Szemidenit optimalizálás és az S-lemma

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Szemidenit optimalizálás és az S-lemma"

Átírás

1 Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium október 6.

2 Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok 4 Szemidenit optimalizálás 5 Alkalmazások 6 Kutatási irányok

3 Egyenl tlenségrendszerek megoldhatósága Feladat Honnan tudjuk, hogy az f(x) < 0 g i (x) 0, i = 1,..., m rendszernek nincs megoldása? (f, g i : R n R) Példa x 2 1 x x 1 x 2 < 0 x 2 2 x 1 x 2 0

4 Egyenl tlenségrendszerek megoldhatósága Feladat Honnan tudjuk, hogy az f(x) < 0 g i (x) 0, i = 1,..., m rendszernek nincs megoldása? (f, g i : R n R) Példa x 2 1 x x 1 x 2 < 0 x 2 2 x 1 x 2 0 Elégséges feltétel ( x 2 1 x x 1 x 2 ) +2 ( x 2 2 x 1 x 2 ) = x x 1 x 2 +x 2 2 = (x 1 +x 2 ) 2 0

5 Egyenl tlenségrendszerek megoldhatósága Elégséges feltétel Tetsz leges f, g i esetén y R m, y 0 m f(x) + y i g i (x) i=1 0, x R n x R n f(x) < 0 g i (x) 0, i = 1,..., m

6 Egyenl tlenségrendszerek megoldhatósága Elégséges feltétel Tetsz leges f, g i esetén y R m, y 0 m f(x) + y i g i (x) i=1 0, x R n? x R n f(x) < 0 g i (x) 0, i = 1,..., m

7 Egyenl tlenségrendszerek megoldhatósága Ekvivalens feltétel Ha f és g i konvex függvények és x R n : g i (x) < 0, akkor y R m, y 0 m f(x) + y i g i (x) i=1 0, x R n x R n f(x) < 0 g i (x) 0, i = 1,..., m

8 Az S-lemma Yakubovich (1971) Ha f, g : R n R kvadratikus függvények és x R n : g(x) < 0, akkor y 0 f(x) + y g(x) 0, x R n x R n f(x) < 0 g(x) 0 Konvexitás nélkül!

9 Kitér Kvadratikus függvény (homogén) f(x) = x T Ax, A R n n szimmetrikus Konvex kvadratikus függvény Ha A 0 (pozitív szemidenit), vagyis x T Ax 0, x R n. Mátrixok skalárszorzata U V = Tr (UV ) = n i,j=1 U ijv ij x T Ax = Tr ( x T Ax ) = Tr ( Axx T ) = Tr ( A(xx T ) ) = A xx T

10 Az S-lemma, homogén alak Yakubovich (1971) A, B R n n és x R n : x T Bx < 0, akkor y 0 x T Ax + y x T Bx 0, x R n x R n x T Ax < 0 x T Bx 0

11 Az S-lemma, homogén alak Yakubovich (1971) A, B R n n és x R n : x T Bx < 0, akkor y 0 A + yb 0 (PSD) x R n x T Ax < 0 x T Bx 0

12 Az S-lemma Miért? Konvexitás nélkül! Rejtett konvexitás Alkalmazások Ljapunov-féle stabilitásvizsgálat Ellipszoidtartalmazás Számítógépes graka

13 Klasszikus bizonyítás A primál feladat nem megoldható x : x T Ax < 0, x T Bx 0 R R { (x T Ax, x T Bx) : x R n} = }{{} konvex! (Dines, 1941)

14 Klasszikus bizonyítás A primál feladat nem megoldható x : x T Ax < 0, x T Bx 0 R R { (x T Ax, x T Bx) : x R n} = }{{} konvex! (Dines, 1941) Kicsit általánosabb eredmény (Poljak, 1998) n 3, az A, B 1, B 2 mátrixoknak van PD lineáris kombinációjuk { (x T Ax, x T B 1 x, x T B 2 x) : x R n} konvex

