorra teljesül ξ T g i (x ) = 0 minden i = 1, 2,..., m, akkor ξ T Hf(x )ξ < 0 is igaz rá. 17. Tétel. Akkor és csak akkor létezik a társított Log Barrier problémának optimuma, ha a kiindulási standard alakú LP feladatnak és a duálisának is léteznek lehetséges megoldásai. 18. Tétel. Ha egy primál (vagy duális) feladatnak létezik lehetséges megoldása és korlátos, akkor a társított Log Barrier feladatnak egyértelm en létezik optimuma. 19. Tétel (Minimax tétel). Minden m n méret A mátrixhoz léteznek olyan x m-dimenziós és y n-dimenziós stochasztikus vektorok, hogy min y x Ay = max xay, x ahol x és y rendre tetsz leges m és n dimenziós sztochasztikus vektorok.

12 Tétel (Dominancia tétel). Minden mátrix játékra igazak az alábbiak 1. Ha egy r sort dominál egy másik, akkor a sor játékosnak létezik olyan x kevert stratégiája, amelyben x r = 0, tehát az r sor törlése a mátrixból nem változtatja meg a játék értékét. 2. Ha egy s oszlopot dominál egy másik, akkor az oszlop játékosnak létezik olyan y kevert stratégiája, amelyben y s = 0, tehát az s oszlop törlése a mátrixból nem változtatja meg a játék értékét. 21. Tétel (Nyeregpont tétel). Ha egy A mátrixnak egy a rs elem nyeregpontja, akkor a sor játékos számára az r. sor illetve az oszlop játékos számára az s. oszlop választása optimális stratégia párt alkot, továbbá a játék értéke a rs 22. Tétel. Nem létezik olyan determinisztikus, teljes rendezést adó konszenzus függvény amely egyszerre kielégítené az alábbi 3 axiómát 1. axióma: ha egy a alternatíva minden prolban megel zi a b alternatívát, akkor a konszenzusban is. 2. axióma: a függvények argumentumul adott prol halmazban nincs olyan prol, amelyben valahányszor egy a alternatíva megel zi a b alternatívát, akkor a konszenzusban is így lesz független a többi proltól. 3. axióma: ha a és b alternatívák egymáshoz viszonyított sorrendjét nem változtatva módosítunk a prolokon, akkor a és b egymáshoz viszonyított sorrendje a konszenzusban sem változik.

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/ Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat

Részletesebben

Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 6. Előadás Áttekintés Kezdjük újra a klasszikus erőforrás allokációs problémával (katonák,

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

A szimplex algoritmus

A szimplex algoritmus . gyakorlat A szimplex algoritmus Az előző órán bevezetett feladat optimális megoldását fogjuk megvizsgálni. Ehhez új fogalmakat, és egy algoritmust tanulunk meg. Hogy az algoritmust alkalmazni tudjuk,

Részletesebben

A szimplex tábla. p. 1

A szimplex tábla. p. 1 A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex

Részletesebben

Kétfázisú szimplex algoritmus és speciális esetei

Kétfázisú szimplex algoritmus és speciális esetei 5. gyakorlat Kétfázisú szimplex algoritmus és speciális esetei. Emlékeztető Standard alak, áttérés Standard alak Minden feltétel et tartalmaz csak. A célfüggvényünket maximalizáljuk. A b vektor (jobb oldalon

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Operációkutatás I. 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Számítógépes Optimalizálás Tanszék 6. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát

Részletesebben

Alkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok. Rétvári Gábor

Alkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok. Rétvári Gábor Alkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok Rétvári Gábor retvari@tmit.bme.hu Feladatok Szöveges feladatok. Egy acélgyárban négyfajta zártszelvényt gyártanak: kis,

Részletesebben

Nem-lineáris programozási feladatok

Nem-lineáris programozási feladatok Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens

Részletesebben

A lineáris programozás alapjai

A lineáris programozás alapjai A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28 Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek

Részletesebben

Szemidenit optimalizálás és az S-lemma

Szemidenit optimalizálás és az S-lemma Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium 2011. október 6. Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok

Részletesebben

Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás

Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

Döntési rendszerek I.

