Szemidenit optimalizálás és az S-lemma
|
|
- Viktor Gáspár
- 6 évvel ezelőtt
- Látták:
Átírás
1 Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium október 6.
2 Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok 4 Szemidenit optimalizálás 5 Alkalmazások 6 Kutatási irányok
3 Egyenl tlenségrendszerek megoldhatósága Feladat Honnan tudjuk, hogy az f(x) < 0 g i (x) 0, i = 1,..., m rendszernek nincs megoldása? (f, g i : R n R) Példa x 2 1 x x 1 x 2 < 0 x 2 2 x 1 x 2 0
4 Egyenl tlenségrendszerek megoldhatósága Feladat Honnan tudjuk, hogy az f(x) < 0 g i (x) 0, i = 1,..., m rendszernek nincs megoldása? (f, g i : R n R) Példa x 2 1 x x 1 x 2 < 0 x 2 2 x 1 x 2 0 Elégséges feltétel ( x 2 1 x x 1 x 2 ) +2 ( x 2 2 x 1 x 2 ) = x x 1 x 2 +x 2 2 = (x 1 +x 2 ) 2 0
5 Egyenl tlenségrendszerek megoldhatósága Elégséges feltétel Tetsz leges f, g i esetén y R m, y 0 m f(x) + y i g i (x) i=1 0, x R n x R n f(x) < 0 g i (x) 0, i = 1,..., m
6 Egyenl tlenségrendszerek megoldhatósága Elégséges feltétel Tetsz leges f, g i esetén y R m, y 0 m f(x) + y i g i (x) i=1 0, x R n? x R n f(x) < 0 g i (x) 0, i = 1,..., m
7 Egyenl tlenségrendszerek megoldhatósága Ekvivalens feltétel Ha f és g i konvex függvények és x R n : g i (x) < 0, akkor y R m, y 0 m f(x) + y i g i (x) i=1 0, x R n x R n f(x) < 0 g i (x) 0, i = 1,..., m
8 Az S-lemma Yakubovich (1971) Ha f, g : R n R kvadratikus függvények és x R n : g(x) < 0, akkor y 0 f(x) + y g(x) 0, x R n x R n f(x) < 0 g(x) 0 Konvexitás nélkül!
9 Kitér Kvadratikus függvény (homogén) f(x) = x T Ax, A R n n szimmetrikus Konvex kvadratikus függvény Ha A 0 (pozitív szemidenit), vagyis x T Ax 0, x R n. Mátrixok skalárszorzata U V = Tr (UV ) = n i,j=1 U ijv ij x T Ax = Tr ( x T Ax ) = Tr ( Axx T ) = Tr ( A(xx T ) ) = A xx T
10 Az S-lemma, homogén alak Yakubovich (1971) A, B R n n és x R n : x T Bx < 0, akkor y 0 x T Ax + y x T Bx 0, x R n x R n x T Ax < 0 x T Bx 0
11 Az S-lemma, homogén alak Yakubovich (1971) A, B R n n és x R n : x T Bx < 0, akkor y 0 A + yb 0 (PSD) x R n x T Ax < 0 x T Bx 0
12 Az S-lemma Miért? Konvexitás nélkül! Rejtett konvexitás Alkalmazások Ljapunov-féle stabilitásvizsgálat Ellipszoidtartalmazás Számítógépes graka
13 Klasszikus bizonyítás A primál feladat nem megoldható x : x T Ax < 0, x T Bx 0 R R { (x T Ax, x T Bx) : x R n} = }{{} konvex! (Dines, 1941)
14 Klasszikus bizonyítás A primál feladat nem megoldható x : x T Ax < 0, x T Bx 0 R R { (x T Ax, x T Bx) : x R n} = }{{} konvex! (Dines, 1941) Kicsit általánosabb eredmény (Poljak, 1998) n 3, az A, B 1, B 2 mátrixoknak van PD lineáris kombinációjuk { (x T Ax, x T B 1 x, x T B 2 x) : x R n} konvex
15 Klasszikus bizonyítás A primál feladat nem megoldható x : x T Ax < 0, x T Bx 0 R R { (x T Ax, x T Bx) : x R n} = }{{} konvex! (Dines, 1941) Kicsit általánosabb eredmény (Poljak, 1998) n 3, az A, B 1, B 2 mátrixoknak van PD lineáris kombinációjuk { (x T Ax, x T B 1 x, x T B 2 x) : x R n} konvex Szeparációs bizonyítás Norma-feltétel
16 { Figure: (x T Ax, x T Bx) : x R n} ( 2 0 A = 0 1 ) ( 3 1, B = 1 0 ) Vissza a konvexitáshoz!