15 Klasszikus bizonyítás A primál feladat nem megoldható x : x T Ax < 0, x T Bx 0 R R { (x T Ax, x T Bx) : x R n} = }{{} konvex! (Dines, 1941) Kicsit általánosabb eredmény (Poljak, 1998) n 3, az A, B 1, B 2 mátrixoknak van PD lineáris kombinációjuk { (x T Ax, x T B 1 x, x T B 2 x) : x R n} konvex Szeparációs bizonyítás Norma-feltétel

16 { Figure: (x T Ax, x T Bx) : x R n} ( 2 0 A = 0 1 ) ( 3 1, B = 1 0 ) Vissza a konvexitáshoz!

17 Modern bizonyítás Szemidenit relaxáció x T Ax < 0 x T Bx 0 x R n

18 Modern bizonyítás Szemidenit relaxáció x T Ax < 0 A xx T < 0 x T Bx 0 B xx T 0 x R n

19 Modern bizonyítás Szemidenit relaxáció x T Ax < 0 A xx T < 0 A X < 0 x T Bx 0 B xx T 0 B X 0 x R n rank (X) = 1 X 0

20 Modern bizonyítás Szemidenit relaxáció x T Ax < 0 A xx T < 0 A X < 0 x T Bx 0 B xx T 0 B X 0 x R n rank (X) = 1 X 0

21 Modern bizonyítás Szemidenit relaxáció x T Ax < 0 A xx T < 0 A X < 0 x T Bx 0 B xx T 0 B X 0 x R n rank (X) = 1 X 0 Pataki, 1998 A S n an altér, dim A ( ) ( n 2 r+2 ) 2 + 1, PS n A X PS n A, amelyre rank (X) r.

22 Modern bizonyítás Szemidenit relaxáció x T Ax < 0 A xx T < 0 A X < 0 x T Bx 0 B xx T 0 B X 0 x R n rank (X) = 1 X 0 Pataki, 1998 A S n an altér, dim A ( ) ( n 2 r+2 ) 2 + 1, PS n A X PS n A, amelyre rank (X) r. Barvinok, 2001 A S n an altér, dim A = ( ) ( n 2 r+2 ) 2, PS n A és korlátos X PS n A, amelyre rank (X) r.

23 A rangfeltétel és a konvexitás ekvivalenciája Az { (x T Ax, x T Bx) : x R n} halmaz konvexitása y, z R n, λ [0, 1] Kell: x R n x T Ax = λy T Ay + (1 λ)z T Az x T Bx = λy T By + (1 λ)z T Bz

24 A rangfeltétel és a konvexitás ekvivalenciája Az { (x T Ax, x T Bx) : x R n} halmaz konvexitása y, z R n, λ [0, 1] Kell: x R n x T Ax = λy T Ay + (1 λ)z T Az x T Bx = λy T By + (1 λ)z T Bz X = xx T a következ rendszer 1-rangú megoldása A X = λy T Ay + (1 λ)z T Az B X = λy T By + (1 λ)z T Bz Pataki: létezik 1-rangú megoldás

25 Bizonyítás Helly-tétellel H x = { y 0 : x T Ax + y x T Bx 0 } R H x tulajdonságai konvex zárt bármelyik kett metszete nemüres = x H x, vagyis y 0 : x T Ax + y x T Bx 0, x R n

26 Bizonyítás Helly-tétellel H x = { y 0 : x T Ax + y x T Bx 0 } R H x tulajdonságai konvex zárt bármelyik kett metszete nemüres van köztük korlátos! (Slater-feltétel) = x H x, vagyis y 0 : x T Ax + y x T Bx 0, x R n

27 Elemi bizonyítás Yuan, 1990 A, B R n n szimmetrikus mátrixok, F, G R n zárt halmazok, F G = R n. Ha x T Ax 0, x F x T Bx 0, x G, akkor λ [0, 1], amelyre λx T Ax + (1 λ)x T Bx 0, x, vagyis λa + (1 λ)b 0.