Döntési rendszerek I. Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 7. Gyakorlat Alapfogalmak A terület alapfogalmai megtalálhatók Pluhár András Döntési rendszerek

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35 Szinguláris értékek Wettl Ferenc 2016. április 12. Wettl Ferenc Szinguláris értékek 2016. április 12. 1 / 35 Tartalom 1 Szinguláris érték 2 Norma 3 Mátrixnorma 4 Alkalmazások Wettl Ferenc Szinguláris értékek

Részletesebben

1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok

1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok 1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok (x, y) valós számpárokból állnak, két (a, b) és (c, d) pontnak a távolsága (a c)

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Magasabbfokú egyenletek

Magasabbfokú egyenletek 86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y

Részletesebben

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor

Részletesebben

Jegyzet. az Operációkutatás II cím tantárgyhoz. Király Tamás és Papp Olga. Utolsó frissítés: február

Jegyzet. az Operációkutatás II cím tantárgyhoz. Király Tamás és Papp Olga. Utolsó frissítés: február Jegyzet az Operációkutatás II cím tantárgyhoz Király Tamás és Papp Olga Utolsó frissítés: 2015. február 2 Tartalomjegyzék 1. Lineáris programozás 7 1.1. TU mátrixok: kerekítés és színezés......................

Részletesebben

Operációkutatás I. Bajalinov, Erik, Nyíregyházi Főiskola, Matematika és Informatika Intézete Bekéné Rácz, Anett, Debreceni Egyetem, Informatikai Kar

Operációkutatás I. Bajalinov, Erik, Nyíregyházi Főiskola, Matematika és Informatika Intézete Bekéné Rácz, Anett, Debreceni Egyetem, Informatikai Kar Operációkutatás I. Bajalinov, Erik, Nyíregyházi Főiskola, Matematika és Informatika Intézete Bekéné Rácz, Anett, Debreceni Egyetem, Informatikai Kar Operációkutatás I. írta Bajalinov, Erik és Bekéné Rácz,

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Totális Unimodularitás és LP dualitás. Tapolcai János

Totális Unimodularitás és LP dualitás. Tapolcai János Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

Jegyzet. az Operációkutatás (elemz, programozó matematikus) tárgyhoz április. Fábián Csaba, Király Tamás, Papp Olga

Jegyzet. az Operációkutatás (elemz, programozó matematikus) tárgyhoz április. Fábián Csaba, Király Tamás, Papp Olga Jegyzet az Operációkutatás (elemz, programozó matematikus) tárgyhoz Fábián Csaba, Király Tamás, Papp Olga 2015. április 1 Tartalomjegyzék 1. A lineáris programozási feladat 3 1.1. Bevezetés.......................................

Részletesebben

lineáris programozás esetében. Ennek ez idő szerint legkorábbi formalizálását

lineáris programozás esetében. Ennek ez idő szerint legkorábbi formalizálását 1. előadás Bevezetés Lehetetlen egészen pontosan megállapítani, mi tekinthető az operációkutatás első eredményeinek, hisz az optimalizálás mégcsak nem is az emberi faj kiváltsága. Kétségtelen viszont,

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál

Részletesebben

Döntési rendszerek I.

Döntési rendszerek I. Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 8 Gyakorlat Alapfogalmak A terület alapfogalmai megtalálhatók Pluhár András Döntési rendszerek

Részletesebben

Érzékenységvizsgálat

Érzékenységvizsgálat Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális

Részletesebben

Szimplex módszer, szimplex tábla Példaként tekintsük a következ LP feladatot:

Szimplex módszer, szimplex tábla Példaként tekintsük a következ LP feladatot: Szimplex módszer, szimplex tábla Példaként tekintsük a következ LP feladatot: z = 5x 1 + 4x 2 + 3x 3 2x 1 + 3x 2 + x 3 5 4x 1 + x 2 + 2x 3 11 3x 1 + 4x 2 + 2x 3 8 x 1, x 2, x 3 0 = maximum, feltéve, hogy