17 Modern bizonyítás Szemidenit relaxáció x T Ax < 0 x T Bx 0 x R n
18 Modern bizonyítás Szemidenit relaxáció x T Ax < 0 A xx T < 0 x T Bx 0 B xx T 0 x R n
19 Modern bizonyítás Szemidenit relaxáció x T Ax < 0 A xx T < 0 A X < 0 x T Bx 0 B xx T 0 B X 0 x R n rank (X) = 1 X 0
20 Modern bizonyítás Szemidenit relaxáció x T Ax < 0 A xx T < 0 A X < 0 x T Bx 0 B xx T 0 B X 0 x R n rank (X) = 1 X 0
21 Modern bizonyítás Szemidenit relaxáció x T Ax < 0 A xx T < 0 A X < 0 x T Bx 0 B xx T 0 B X 0 x R n rank (X) = 1 X 0 Pataki, 1998 A S n an altér, dim A ( ) ( n 2 r+2 ) 2 + 1, PS n A X PS n A, amelyre rank (X) r.
22 Modern bizonyítás Szemidenit relaxáció x T Ax < 0 A xx T < 0 A X < 0 x T Bx 0 B xx T 0 B X 0 x R n rank (X) = 1 X 0 Pataki, 1998 A S n an altér, dim A ( ) ( n 2 r+2 ) 2 + 1, PS n A X PS n A, amelyre rank (X) r. Barvinok, 2001 A S n an altér, dim A = ( ) ( n 2 r+2 ) 2, PS n A és korlátos X PS n A, amelyre rank (X) r.
23 A rangfeltétel és a konvexitás ekvivalenciája Az { (x T Ax, x T Bx) : x R n} halmaz konvexitása y, z R n, λ [0, 1] Kell: x R n x T Ax = λy T Ay + (1 λ)z T Az x T Bx = λy T By + (1 λ)z T Bz
24 A rangfeltétel és a konvexitás ekvivalenciája Az { (x T Ax, x T Bx) : x R n} halmaz konvexitása y, z R n, λ [0, 1] Kell: x R n x T Ax = λy T Ay + (1 λ)z T Az x T Bx = λy T By + (1 λ)z T Bz X = xx T a következ rendszer 1-rangú megoldása A X = λy T Ay + (1 λ)z T Az B X = λy T By + (1 λ)z T Bz Pataki: létezik 1-rangú megoldás
25 Bizonyítás Helly-tétellel H x = { y 0 : x T Ax + y x T Bx 0 } R H x tulajdonságai konvex zárt bármelyik kett metszete nemüres = x H x, vagyis y 0 : x T Ax + y x T Bx 0, x R n
26 Bizonyítás Helly-tétellel H x = { y 0 : x T Ax + y x T Bx 0 } R H x tulajdonságai konvex zárt bármelyik kett metszete nemüres van köztük korlátos! (Slater-feltétel) = x H x, vagyis y 0 : x T Ax + y x T Bx 0, x R n
27 Elemi bizonyítás Yuan, 1990 A, B R n n szimmetrikus mátrixok, F, G R n zárt halmazok, F G = R n. Ha x T Ax 0, x F x T Bx 0, x G, akkor λ [0, 1], amelyre λx T Ax + (1 λ)x T Bx 0, x, vagyis λa + (1 λ)b 0.
