Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla
|
|
- István Kovács
- 5 évvel ezelőtt
- Látták:
Átírás
1 Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414,
2 Neurális hálózat - neuronok Neuron doktrina: S. Ramón y Cajal ( ) Mesterséges neuron: W. McCulloch and W. Pitts, 1943 Tanulás: D. Hebb, 1949 SNARC (Stochastic Neural Analog Reinforcement Calculator): M. Minsky, 1951 Perceptron: F. Rosenblatt, 1957 Neuronok becsült száma az emberi agyban: F. Azevedo et al., /- 8.1 milliárd
3 Perceptron - történelem Frank Rosenblatt: Perceptron A perceptron algoritmus első implementációja a Mark I Perceptron gép 1969: Minsky és Papert: Perceptrons c. könyve A perceptronnak súlyos korlátai vannak a képességeit tekintve Hatására kb 10 évig nem történt kutatás a témakörben (AI Winter)
4 Klasszikus neurális hálózatok David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams: "Learning representations by back-propagating errors" Hibavisszaterjesztés algoritmusa Újra beindította a kutatást a témakörben Vapnik: Support-vector networks Számos problémára sokkal jobb eredményt ad, kevésbé nehézkes a tanítása Hatásásra a neurális hálózatok kutatása (ismét) alábbhagyott
5 Mély neurális hálózatok 2000-es évek közepén a neurális hálózatok témakörben alig lehetett cikket elfogadtatni 2004 G. Hinton - CIFAR (Canadian Institute for Advanced Research) Új csomagolás a neurális hálózatoknak: deep learning Hinton, Osindero, Yee-Whye Teh:A fast learning algorithm for deep belief nets Új áttörés: mély hiedelem hálók rétegenkénti tanítása, Újra beindítja a kutatást
6 Perceptron bemenet súlyok x 1 w 1 w 1 x 1 x 2 w 2 összegző aktivációs függvény kimenet x 3 w 3 Σ y x n w n x n+1 =1 w n+1 =b bias súlyozott összeg n1 T y sgn( w x ) sgn( w x w ) sgn( b) i i i i n1 i1 i1 n xw
7 A perceptron képessége n1 T y sgn( w x ) sgn( w x w ) sgn( b) i i i i n1 i1 i1 n xw T xwb0 T xwb0 lineárisan (hipersíkkal) szeparálható függvényt képes reprezentálni
8 Perceptron tanítása 1. hiba elvárt kimenet w( k) w( k 1) ( k) x( k) - bátorsági faktor, tanulási tényező
9 Perceptron tanítása 2. Tanítás konvergens, ha A tanító példák lineárisan szeparálhatók Bátorsági tényező elegendően kicsi w( k) w( k 1) ( k) x( k) Küszöb érték
10 Perceptron és a logikai függvények
11 XOR (és hasonlóan lineárisan nem szeparálhatók) problémája több réteg kellene tanulás (preceptronnál) csak 1 rétegre hiba értelmezése a kérdés
12 Mesterséges neuron
13 Mesterséges neuron aktivációs függvények Szigmoid Tanh
14 Mesterséges Neurális Háló (Artificial Neural Network) nemlineáris approximációt megvalósító, induktív tanulási algoritmussal tanítható matematikai struktúra.
15 Mesterséges neurális háló felépítés Bemeneti réteg Rejtett rétegek Kimeneti réteg 15
16 Mesterséges neurális háló
17 Mesterséges neurális háló reprezentációs képessége D. Hilbert (1900) 23 matematikai problémája/sejtése: 13. probléma: "Bizonyítsuk be, hogy az x 7 +ax 3 +bx 2 +cx+1=0 hetedfokú egyenlet nem oldható meg pusztán kétváltozós függvények segítségével! "Mutassuk meg, hogy van olyan háromváltozós folytonos függvény, mely nem írható fel véges számú kétváltozós folytonos függvény segítségével! A. Kolmogorov (1957): nem csupán minden háromváltozós függvény, hanem tetszőleges N-változós folytonos függvény felírható csupán egyváltozós függvények és az összeadás segítségével.