Részletesebben

Lineáris algebrai alapok

Lineáris algebrai alapok Lineáris algebrai alapok Will 2010 június 16 Vektorterek, mátrixok, lineáris egyenletrendszerek A lineáris programozási feladat, szimplex algoritmus Vektorterek Jellemzés: Vektorok tulajdonságai Két vektor

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál

Részletesebben

Glevitzky Béla. Operációkutatás I. mobidiák könyvtár

Glevitzky Béla. Operációkutatás I. mobidiák könyvtár Glevitzky Béla Operációkutatás I. mobidiák könyvtár Glevitzky Béla Operációkutatás I. mobidiák könyvtár SOROZATSZERKESZTŽ Fazekas István Glevitzky Béla Operációkutatás I. mobidiák könyvtár Debreceni Egyetem

Részletesebben

További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás

További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy

Részletesebben

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy: Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független

Részletesebben

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek 10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix

Részletesebben

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése 2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )

Részletesebben

A tiszta stratégiával a biztosan elérhető nyereség:

A tiszta stratégiával a biztosan elérhető nyereség: Mátrixjátékok ismétlés: Mátrixjátékok megoldásáról (ismétlés) Legyen adott két játékos, A és B. A két játékos véges stratégia halmazból választ. Jelölje A stratégia vektorát u U, míg B stratégia vektorát

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

Jegyzet. az Operációkutatás II cím tantárgyhoz. Utolsó frissítés: május 20. Király Tamás el adásai alapján készítette Papp Olga

Jegyzet. az Operációkutatás II cím tantárgyhoz. Utolsó frissítés: május 20. Király Tamás el adásai alapján készítette Papp Olga Jegyzet az Operációkutatás II cím tantárgyhoz Király Tamás el adásai alapján készítette Papp Olga Utolsó frissítés: 2011. május 20. Tartalomjegyzék 1. TU mátrixok: kerekítés és színezés 3 1.1. Emlékeztet......................................

Részletesebben

Gazdasági matematika II. tanmenet

Gazdasági matematika II. tanmenet Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):

Részletesebben

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény

Részletesebben

Modellek és Algoritmusok - 2.ZH Elmélet

Modellek és Algoritmusok - 2.ZH Elmélet Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)

Részletesebben

1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI

1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI 1/12 Operációkutatás 5. gyakorlat Hiperbolikus programozási feladat megoldása Pécsi Tudományegyetem PTI 2/12 Ha az Hiperbolikus programozási feladat feltételek teljesülése mellett a A x b x 0 z(x) = c

Részletesebben

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós Lineáris algebra és a rang fogalma (el adásvázlat, 2010. szeptember 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia

Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia Készítette: Dr. Ábrahám István A játékelmélet a 2. század közepén alakult ki. (Neumann J., O. Morgenstern). Gyakran

Részletesebben

11. Előadás. 1. Lineáris egyenlőség feltételek melletti minimalizálás

11. Előadás. 1. Lineáris egyenlőség feltételek melletti minimalizálás Optimalizálási eljárások MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2011. április 27. 1. Lineáris egyenlőség feltételek melletti minimalizálás Múlt héten nem szerepeltek

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Boros Zoltán február

Boros Zoltán február Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék,   Wettl Ferenc (BME) Utolsó el adás / 20 Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális

Részletesebben

A DÖNTÉSELMÉLET ELEMEI

A DÖNTÉSELMÉLET ELEMEI A DÖNTÉSELMÉLET ELEMEI Irodalom: Temesi J., A döntéselmélet alapjai, Aula, 2002, Budapest Lawrence, J.A., Pasternack, B.A., Applied management science, John Wiley & Sons Inc. 2002 Stevenson, W. J., Operation

Részletesebben

Lagrange-féle multiplikátor módszer és alkalmazása

Lagrange-féle multiplikátor módszer és alkalmazása Eötvös Loránd Tudományegyetem Természettudományi Kar Nemesné Jónás Nikolett Lagrange-féle multiplikátor módszer és alkalmazása Matematika BSc, Matematikai elemz szakirány Témavezet : Szekeres Béla János,