28 Kutatási irányok Általánosítás több egyenlet speciális mátrixok speciális egyenl tlenségek Alkalmazások
29 Szemidenit optimalizálás Mátrixváltozó min Tr (CX) max b T y m Tr (A i X) = b i, i = 1,..., m A i y i + S = C X 0 S 0 C, X, S, A i n n-es szimmetrikus mátrixok, b, y R m Speciális struktúra: A i, C lehet ritka, vagy alacsony rangú i=1
30 Algoritmusok Általában bels pontos módszerek Iterációk: O( n), valójában Egy iteráció költsége: O(mn 3 + m 2 n 2 + m 3 ) Megoldható feladatok: m 10000, n (ritka mátrixokkal több) Nagy pontosság
31 Implementáció Kezd pont beágyazás nem-megengedett módszerek M veletek ritka mátrixokkal tárolás, szimmetria UV + V U, U + uu T Ux = r megoldása Cholesky-faktorizáció: U = LDL T Iteratív módszerek Speciális struktúrák általános decompozíció (Kojima et al.) egyedi módszerek adott feladatra
32 Bináris változók relaxációja Bináris változók: x i {0, 1} Lineáris relaxáció: x i [0, 1] Bináris feltétel ekvivalens alakja: z i = 2x i 1 zi 2 = 1 ( z i = ±1) Matrixokkal: Z 0 diag (Z) = 1 rank (Z) = 1( Z = zz T )
33 Gráfpartícionálás Egy 2m csúcsú élsúlyozott gráf csúcsait osszuk fel két egyenl részre úgy, hogy a két partíció között futó élek összsúlya minimális legyen. A: incidencia mátrix, A kl : a kl él súlya y ij = 1: az i csúcs a j partícióban van (j = 1, 2) y j : a j partíció indikátorvektora y T j Ay j: 2 a j partícióban lév élek összsúlya Tr ( Y T AY ) : 2 az elvágatlan élek összsúlya e T Ae: 2 az élek összsúlya min e T Ae Tr ( Y T AY ) Y partíciómátrix SDP relaxáció (X = Y Y T ) min e T Ae Tr (AX) diag (X) = 1 Xe = m X 0 X 0 rank (X) = 2
34 Gráfpartícionálás Egy 2m csúcsú élsúlyozott gráf csúcsait osszuk fel két egyenl részre úgy, hogy a két partíció között futó élek összsúlya minimális legyen. A: incidencia mátrix, A kl : a kl él súlya y ij = 1: az i csúcs a j partícióban van (j = 1, 2) y j : a j partíció indikátorvektora y T j Ay j: 2 a j partícióban lév élek összsúlya Tr ( Y T AY ) : 2 az elvágatlan élek összsúlya e T Ae: 2 az élek összsúlya min e T Ae Tr ( Y T AY ) Y partíciómátrix SDP relaxáció (X = Y Y T ) Komplexitás: O(m 6.5 )! min e T Ae Tr (AX) diag (X) = 1 Xe = m X 0 X 0 rank (X) = 2
35 Polinomoptimalizálás I Tétel Ha p(x) : R R egyváltozós polinom, akkor p(x) 0, x p(x) négyzetösszeg (SOS) Példa p(x) = x 6 5x 4 +6x 3 +8x 2 14x+5
36 Polinomoptimalizálás I Tétel Ha p(x) : R R egyváltozós polinom, akkor p(x) 0, x p(x) négyzetösszeg (SOS) Példa p(x) = x 6 5x 4 +6x 3 +8x 2 14x+5 = (x 2 +x 1) 2 +(x 3 3x+2) 2
37 Polinomoptimalizálás I Tétel Ha p(x) : R R egyváltozós polinom, akkor p(x) 0, x p(x) négyzetösszeg (SOS) Példa p(x) = x 6 5x 4 +6x 3 +8x 2 14x+5 = (x 2 +x 1) 2 +(x 3 3x+2) 2 Általában nem igaz: z 6 + x 4 y 2 + x 2 y 4 3x 2 y 2 z 2 0, de nem SOS
38 Polinomoptimalizálás I Tétel Ha p(x) : R R egyváltozós polinom, akkor p(x) 0, x p(x) négyzetösszeg (SOS) Példa p(x) = x 6 5x 4 +6x 3 +8x 2 14x+5 = (x 2 +x 1) 2 +(x 3 3x+2) 2 Általában nem igaz: z 6 + x 4 y 2 + x 2 y 4 3x 2 y 2 z 2 0, de nem SOS min p(x) max t max t p(x) t 0, x p(x) t is SOS