18 Mesterséges neurális háló Már egy rejtett réteggel is univerzális approximátor (bármely függvényt képes reprezentálni) S.Sun, Univ.Toronto
19 Mesterséges neurális háló tanítása Többrétegű előrecsatolt háló tanítása (elemi alapok) Hibavisszaterjesztés gradiens módszerrel példa bemeneteket mutatunk a hálónak, ha hiba lép fel (a kimenet és a kívánt érték eltér), a súlyokat úgy módosítjuk, hogy a hiba csökkenjen. A trükk a hiba megállapítása és a hibának a hibát létrehozó súlyok közti szétosztása. W E W W
20 Hiba-/költség-/veszteség-függvény választás Négyzetes hiba regresszió 1 E( d, y) i ( d i y i ) 2 Keresztentrópia osztályozás E( d, y) i d i log y i 2 A cél azon súlyok megtalálása, melyek mellett minimális a hiba * arg min N w E( di, y i), ahol y = f(x,w) w i1
21 A tanítás nehézségei Kihívás: a neurális hálók tanítása egy nem konvex optimalizálási feladat
22 A tanítás lépései Kimenet számítása (forward pass) Hiba visszaterjesztése (backpropagation) Input j k 0 k kj k1 a ( x) g( w x w ) Hidden * i( ) ( j0 j ( ) ji ) j1 y x g w a x w
23 A tanítás lépései Kimenet számítása (forward pass) Hiba visszaterjesztése (backpropagation) Input j k 0 k kj k1 a ( x) g( w x w ) Hidden * i( ) ( j0 j ( ) ji ) j1 y x g w a x w
24 Backpropagation W E W W k, j k, j k, j W E W 1 2 E ( ) W i di yi ji, 2 j, i j, i
25 Mesterséges Neurális Háló hibavisszaterjesztés, alapok 1 1 E ( d y ) Err i i i i i 1 1 E( W) ( d g( W a )) ( d g( W g( W I ))) 2 2 E W ji, 2 2 i i j j, i j i i j j, i k k, j k E W W j, i j, i a ( d y ) g '( W a ) a ( d y ) g '( in ) a j i i j j, i j j i i i j i E W W W a Err g '( in ) W j, i j, i j, i j i i Wji, ji, Err i i g '( ini ) W W a j, i j, i j i
26 Mesterséges Neurális Háló hibavisszaterjesztés, alapok E W ji, E W W k, j a ( d y ) g '( W a ) a ( d y ) g '( in ) a I j i i j j, i j j i i i j i k k, j k, j E W W W W I k, j k, j k j j k, j g '( in ) W j j i j, i i
27 Mesterséges Neurális Háló
28 Neurális háló - tulajdonságok Aktivációs függvény A hibavisszaterjesztést alkalmazó (sekély) hálókban általában a szigmoid függvényt vagy annak valamelyik változatát használjuk. A szigmoidnak megvan az a tulajdonsága, hogy deriváltja g ' g(1 g) gx ( ) 1 1 e x
29 Neurális háló - tulajdonságok Kifejezőképesség Nem rendelkeznek az általános logikai reprezentációk kifejezőképességével. A többrétegű hálók osztálya egészében, mint osztály az attribútumok bármely függvényének reprezentációjára képes. Számítási hatékonyság Legrosszabb esetben a szükséges epochok száma a bemenetek számának, n-nek, még exponenciális függvénye is lehet. A hibafelület lokális minimumai problémát jelenthetnek.
30 Neurális háló - tulajdonságok Általánosító képesség: jó általánosításra képesek. Zajérzékenység: alapvetően nemlineáris regresszió, nagyon jól tolerálják a bemeneti adatok zajosságát. Átláthatóság: alapvetően fekete doboz. A priori ismeret felhasználása: nem könnyű (még aktívan kutatott terület)
Intelligens orvosi műszerek VIMIA023
Intelligens orvosi műszerek VIMIA023 Neurális hálók (Dobrowiecki Tadeusz anyagának átdolgozásával) 2017 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679 A
Mesterséges Intelligencia MI
Mesterséges Intellgenca MI Egyszerű döntés. Tanuljuk meg! Dobroweck Tadeusz Eredcs Péter, és mások BME I.E. 437, 463-28-99 dobroweck@mt.bme.hu, http://www.mt.bme.hu/general/staff/tade Neuron doktrna: S.
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók 2. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók 2. Előadó: Hullám Gábor Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.
: Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3
Bevezetés a neurális számításokba Analóg processzortömbök,
Pannon Egyetem Villamosmérnöki és Információs Tanszék Bevezetés a neurális számításokba Analóg processzortömbök, neurális hálózatok Előadó: dr. Tömördi Katalin Neurális áramkörök (ismétlés) A neurális
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Neurális hálózatok.... a gyakorlatban
Neurális hálózatok... a gyakorlatban Java NNS Az SNNS Javás változata SNNS: Stuttgart Neural Network Simulator A Tübingeni Egyetemen fejlesztik http://www.ra.cs.unituebingen.de/software/javanns/ 2012/13.