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Konjugált gradiens módszer

Konjugált gradiens módszer Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK

Részletesebben

Kódelméleti és kriptográai alkalmazások

Kódelméleti és kriptográai alkalmazások Kódelméleti és kriptográai alkalmazások Wettl Ferenc 2015. május 14. Wettl Ferenc Kódelméleti és kriptográai alkalmazások 2015. május 14. 1 / 11 1 Hibajavító kódok 2 Általánosított ReedSolomon-kód Wettl

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Bevezetés az algebrába 2 Vektor- és mátrixnorma

Bevezetés az algebrába 2 Vektor- és mátrixnorma Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben

Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 7. gyakorlat Gyakorlatvezet : Bogya Norbert 2012. március 26. Ismétlés Tartalom 1 Ismétlés 2 Koordinátasor 3 Bázistranszformáció és alkalmazásai Vektorrendszer rangja Mátrix

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Diszkrét Matematika MSc hallgatók számára. 14. Előadás

Diszkrét Matematika MSc hallgatók számára. 14. Előadás Diszkrét Matematika MSc hallgatók számára 14. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2012. Nem maradt rá idő 1. Feltétel nélküli optimalizálás 1.1. Az eljárások alapjai A feltétel nélküli

Részletesebben

4. Előadás: Erős dualitás

4. Előadás: Erős dualitás Optimalizálási eljárások/operációkutatás MSc hallgatók számára 4. Előadás: Erős dualitás Előadó: Hajnal Péter 2018. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét d

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

3. el adás: Determinánsok

3. el adás: Determinánsok 3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns

Részletesebben

5 = hiszen és az utóbbi mátrix determinánsa a középs½o oszlop szerint kifejtve: 3 7 ( 2) = (példa vége). 7 5 = 8. det 6.

5 = hiszen és az utóbbi mátrix determinánsa a középs½o oszlop szerint kifejtve: 3 7 ( 2) = (példa vége). 7 5 = 8. det 6. A pivotálás hasznáról és hatékony módjáról Adott M mátrixra pivotálás alatt a következ½ot értjük: Kijelölünk a mátrixban egy nemnulla elemet, melynek neve pivotelem, aztán az egész sort leosztjuk a pivotelemmel.

Részletesebben

DiMat II Végtelen halmazok

DiMat II Végtelen halmazok DiMat II Végtelen halmazok Czirbusz Sándor 2014. február 16. 1. fejezet A kiválasztási axióma. Ismétlés. 1. Deníció (Kiválasztási függvény) Legyen {X i, i I} nemüres halmazok egy indexelt családja. Egy

Részletesebben

Egyváltozós függvények 1.

Egyváltozós függvények 1. Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata

Részletesebben

Operációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit

Operációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu Budapest 200. október 10. Mit tanulunk ma? Szállítási feladat Megoldása Adott: Egy árucikk, T 1, T 2, T,..., T m termelőhely, melyekben rendre

Részletesebben

Lineáris programozás. A mese

Lineáris programozás. A mese Lineáris programozás A mese Célok Geometriai szemlélet (nem lesz matek ) Gakorlati kérdések Már megint a szendvics Kétfajta szendvicset szeretnénk készíteni, sonkásat és szalámisat. Lehetőleg minél többet.

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

szantai Az operációkutatás matematikai módszerei

szantai Az operációkutatás matematikai módszerei http://wwwmathbmehu/ szantai Az operációkutatás matematikai módszerei Bővített óravázlat Összeállította: Szántai Tamás Budapest 1999 A bővített óravázlatot Prékopa Andrásnak a Bolyai János Matematikai

Részletesebben

Diszkrét Matematika MSc hallgatók számára. 4. Előadás

Diszkrét Matematika MSc hallgatók számára. 4. Előadás Diszkrét Matematika MSc hallgatók számára 4. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2012. február 28. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét

Részletesebben