39 Polinomoptimalizálás II q = (1, x, x 2,..., x n ) Négyzet: ( n ) 2 ( n ) 2 p(x) = u i x i = u i q i = (u T q) 2 = q T (uu T )q i=0 i=0 SOS: q T Uq, ahol U 0 u 44 = 1 u 34 + u 43 = 0 u 24 + u 33 + u 42 = 5 u 14 + u 23 + u 32 + u 41 = 6 u 13 + u 22 + u 31 = 8 u 21 + u 12 = 14 u 11 = 5 U 0 U = u (1) = ( ) u (2) = ( ) Software: (Gloptipoly, SOSTools), Yalmip
40 Kutatási irányok 1994 óta nincs lényeges eredmény Speciális struktúrák Új algoritmusok szimplex, perceptron, gravity, megengedett irányok, row-by-row,... Kapcsolódó kutatások SOCP Kopozitív optimalizálás (x T Ux 0, x 0) Egészérték és bináris változók
Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással
pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál
RészletesebbenOpkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
RészletesebbenVektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
RészletesebbenKonvex optimalizálás feladatok
(1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy
RészletesebbenBoros Zoltán február
Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n
RészletesebbenDiszkrét Matematika MSc hallgatók számára. 4. Előadás
Diszkrét Matematika MSc hallgatók számára 4. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2012. február 28. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét
RészletesebbenLineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
Részletesebben1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
Részletesebben4. Előadás: Erős dualitás
Optimalizálási eljárások/operációkutatás MSc hallgatók számára 4. Előadás: Erős dualitás Előadó: Hajnal Péter 2018. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét d
RészletesebbenA szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
RészletesebbenUtolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20
Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális
Részletesebbenλx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)
Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények
RészletesebbenTovábbi programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy
RészletesebbenAlkalmazott algebra - SVD
Alkalmazott algebra - SVD Ivanyos Gábor 20 sz Poz. szemidenit mátrixok spektrálfelbontásának általánosítása nem feltétlenül négyzetes mátrixokra LSI - mögöttes szemantikájú indexelés "Közelít " webkeresés
RészletesebbenA lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris
Részletesebben3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
RészletesebbenJegyzet. az Operációkutatás II cím tantárgyhoz. Király Tamás és Papp Olga. Utolsó frissítés: február
Jegyzet az Operációkutatás II cím tantárgyhoz Király Tamás és Papp Olga Utolsó frissítés: 2015. február 2 Tartalomjegyzék 1. Lineáris programozás 7 1.1. TU mátrixok: kerekítés és színezés......................
RészletesebbenVEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok
VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják
Részletesebben1. Parciális függvény, parciális derivált (ismétlés)
Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt
RészletesebbenLineáris egyenletrendszerek
Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,
RészletesebbenAlgoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
RészletesebbenMat. A2 3. gyakorlat 2016/17, második félév
Mat. A2 3. gyakorlat 2016/17, második félév 1. Hány megoldása lehet az alábbi lineáris egyenletrendszereknek a valós számok körében, ha a -ok tetszőleges (nem feltétlenül egyenlő) számokat jelölnek? 0
Részletesebben2012. október 2 és 4. Dr. Vincze Szilvia
2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex
Részletesebbeny + a y + b y = r(x),
Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan
RészletesebbenA szimplex tábla. p. 1
A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex
Részletesebben15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
RészletesebbenSzinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28
Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek
RészletesebbenNem-lineáris programozási feladatok
Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens
Részletesebben2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése
2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )
RészletesebbenDiszkrét matematika 1. középszint
Diszkrét matematika 1. középszint 2017. sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenMátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22
Mátrixfüggvények Wettl Ferenc 2016. április 28. Wettl Ferenc Mátrixfüggvények 2016. április 28. 1 / 22 Tartalom 1 Diagonalizálható mátrixok függvényei 2 Mátrixfüggvény a Jordan-alakból 3 Mátrixfüggvény
RészletesebbenA KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek
10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix
RészletesebbenHALMAZELMÉLET feladatsor 1.
HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,
Részletesebbená é ő ö ó í á á ö ö ö ó ú ó ő é í é á á é ö ö ő ő á á ú ő ó ÚÚ É í í ó ö á á á í ű ö é á ó é é á ó á á á é á í ö ü í ú ö ó ó ö ö ö á á á é á ó í é é é á é ű é á é á é ő ú ő á á á í ö ű é ü á ö ó é ü ó
RészletesebbenNUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK Szerkesztette: Balogh Tamás 04. január 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el!
RészletesebbenBevezetés az algebrába 2 Vektor- és mátrixnorma
Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.
RészletesebbenSzinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35
Szinguláris értékek Wettl Ferenc 2016. április 12. Wettl Ferenc Szinguláris értékek 2016. április 12. 1 / 35 Tartalom 1 Szinguláris érték 2 Norma 3 Mátrixnorma 4 Alkalmazások Wettl Ferenc Szinguláris értékek
RészletesebbenDiszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
RészletesebbenFeladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
RészletesebbenOptimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges
RészletesebbenJegyzet. az Operációkutatás II cím tantárgyhoz. Utolsó frissítés: május 20. Király Tamás el adásai alapján készítette Papp Olga
Jegyzet az Operációkutatás II cím tantárgyhoz Király Tamás el adásai alapján készítette Papp Olga Utolsó frissítés: 2011. május 20. Tartalomjegyzék 1. TU mátrixok: kerekítés és színezés 3 1.1. Emlékeztet......................................
RészletesebbenLosonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar
Szélsőértékszámítás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Szélsőértékszámítás 1 / 21 2. SZÉLSOÉRTÉKSZÁMÍTÁS 2.1 A szélsőérték fogalma, létezése Azt
RészletesebbenAz állítást nem bizonyítjuk, de a létezést a Paley-féle konstrukció mutatja: legyen H a
. Blokkrendszerek Definíció. Egy (H, H), H H halmazrendszer t (v, k, λ)-blokkrendszer, ha H = v, B H : B = k, és H minden t elemű részhalmazát H-nak pontosan λ eleme tartalmazza. H elemeit blokkoknak nevezzük.
Részletesebbenvalós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
RészletesebbenNumerikus módszerek 1.
Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk
RészletesebbenOptimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
RészletesebbenVektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
RészletesebbenMiért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek
Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,
RészletesebbenAlgoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Részletesebben9. AZ R k VEKTORTÉR. 9.1 Az R k vektortér fogalma
9 AZ R k VEKTORTÉR 91 Az R k vektortér fogalma Definíció A k-dimenziós vektortér nek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x 2,, x k ) sorozatok halmazát, azaz 1 R k
RészletesebbenFraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
RészletesebbenHaladó lineáris algebra
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc
RészletesebbenBevezetés az algebrába 2
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc
RészletesebbenNumerikus módszerek 1.
Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció
RészletesebbenJegyzet. az Operációkutatás (elemz, programozó matematikus) tárgyhoz április. Fábián Csaba, Király Tamás, Papp Olga
Jegyzet az Operációkutatás (elemz, programozó matematikus) tárgyhoz Fábián Csaba, Király Tamás, Papp Olga 2015. április 1 Tartalomjegyzék 1. A lineáris programozási feladat 3 1.1. Bevezetés.......................................