28 Kutatási irányok Általánosítás több egyenlet speciális mátrixok speciális egyenl tlenségek Alkalmazások

29 Szemidenit optimalizálás Mátrixváltozó min Tr (CX) max b T y m Tr (A i X) = b i, i = 1,..., m A i y i + S = C X 0 S 0 C, X, S, A i n n-es szimmetrikus mátrixok, b, y R m Speciális struktúra: A i, C lehet ritka, vagy alacsony rangú i=1

30 Algoritmusok Általában bels pontos módszerek Iterációk: O( n), valójában Egy iteráció költsége: O(mn 3 + m 2 n 2 + m 3 ) Megoldható feladatok: m 10000, n (ritka mátrixokkal több) Nagy pontosság

31 Implementáció Kezd pont beágyazás nem-megengedett módszerek M veletek ritka mátrixokkal tárolás, szimmetria UV + V U, U + uu T Ux = r megoldása Cholesky-faktorizáció: U = LDL T Iteratív módszerek Speciális struktúrák általános decompozíció (Kojima et al.) egyedi módszerek adott feladatra

32 Bináris változók relaxációja Bináris változók: x i {0, 1} Lineáris relaxáció: x i [0, 1] Bináris feltétel ekvivalens alakja: z i = 2x i 1 zi 2 = 1 ( z i = ±1) Matrixokkal: Z 0 diag (Z) = 1 rank (Z) = 1( Z = zz T )

33 Gráfpartícionálás Egy 2m csúcsú élsúlyozott gráf csúcsait osszuk fel két egyenl részre úgy, hogy a két partíció között futó élek összsúlya minimális legyen. A: incidencia mátrix, A kl : a kl él súlya y ij = 1: az i csúcs a j partícióban van (j = 1, 2) y j : a j partíció indikátorvektora y T j Ay j: 2 a j partícióban lév élek összsúlya Tr ( Y T AY ) : 2 az elvágatlan élek összsúlya e T Ae: 2 az élek összsúlya min e T Ae Tr ( Y T AY ) Y partíciómátrix SDP relaxáció (X = Y Y T ) min e T Ae Tr (AX) diag (X) = 1 Xe = m X 0 X 0 rank (X) = 2

34 Gráfpartícionálás Egy 2m csúcsú élsúlyozott gráf csúcsait osszuk fel két egyenl részre úgy, hogy a két partíció között futó élek összsúlya minimális legyen. A: incidencia mátrix, A kl : a kl él súlya y ij = 1: az i csúcs a j partícióban van (j = 1, 2) y j : a j partíció indikátorvektora y T j Ay j: 2 a j partícióban lév élek összsúlya Tr ( Y T AY ) : 2 az elvágatlan élek összsúlya e T Ae: 2 az élek összsúlya min e T Ae Tr ( Y T AY ) Y partíciómátrix SDP relaxáció (X = Y Y T ) Komplexitás: O(m 6.5 )! min e T Ae Tr (AX) diag (X) = 1 Xe = m X 0 X 0 rank (X) = 2

35 Polinomoptimalizálás I Tétel Ha p(x) : R R egyváltozós polinom, akkor p(x) 0, x p(x) négyzetösszeg (SOS) Példa p(x) = x 6 5x 4 +6x 3 +8x 2 14x+5

36 Polinomoptimalizálás I Tétel Ha p(x) : R R egyváltozós polinom, akkor p(x) 0, x p(x) négyzetösszeg (SOS) Példa p(x) = x 6 5x 4 +6x 3 +8x 2 14x+5 = (x 2 +x 1) 2 +(x 3 3x+2) 2

37 Polinomoptimalizálás I Tétel Ha p(x) : R R egyváltozós polinom, akkor p(x) 0, x p(x) négyzetösszeg (SOS) Példa p(x) = x 6 5x 4 +6x 3 +8x 2 14x+5 = (x 2 +x 1) 2 +(x 3 3x+2) 2 Általában nem igaz: z 6 + x 4 y 2 + x 2 y 4 3x 2 y 2 z 2 0, de nem SOS