Tanulás az idegrendszerben
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Funkcióvezérelt modellezés Abból indulunk ki, hogy milyen feladatot valósít meg a rendszer Horace Barlow: "A
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL
Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL TULICS@TMIT.BME.HU Példa X (tanult órák száma, aludt órák száma) y (dolgozaton elért pontszám) (5, 8) 80 (3, 5) 78 (5, 1) 82 (10, 2) 93 (4, 4)
NEURÁLIS HÁLÓZATOK 1. eloadás 1
NEURÁLIS HÁLÓZATOKH 1. eloadás 1 Biológiai elozmények nyek: az agy Az agy az idegrendszerunk egyik legfontosabb része: - képes adatokat tárolni, - gyorsan és hatékonyan mukodik, - nagy a megbízhatósága,
Perceptron konvergencia tétel
Perceptron konvergencia tétel Mesterséges Intelligencia I. házi feladat Lám István A2D587 lam.istvan@gmail.com 1 A Perceptron 1.1 A perceptron definíciója A perceptron az egyik legegyszerűbb előrecsatolt
Neurális hálózatok bemutató
Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
I. LABOR -Mesterséges neuron
I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
Intelligens Rendszerek Elmélete
Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html
Debreceni Egyetem Informatikai Kar. Fazekas István. Neurális hálózatok
Debreceni Egyetem Informatikai Kar Fazekas István Neurális hálózatok Debrecen, 2013 Szerző: Dr. Fazekas István egyetemi tanár Bíráló: Dr. Karácsony Zsolt egyetemi docens A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0103
Deep learning. bevezetés
Deep learning bevezetés Egy kis történelem - a kezdetek 1957 - Frank Rosenblatt: Perceptron A perceptron algoritmus első implementációja a Mark I Perceptron gép 20 20 pixeles képet adó kamerához volt kötve
Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok
Zrínyi Miklós Gimnázium Művészet és tudomány napja Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok 10/9/2009 Dr. Viharos Zsolt János Elsősorban volt Zrínyis diák Tudományos főmunkatárs
Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában
Budapesti Műszaki és Gazdaságtudományi Egyetem Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Cselkó Richárd 2009. október. 15. Az előadás fő témái Soft Computing technikák alakalmazásának
Visszacsatolt (mély) neurális hálózatok
Visszacsatolt (mély) neurális hálózatok Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Sima előrecsatolt neurális hálózat Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Pl.: kép feliratozás,
TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...
TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő
Modellezés és szimuláció. Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék
Modellezés és szimuláció Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék Kvantitatív forradalmak a földtudományban - geográfiában 1960- as évek eleje: statisztika 1970- as évek eleje:
Hibadetektáló rendszer légtechnikai berendezések számára
Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő
II. LABOR Tanulás, Perceptron, Adaline
II. LABOR Tanulás, Perceptron, Adaline A dolgozat célja a tanító algoritmusok osztályozása, a tanító és tesztel halmaz szerepe a neuronhálók tanításában, a Perceptron és ADALINE feldolgozó elemek struktúrája,
Bevezetés a lágy számítás módszereibe. Neurális hálózatok Alapok
BLSZM-09 p. 1/29 Bevezetés a lágy számítás módszereibe Neurális hálózatok Alapok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-09 p. 2/29
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét
Konvolúciós neurális hálózatok (CNN)
Konvolúciós neurális hálózatok (CNN) Konvolúció Jelfeldolgozásban: Diszkrét jelek esetén diszkrét konvolúció: Képfeldolgozásban 2D konvolúció (szűrők): Konvolúciós neurális hálózat Konvolúciós réteg Kép,
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 262/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Neurális hálózatok MATLAB programcsomagban
Debreceni Egyetem Informatikai Kar Neurális hálózatok MATLAB programcsomagban Témavezető: Dr. Fazekas István Egyetemi tanár Készítette: Horváth József Programtervező informatikus Debrecen 2011 1 Tartalomjegyzék
Szemidenit optimalizálás és az S-lemma
Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium 2011. október 6. Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok
Megerősítéses tanulás
Megerősítéses tanulás elméleti kognitív neurális Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II:
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás http:/uni-obuda.hu/users/kutor/ IRE 7/50/1 A neurális hálózatok általános jellemzői 1. A
Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök
Gyires-Tóth Bálint Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök http://smartlab.tmit.bme.hu Deep Learning Híradó Hírek az elmúlt 168 órából Deep Learning Híradó Google
SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával
SAT probléma kielégíthetőségének vizsgálata masszív parallel mesterséges neurális hálózat alkalmazásával Tajti Tibor, Bíró Csaba, Kusper Gábor {gkusper, birocs, tajti}@aries.ektf.hu Eszterházy Károly Főiskola
Adatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
Dinamikus modellek szerkezete, SDG modellek
Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.