RészletesebbenDifferenciálszámítás normált terekben
Eötvös Loránd Tudományegyetem Természettudományi Kar Kapui Dóra Differenciálszámítás normált terekben Szakdolgozat Matematika BSc, elemz szakirány Témavezet : Tarcsay Zsigmond Alkalmazott Analízis és Számításmatematikai
RészletesebbenLineáris optimalizálás bels pontos módszereinek újszer vizsgálata. szakdolgozat. Pólik Imre matematikus szak. Témavezet : Illés Tibor
Lineáris optimalizálás bels pontos módszereinek újszer vizsgálata szakdolgozat Pólik Imre matematikus szak Témavezet : Illés Tibor Eötvös Loránd Tudományegyetem Természettudományi Kar 2002 Kivonat Lineáris
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten LINEÁRIS PROGRAMOZÁS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 4 A lineáris
RészletesebbenMODELLEK ÉS ALGORITMUSOK ELŐADÁS
MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
RészletesebbenMátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
RészletesebbenTotális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
RészletesebbenDinamikus modellek szerkezete, SDG modellek
Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.
RészletesebbenDiMat II Végtelen halmazok
DiMat II Végtelen halmazok Czirbusz Sándor 2014. február 16. 1. fejezet A kiválasztási axióma. Ismétlés. 1. Deníció (Kiválasztási függvény) Legyen {X i, i I} nemüres halmazok egy indexelt családja. Egy
RészletesebbenLineáris algebra. (közgazdászoknak)
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval
RészletesebbenLineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák
Lineáris Algebra Pejó Balázs Tartalomjegyzék 1. Peano-axiomák 2 1.1. 1.................................................... 2 1.2. 2.................................................... 2 1.3. 3....................................................
RészletesebbenVektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.
Vektorterek Több esetben találkozhattunk olyan struktúrával, ahol az összeadás és a (valós) számmal való szorzás értelmezett, pl. a szabadvektorok esetében, vagy a függvények körében, vagy a mátrixok esetében.
RészletesebbenANALÍZIS III. ELMÉLETI KÉRDÉSEK
ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
Részletesebben: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!
nomosztással a megoldást visszavezethetjük egy alacsonyabb fokú egyenlet megoldására Mivel a 4 6 8 6 egyenletben az együtthatók összege 6 8 6 ezért az egyenletnek gyöke az (mert esetén a kifejezés helyettesítési
RészletesebbenLineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós
Lineáris algebra és a rang fogalma (el adásvázlat, 2010. szeptember 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest
RészletesebbenDIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános
Részletesebben11. Előadás. 1. Lineáris egyenlőség feltételek melletti minimalizálás
Optimalizálási eljárások MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2011. április 27. 1. Lineáris egyenlőség feltételek melletti minimalizálás Múlt héten nem szerepeltek
RészletesebbenNumerikus módszerek 1.
Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák
RészletesebbenMatematikai logika. Nagy Károly 2009
Matematikai logika előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 2009 1 1. Elsőrendű nyelvek 1.1. Definíció. Az Ω =< Srt, Cnst, F n, P r > komponensekből álló rendezett négyest elsőrendű
RészletesebbenLineáris kombinatorikus törtfüggvény optimalizálási feladatok
Eötvös Loránd Tudományegyetem Természettudományi Kar Kránicz Enik Gréta Lineáris kombinatorikus törtfüggvény optimalizálási feladatok BSc Szakdolgozat Témavezet : Jüttner Alpár Operációkutatási Tanszék
Részletesebben6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)
Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz 6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) 1. Írjunk fel egy olyan legalacsonyabbrendű valós,
RészletesebbenDualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
RészletesebbenA Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:
A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12
RészletesebbenLineáris leképezések, mátrixuk, bázistranszformáció. Képtér, magtér, dimenziótétel, rang, invertálhatóság
1. Bevezetés A félév anyaga: lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció
RészletesebbenOnline jegyzet az Egészérték Programozás I. és II. tárgyhoz
Online jegyzet az Egészérték Programozás I. és II. tárgyhoz Király Tamás, Kis Tamás és Szeg László May 19, 2015 Egészérték programozás I. vizsgatematika 2014. tavasz 1. Az egészérték lineáris programozási
RészletesebbenAnalízisfeladat-gyűjtemény IV.
Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította
RészletesebbenNemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
RészletesebbenDiszkrét Matematika MSc hallgatók számára. 14. Előadás
Diszkrét Matematika MSc hallgatók számára 14. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2012. Nem maradt rá idő 1. Feltétel nélküli optimalizálás 1.1. Az eljárások alapjai A feltétel nélküli
RészletesebbenHatározatlansági relációk származtatása az
az állapottér BME TTK Matematikus MSc. 1. évf. 2012. november 14. Vázlat: Történeti áttekintés Nemkommutatív (kvantum) valószín ségelmélet Az állapottér geometriája: Az állapottér mint Riemann-sokaság
RészletesebbenA szemidefinit programozás alkalmazásai a kombinatorikus optimalizálásban című jegyzetemhez
Kiegészítések az A szemidefinit programozás alkalmazásai a kombinatorikus optimalizálásban című jegyzetemhez Ujvári Miklós Utolsó módosítás: 2011 szeptember A 4.25 Megjegyzés mögé beszúrandó (4.26-ból
RészletesebbenDeníciók és tételek a beugró vizsgára
Deníciók és tételek a beugró vizsgára (a szóbeli viszgázás jogáért) Utolsó módosítás: 2008. december 2. 2 Bevezetés Számítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést,
RészletesebbenBudapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79
Részletesebben10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
RészletesebbenBevezetés. 1. fejezet. Algebrai feladatok. Feladatok
. fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális
Részletesebben(!), {z C z z 0 < R} K (K: konv. tart.) lim cn+1
Komlex analízis Komlex hatványsorok c n (z z 0 ) n ; R = lim n c n, R = (!), {z C z z 0 < R} K (K: konv. tart.) lim cn+ c n n=0. Van-e olyan komlex hatványsor, melynek a) üres a konvergenciatartománya,
RészletesebbenLineáris algebrai alapok
Lineáris algebrai alapok Will 2010 június 16 Vektorterek, mátrixok, lineáris egyenletrendszerek A lineáris programozási feladat, szimplex algoritmus Vektorterek Jellemzés: Vektorok tulajdonságai Két vektor
Részletesebben3. el adás: Determinánsok
3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns
RészletesebbenLagrange-féle multiplikátor módszer és alkalmazása
Eötvös Loránd Tudományegyetem Természettudományi Kar Nemesné Jónás Nikolett Lagrange-féle multiplikátor módszer és alkalmazása Matematika BSc, Matematikai elemz szakirány Témavezet : Szekeres Béla János,
RészletesebbenNumerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A
RészletesebbenMATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK
MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell
RészletesebbenLineáris algebra - jegyzet. Kupán Pál
Lineáris algebra - jegyzet Kupán Pál Tartalomjegyzék fejezet Vektorgeometria 5 Vektorok normája Vektorok skaláris szorzata 4 3 Vektorok vektoriális szorzata 5 fejezet Vektorterek, alterek, bázis Vektorterek
RészletesebbenAz ellipszoid algoritmus
Az ellipszoid algoritmus Csizmadia Zsolt Eötvös Loránd Tudományegyetem Bevezető Az ellipszoid módszert a nemlineáris porgramozásra Shor [1970,0977] illetve Yudin és Nemirovskiî [1976] feljlesztették ki.
RészletesebbenA gyakorlati jegy
. Bevezetés A félév anyaga: lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció
Részletesebbeny = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)
III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp
Részletesebbendifferenciálegyenletek
Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y
Részletesebben