38 Polinomoptimalizálás I Tétel Ha p(x) : R R egyváltozós polinom, akkor p(x) 0, x p(x) négyzetösszeg (SOS) Példa p(x) = x 6 5x 4 +6x 3 +8x 2 14x+5 = (x 2 +x 1) 2 +(x 3 3x+2) 2 Általában nem igaz: z 6 + x 4 y 2 + x 2 y 4 3x 2 y 2 z 2 0, de nem SOS min p(x) max t max t p(x) t 0, x p(x) t is SOS

39 Polinomoptimalizálás II q = (1, x, x 2,..., x n ) Négyzet: ( n ) 2 ( n ) 2 p(x) = u i x i = u i q i = (u T q) 2 = q T (uu T )q i=0 i=0 SOS: q T Uq, ahol U 0 u 44 = 1 u 34 + u 43 = 0 u 24 + u 33 + u 42 = 5 u 14 + u 23 + u 32 + u 41 = 6 u 13 + u 22 + u 31 = 8 u 21 + u 12 = 14 u 11 = 5 U 0 U = u (1) = ( ) u (2) = ( ) Software: (Gloptipoly, SOSTools), Yalmip

40 Kutatási irányok 1994 óta nincs lényeges eredmény Speciális struktúrák Új algoritmusok szimplex, perceptron, gravity, megengedett irányok, row-by-row,... Kapcsolódó kutatások SOCP Kopozitív optimalizálás (x T Ux 0, x 0) Egészérték és bináris változók

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Boros Zoltán február

Boros Zoltán február Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n

Részletesebben

Diszkrét Matematika MSc hallgatók számára. 4. Előadás

Diszkrét Matematika MSc hallgatók számára. 4. Előadás Diszkrét Matematika MSc hallgatók számára 4. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2012. február 28. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

4. Előadás: Erős dualitás

4. Előadás: Erős dualitás Optimalizálási eljárások/operációkutatás MSc hallgatók számára 4. Előadás: Erős dualitás Előadó: Hajnal Péter 2018. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét d

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék,   Wettl Ferenc (BME) Utolsó el adás / 20 Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális

Részletesebben

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j) Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények

Részletesebben

További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás

További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy

Részletesebben

Alkalmazott algebra - SVD

Alkalmazott algebra - SVD Alkalmazott algebra - SVD Ivanyos Gábor 20 sz Poz. szemidenit mátrixok spektrálfelbontásának általánosítása nem feltétlenül négyzetes mátrixokra LSI - mögöttes szemantikájú indexelés "Közelít " webkeresés

Részletesebben

A lineáris programozás alapjai

A lineáris programozás alapjai A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Jegyzet. az Operációkutatás II cím tantárgyhoz. Király Tamás és Papp Olga. Utolsó frissítés: február

Jegyzet. az Operációkutatás II cím tantárgyhoz. Király Tamás és Papp Olga. Utolsó frissítés: február Jegyzet az Operációkutatás II cím tantárgyhoz Király Tamás és Papp Olga Utolsó frissítés: 2015. február 2 Tartalomjegyzék 1. Lineáris programozás 7 1.1. TU mátrixok: kerekítés és színezés......................

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Mat. A2 3. gyakorlat 2016/17, második félév

Mat. A2 3. gyakorlat 2016/17, második félév Mat. A2 3. gyakorlat 2016/17, második félév 1. Hány megoldása lehet az alábbi lineáris egyenletrendszereknek a valós számok körében, ha a -ok tetszőleges (nem feltétlenül egyenlő) számokat jelölnek? 0

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

A szimplex tábla. p. 1

A szimplex tábla. p. 1 A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28 Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek

Részletesebben

Nem-lineáris programozási feladatok

Nem-lineáris programozási feladatok Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens

Részletesebben

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése 2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )

Részletesebben

Diszkrét matematika 1. középszint

Diszkrét matematika 1. középszint Diszkrét matematika 1. középszint 2017. sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22

Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22 Mátrixfüggvények Wettl Ferenc 2016. április 28. Wettl Ferenc Mátrixfüggvények 2016. április 28. 1 / 22 Tartalom 1 Diagonalizálható mátrixok függvényei 2 Mátrixfüggvény a Jordan-alakból 3 Mátrixfüggvény

Részletesebben

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek 10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

á é ő ö ó í á á ö ö ö ó ú ó ő é í é á á é ö ö ő ő á á ú ő ó ÚÚ É í í ó ö á á á í ű ö é á ó é é á ó á á á é á í ö ü í ú ö ó ó ö ö ö á á á é á ó í é é é á é ű é á é á é ő ú ő á á á í ö ű é ü á ö ó é ü ó

Részletesebben

NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK

NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK Szerkesztette: Balogh Tamás 04. január 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el!

Részletesebben

Bevezetés az algebrába 2 Vektor- és mátrixnorma

Bevezetés az algebrába 2 Vektor- és mátrixnorma Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.

Részletesebben

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35 Szinguláris értékek Wettl Ferenc 2016. április 12. Wettl Ferenc Szinguláris értékek 2016. április 12. 1 / 35 Tartalom 1 Szinguláris érték 2 Norma 3 Mátrixnorma 4 Alkalmazások Wettl Ferenc Szinguláris értékek

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben

Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges

Részletesebben

Jegyzet. az Operációkutatás II cím tantárgyhoz. Utolsó frissítés: május 20. Király Tamás el adásai alapján készítette Papp Olga

Jegyzet. az Operációkutatás II cím tantárgyhoz. Utolsó frissítés: május 20. Király Tamás el adásai alapján készítette Papp Olga Jegyzet az Operációkutatás II cím tantárgyhoz Király Tamás el adásai alapján készítette Papp Olga Utolsó frissítés: 2011. május 20. Tartalomjegyzék 1. TU mátrixok: kerekítés és színezés 3 1.1. Emlékeztet......................................

Részletesebben

Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar

Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Szélsőértékszámítás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Szélsőértékszámítás 1 / 21 2. SZÉLSOÉRTÉKSZÁMÍTÁS 2.1 A szélsőérték fogalma, létezése Azt

Részletesebben

Az állítást nem bizonyítjuk, de a létezést a Paley-féle konstrukció mutatja: legyen H a

Az állítást nem bizonyítjuk, de a létezést a Paley-féle konstrukció mutatja: legyen H a . Blokkrendszerek Definíció. Egy (H, H), H H halmazrendszer t (v, k, λ)-blokkrendszer, ha H = v, B H : B = k, és H minden t elemű részhalmazát H-nak pontosan λ eleme tartalmazza. H elemeit blokkoknak nevezzük.

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

9. AZ R k VEKTORTÉR. 9.1 Az R k vektortér fogalma

9. AZ R k VEKTORTÉR. 9.1 Az R k vektortér fogalma 9 AZ R k VEKTORTÉR 91 Az R k vektortér fogalma Definíció A k-dimenziós vektortér nek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x 2,, x k ) sorozatok halmazát, azaz 1 R k

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

Haladó lineáris algebra

Haladó lineáris algebra B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció

Részletesebben

Jegyzet. az Operációkutatás (elemz, programozó matematikus) tárgyhoz április. Fábián Csaba, Király Tamás, Papp Olga

Jegyzet. az Operációkutatás (elemz, programozó matematikus) tárgyhoz április. Fábián Csaba, Király Tamás, Papp Olga Jegyzet az Operációkutatás (elemz, programozó matematikus) tárgyhoz Fábián Csaba, Király Tamás, Papp Olga 2015. április 1 Tartalomjegyzék 1. A lineáris programozási feladat 3 1.1. Bevezetés.......................................