Stratégiák tanulása az agyban
Statisztikai tanulás az idegrendszerben, 2019. Stratégiák tanulása az agyban Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Kortárs MI thispersondoesnotexist.com
E x μ x μ K I. és 1. osztály. pontokként), valamint a bayesi döntést megvalósító szeparáló görbét (kék egyenes)
6-7 ősz. gyakorlat Feladatok.) Adjon meg azt a perceptronon implementált Bayes-i klasszifikátort, amely kétdimenziós a bemeneti tér felett szeparálja a Gauss eloszlású mintákat! Rajzolja le a bemeneti
Google Summer of Code Project
Neuronhálózatok a részecskefizikában Bagoly Attila ELTE TTK Fizikus MSc, 2. évfolyam Integrating Machine Learning in Jupyter Notebooks Google Summer of Code Project 2016.10.10 Bagoly Attila (ELTE) Machine
Forgalmi modellezés BMEKOKUM209
BME Közlekedésüzemi és Közlekedésgazdasági Tanszék Forgalmi modellezés BMEKOKUM209 Szimulációs modellezés Dr. Juhász János A forgalmi modellezés célja A közlekedési igények bővülése és a motorizáció növekedése
Intelligens Rendszerek Elmélete
Intellgens Rendszerek Elmélete Dr. Kutor László A mesterséges neuráls hálózatok alapfogalma és meghatározó eleme http://mobl.nk.bmf.hu/tantargyak/re.html Logn név: re jelszó: IRE07 IRE 7/1 Neuráls hálózatok
Mesterséges intelligencia
Mesterséges intelligencia Botzheim János Budapesti Műszaki és Gazdaságtudományi Egyetem, Mechatronika, Optika és Gépészeti Informatika Tanszék Motivációk Hogyan lehetne automatikussá tenni azokat az összetett
A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL
A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL Dr. Ludányi Lajos mk. alezredes egyetemi adjunktus Zrínyi Miklós Nemzetvédelmi Egyetem Vezetés- és Szervezéstudományi Kar Fedélzeti Rendszerek Tanszék
NEURONHÁLÓK ÉS TANÍTÁSUK A BACKPROPAGATION ALGORITMUSSAL. A tananyag az EFOP pályázat támogatásával készült.
NEURONHÁLÓK ÉS TANÍTÁSUK A BACKPROPAGATION ALGORITMUSSAL A tananyag az EFOP-3.5.1-16-2017-00004 pályázat támogatásával készült. Neuron helyett neuronháló Neuron reprezentációs erejének növelése: építsünk
Mesterséges Intelligencia Elektronikus Almanach. MI Almanach projektismertetı rendezvény április 29., BME, I. ép., IB.017., 9h-12h.
Mesterséges Intelligencia Elektronikus Almanach Neurális hálózatokh 1 BME 1990: Miért neurális hálók? - az érdeklıdésünk terébe kerül a neurális hálózatok témakör - fıbb okok: - adaptív rendszerek - felismerési
Mesterséges neurális hálók
Dunaúvársi Főiskla Inrmatikai Intézet Mesterséges neurális hálók Dr. Seebauer Márta őisklai tanár seebauer.marta@szgti.bm.hu Szimblikus és nem-szimblikus MI Szimblikus tudáseldlgzás. Tudásbeszerzés 2.
Gépi tanulás Gregorics Tibor Mesterséges intelligencia
Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet
/ Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =
Tisztelt Hallgatók! Jó tanulást kívánok, üdvözlettel: Kutor László
Tisztelt Hallgatók! Az alábbi anyaga arra ó, hogy lehessen tudni, mi tartozik egy-egy kérdéshez. Ami itt olvasható, az a éghegy csúcsa. Ha alapos tudást akarnak, a éghegy alát önállóan kell hozzá gyűteniük.