Részletesebben

Differenciálszámítás normált terekben

Differenciálszámítás normált terekben Eötvös Loránd Tudományegyetem Természettudományi Kar Kapui Dóra Differenciálszámítás normált terekben Szakdolgozat Matematika BSc, elemz szakirány Témavezet : Tarcsay Zsigmond Alkalmazott Analízis és Számításmatematikai

Részletesebben

Lineáris optimalizálás bels pontos módszereinek újszer vizsgálata. szakdolgozat. Pólik Imre matematikus szak. Témavezet : Illés Tibor

Lineáris optimalizálás bels pontos módszereinek újszer vizsgálata. szakdolgozat. Pólik Imre matematikus szak. Témavezet : Illés Tibor Lineáris optimalizálás bels pontos módszereinek újszer vizsgálata szakdolgozat Pólik Imre matematikus szak Témavezet : Illés Tibor Eötvös Loránd Tudományegyetem Természettudományi Kar 2002 Kivonat Lineáris

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten LINEÁRIS PROGRAMOZÁS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 4 A lineáris

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

Totális Unimodularitás és LP dualitás. Tapolcai János

Totális Unimodularitás és LP dualitás. Tapolcai János Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

DiMat II Végtelen halmazok

DiMat II Végtelen halmazok DiMat II Végtelen halmazok Czirbusz Sándor 2014. február 16. 1. fejezet A kiválasztási axióma. Ismétlés. 1. Deníció (Kiválasztási függvény) Legyen {X i, i I} nemüres halmazok egy indexelt családja. Egy

Részletesebben

Lineáris algebra. (közgazdászoknak)

Lineáris algebra. (közgazdászoknak) Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval

Részletesebben

Lineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák

Lineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák Lineáris Algebra Pejó Balázs Tartalomjegyzék 1. Peano-axiomák 2 1.1. 1.................................................... 2 1.2. 2.................................................... 2 1.3. 3....................................................

Részletesebben

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma. Vektorterek Több esetben találkozhattunk olyan struktúrával, ahol az összeadás és a (valós) számmal való szorzás értelmezett, pl. a szabadvektorok esetében, vagy a függvények körében, vagy a mátrixok esetében.

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!

: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett! nomosztással a megoldást visszavezethetjük egy alacsonyabb fokú egyenlet megoldására Mivel a 4 6 8 6 egyenletben az együtthatók összege 6 8 6 ezért az egyenletnek gyöke az (mert esetén a kifejezés helyettesítési

Részletesebben

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós Lineáris algebra és a rang fogalma (el adásvázlat, 2010. szeptember 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

11. Előadás. 1. Lineáris egyenlőség feltételek melletti minimalizálás

11. Előadás. 1. Lineáris egyenlőség feltételek melletti minimalizálás Optimalizálási eljárások MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2011. április 27. 1. Lineáris egyenlőség feltételek melletti minimalizálás Múlt héten nem szerepeltek

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák

Részletesebben

Matematikai logika. Nagy Károly 2009

Matematikai logika. Nagy Károly 2009 Matematikai logika előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 2009 1 1. Elsőrendű nyelvek 1.1. Definíció. Az Ω =< Srt, Cnst, F n, P r > komponensekből álló rendezett négyest elsőrendű

Részletesebben

Lineáris kombinatorikus törtfüggvény optimalizálási feladatok

Lineáris kombinatorikus törtfüggvény optimalizálási feladatok Eötvös Loránd Tudományegyetem Természettudományi Kar Kránicz Enik Gréta Lineáris kombinatorikus törtfüggvény optimalizálási feladatok BSc Szakdolgozat Témavezet : Jüttner Alpár Operációkutatási Tanszék

Részletesebben

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz 6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) 1. Írjunk fel egy olyan legalacsonyabbrendű valós,

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12

Részletesebben

Lineáris leképezések, mátrixuk, bázistranszformáció. Képtér, magtér, dimenziótétel, rang, invertálhatóság

Lineáris leképezések, mátrixuk, bázistranszformáció. Képtér, magtér, dimenziótétel, rang, invertálhatóság 1. Bevezetés A félév anyaga: lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció

Részletesebben

Online jegyzet az Egészérték Programozás I. és II. tárgyhoz

Online jegyzet az Egészérték Programozás I. és II. tárgyhoz Online jegyzet az Egészérték Programozás I. és II. tárgyhoz Király Tamás, Kis Tamás és Szeg László May 19, 2015 Egészérték programozás I. vizsgatematika 2014. tavasz 1. Az egészérték lineáris programozási