A MESTERSÉGES NEURONHÁLÓZATOK BEVEZETÉSE AZ OKTATÁSBA A GAMF-ON
A MESTERSÉGES NEURONHÁLÓZATOK BEVEZETÉSE AZ OKTATÁSBA A GAMF-ON Pintér István, pinter@gandalf.gamf.hu Nagy Zoltán Gépipari és Automatizálási Mûszaki Fõiskola, Informatika Tanszék Gépipari és Automatizálási
Nem-lineáris programozási feladatok
Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens
Osztályozási feladatok képdiagnosztikában. Orvosi képdiagnosztikai 2017 ősz
Osztályozási feladatok képdiagnosztikában Orvosi képdiagnosztikai 2017 ősz Osztályozás Szeparáló felületet keresünk Leképezéseket tanulunk meg azok mintáiból A tanuláshoz használt minták a tanító minták
Kovács Ernő 1, Füvesi Viktor 2
Kovács Ernő 1, Füvesi Viktor 2 1 Miskolci Egyetem, Elektrotechnikai - Elektronikai Tanszék 2 Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1 HU-3515 Miskolc-Egyetemváros 2 HU-3515 Miskolc-Egyetemváros,
A könyv. meglétét. sgálat
Benyó Balázs Benyó Zoltán Paláncz Béla Szilágyi László Ferenci Tamás Műszaki és biológiai rendszerek elmélete A könyv interdiszciplináris jellegű, műszaki és biológiai rendszerek működésének modellezésére
A neurális hálók logisztikai alkalmazhatósága
Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar Anyagmozgatási és Logisztikai Rendszerek Tanszék Tóth Gergő RD7H5L A neurális hálók logisztikai alkalmazhatósága Tudományos
A lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással
pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál
Biológiai és mesterséges neurális hálózatok
Biológiai és mesterséges neurális hálózatok Szegedy Balázs 2018. október 10. Hasonlóságok és külömbségek A mesterséges neurális hálózatok története 1957-ben kezdődött: perceptron (Frank Rosenblatt). 400
[1000 ; 0] 7 [1000 ; 3000]
Gépi tanulás (vimim36) Gyakorló feladatok 04 tavaszi félév Ahol lehet, ott konkrét számértékeket várok nem puszta egyenleteket. (Azok egy részét amúgyis megadom.). Egy bináris osztályozási feladatra tanított
Gépi tanulás a gyakorlatban SVM
Gépi tanulás a gyakorlatban SVM Klasszifikáció Feladat: előre meghatározott csoportok elkülönítése egymástól Osztályokat elkülönítő felület Osztályokhoz rendelt döntési függvények Klasszifikáció Feladat:
A kibontakozó új hajtóerő a mesterséges intelligencia
5. Magyar Jövő Internet Konferencia» Okos város a célkeresztben «A kibontakozó új hajtóerő a mesterséges intelligencia Dr. Szűcs Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Távközlési és Médiainformatikai
KONVOLÚCIÓS NEURONHÁLÓK. A tananyag az EFOP pályázat támogatásával készült.
KONVOLÚCIÓS NEURONHÁLÓK A tananyag az EFOP-3.5.1-16-2017-00004 pályázat támogatásával készült. 1. motiváció A klasszikus neuronháló struktúra a fully connected háló Két réteg között minden neuron kapcsolódik
AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA
AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA Kovács Ernő 1, Füvesi Viktor 2 1 Egyetemi docens, PhD; 2 tudományos segédmunkatárs 1 Eletrotechnikai és Elektronikai Tanszék, Miskolci Egyetem
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Az idegrendszeri memória modelljei
Az idegrendszeri memória modelljei A memória típusai Rövidtávú Working memory - az aktuális feladat Vizuális, auditórikus,... Prefrontális cortex, szenzorikus területek Kapacitás: 7 +-2 minta Hosszútávú
Néhány nem hagyományos matematikai modell (Ezeket rejtett modellnek is nevezik, ritkán modell nélküli rendszerről beszélnek.)
Néhány nem hagyományos matematikai modell (Ezeket rejtett modellnek is nevezik, ritkán modell nélküli rendszerről beszélnek.) A klasszikus szabályozáselmélet általában a differenciál egyenleteken alapuló
Gépi tanulás a Rapidminer programmal. Stubendek Attila
Gépi tanulás a Rapidminer programmal Stubendek Attila Rapidminer letöltése Google: download rapidminer Rendszer kiválasztása (iskolai gépeken Other Systems java) Kicsomagolás lib/rapidminer.jar elindítása
Mély neuronhálók az akusztikus modellezésben
Szeged, 2013. január 7 8. 3 Mély neuronhálók az akusztikus modellezésben Grósz Tamás, Tóth László MTA-SZTE Mesterséges Intelligencia Kutatócsoport, e-mail: groszt@sol.cc.u-szeged.hu,tothl@inf.u-szeged.hu
Neurális hálók. Sáfár Rebeka. Eötvös Loránd Tudományegyetem Természettudományi Kar. Pr hle Tamás, Alkalmazott matematikus MSc, Sztochasztika szakirány
Eötvös Loránd Tudományegyetem Természettudományi Kar Neurális hálók MSc Szakdolgozat Sáfár Rebeka Alkalmazott matematikus MSc, Sztochasztika szakirány Témavezet : Pr hle Tamás, egyetemi tanársegéd Valószín
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás
Algoritmusok Tervezése Fuzzy rendszerek Dr. Bécsi Tamás Bevezetés Mese a homokkupacról és a hidegről és a hegyekről Bevezetés, Fuzzy történet Két értékű logika, Boole algebra Háromértékű logika n értékű
Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007 Az Előadások Témái -hálók Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus
Modellkiválasztás és struktúrák tanulása
Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális
INTERNETES ALKALMAZÁS KOORDINÁTA TRANSZFORMÁCIÓRA NEURÁLIS HÁLÓZATOK ALKALMAZÁSÁVAL. Zaletnyik Piroska
INTERNETES ALKALMAZÁS KOORDINÁTA TRANSZFORMÁCIÓRA NEURÁLIS HÁLÓZATOK ALKALMAZÁSÁVAL Zaletnyik Piroska Web-based application for coordinate transformation using neural networks - Nowadays in Hungary more
Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált
Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 20/2011 Az Előadások Témái 226/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus
valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
Irányításelmélet és technika II.
Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november
Neurális hálózatok Altrichter, Márta Horváth, Gábor Pataki, Béla Strausz, György Takács, Gábor Valyon, József
Neurális hálózatok Altrichter, Márta Horváth, Gábor Pataki, Béla Strausz, György Takács, Gábor Valyon, József Neurális hálózatok Altrichter, Márta Horváth, Gábor Pataki, Béla Strausz, György Takács, Gábor
Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei
Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 288/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Kalkulus 2., Matematika BSc 1. Házi feladat
. Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben
Bizonytalan tudás kezelése
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Bizonytalan tudás kezelése Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz Valószínűségi
Név KP Blokk neve KP. Logisztika I. 6 LOG 12 Dr. Kovács Zoltán Logisztika II. 6 Logisztika Dr. Kovács Zoltán
Név KP Blokk neve KP Felelıs vizsgáztató Kombinatorikus módszerek és algoritmusok 5 MAT 10 Dr. Tuza Zsolt Diszkrét és folytonos dinamikai rendszerek matematikai alapjai 5 Matematika Dr. Hartung Ferenc
BACK-PROPAGATION NEURON HÁLÓ LOGIKAI JÁTÉK JÁTSZÓ KÉPESSÉGÉNEK VIZSGÁLATA
FIATAL ŰSZAKIAK TUDÁNYS ÜLÉSSZAKA Kolozsvár, 1998. március 20-21. BACK-PRPAGATIN NURN HÁLÓ LGIKAI JÁTÉK JÁTSZÓ KÉPSSÉGÉNK VIZSGÁLATA ABSTRACT Dudás László 1, Ferenczi László 2 egyetemi docens 1, doktorandusz
A félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
A bemeneti feszültség 10 V és 20 V között van. 1. ábra A fuzzy tagsági függvény
BÁRKÁNYI PÁL: FUZZY MODELL MATEMATIKAI HÁTTERE SPECIÁLIS KATONAI RENDSZEREKRE ALKALMAZVA A katonai rendszerek műszaki megbízhatóságának vizsgálatai során, több matematikai módszert alkalmazhatunk, mint
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 1. Bevezetés, függvények, sorozatok, határérték Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, a biomatematika célja 2 Függvénytani alapfogalmak
Fogalom értelmezések I.
Fogalom értelmezések I. Intelligencia értelmezések Köznapi értelmezése: értelem, ész, felfogó képesség, értelmesség, műveltség Boring szerint: amit az intelligencia teszt mér Wechsler szerint: Az intelligencia
I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI
I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.
Kézzel írt szövegek feldolgozása tanuló algoritmusokkal
Debreceni Egyetem Informatika Kar Kézzel írt szövegek feldolgozása tanuló algoritmusokkal Neurális hálózatok szerepe az optikai karakterfelismerésben Készítette: Szabó Csilla programtervező matematikus