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

Diszkrét Matematika MSc hallgatók számára. 14. Előadás

Diszkrét Matematika MSc hallgatók számára. 14. Előadás Diszkrét Matematika MSc hallgatók számára 14. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2012. Nem maradt rá idő 1. Feltétel nélküli optimalizálás 1.1. Az eljárások alapjai A feltétel nélküli

Részletesebben

Határozatlansági relációk származtatása az

Határozatlansági relációk származtatása az az állapottér BME TTK Matematikus MSc. 1. évf. 2012. november 14. Vázlat: Történeti áttekintés Nemkommutatív (kvantum) valószín ségelmélet Az állapottér geometriája: Az állapottér mint Riemann-sokaság

Részletesebben

A szemidefinit programozás alkalmazásai a kombinatorikus optimalizálásban című jegyzetemhez

A szemidefinit programozás alkalmazásai a kombinatorikus optimalizálásban című jegyzetemhez Kiegészítések az A szemidefinit programozás alkalmazásai a kombinatorikus optimalizálásban című jegyzetemhez Ujvári Miklós Utolsó módosítás: 2011 szeptember A 4.25 Megjegyzés mögé beszúrandó (4.26-ból

Részletesebben

Deníciók és tételek a beugró vizsgára

Deníciók és tételek a beugró vizsgára Deníciók és tételek a beugró vizsgára (a szóbeli viszgázás jogáért) Utolsó módosítás: 2008. december 2. 2 Bevezetés Számítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést,

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79

Részletesebben

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak 10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

(!), {z C z z 0 < R} K (K: konv. tart.) lim cn+1

(!), {z C z z 0 < R} K (K: konv. tart.) lim cn+1 Komlex analízis Komlex hatványsorok c n (z z 0 ) n ; R = lim n c n, R = (!), {z C z z 0 < R} K (K: konv. tart.) lim cn+ c n n=0. Van-e olyan komlex hatványsor, melynek a) üres a konvergenciatartománya,

Részletesebben

Lineáris algebrai alapok

Lineáris algebrai alapok Lineáris algebrai alapok Will 2010 június 16 Vektorterek, mátrixok, lineáris egyenletrendszerek A lineáris programozási feladat, szimplex algoritmus Vektorterek Jellemzés: Vektorok tulajdonságai Két vektor

Részletesebben

3. el adás: Determinánsok

3. el adás: Determinánsok 3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns

Részletesebben

Lagrange-féle multiplikátor módszer és alkalmazása

Lagrange-féle multiplikátor módszer és alkalmazása Eötvös Loránd Tudományegyetem Természettudományi Kar Nemesné Jónás Nikolett Lagrange-féle multiplikátor módszer és alkalmazása Matematika BSc, Matematikai elemz szakirány Témavezet : Szekeres Béla János,

Részletesebben

Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások

Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben

Lineáris algebra - jegyzet. Kupán Pál

Lineáris algebra - jegyzet. Kupán Pál Lineáris algebra - jegyzet Kupán Pál Tartalomjegyzék fejezet Vektorgeometria 5 Vektorok normája Vektorok skaláris szorzata 4 3 Vektorok vektoriális szorzata 5 fejezet Vektorterek, alterek, bázis Vektorterek

Részletesebben

Az ellipszoid algoritmus

Az ellipszoid algoritmus Az ellipszoid algoritmus Csizmadia Zsolt Eötvös Loránd Tudományegyetem Bevezető Az ellipszoid módszert a nemlineáris porgramozásra Shor [1970,0977] illetve Yudin és Nemirovskiî [1976] feljlesztették ki.

Részletesebben

A gyakorlati jegy

A gyakorlati jegy . Bevezetés A félév anyaga: lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció

Részletesebben

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax) III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp

Részletesebben

differenciálegyenletek

differenciálegyenletek Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y

Részletesebben