Stratégiák tanulása az agyban
|
|
- Alfréd Farkas
- 6 évvel ezelőtt
- Látták:
Átírás
1 Statisztikai tanulás az idegrendszerben, Stratégiák tanulása az agyban Bányai Mihály
2 Kortárs MI thispersondoesnotexist.com
3 Múltbeli események Tudás A világ tanult szabályosságai Tudatosság? A konkrét megfigyelésből kikövetkeztetett információ Döntéshozás Érzékelés Izomvezérlés
4 Hogyan építsünk döntési modellt az érzékelési modellre? Választanunk tell egy optimalizálandó célváltozót - ezt hívjuk jutalomnak (reward) A motoros kimenetet véges mennyiségű fix cselekvésként modellezük, amelyek módosítják a környezetet Az érzékelési model látens változóira adott megfigyelés mellett következtetett értékek kombinációja a környezet (érzékelt) állapota Ki tell találnunk, hogy a környezet mely állapotában mely cselekvést válasszuk
5 A tanulás alapvető típusai Felügyelt Az adat: bemenet-kimenet párok halmaza A cél: függvényapproximáció, klasszifikáció Megerősítéses Az adat: állapotmegfigyelések és jutalmak A cél: optimális stratégia a jutalom maximalizálására Nem felügyelt, reprezentációs Az adat: bemenetek halmaza
6 A jutalom előrejelzésének tanulása Pavlovi - klasszikus kondicionálás csak az állapotok értékét tanuljuk, cselekvés nincs operáns kondicionálás a cselekvések határozzák meg a jutalmat
7 A jutalom kódolása az agykéregben Egyes dopamintermelő neuronok a majom agykérgében a jutalom és egyes környezeti változók között tanult kapcsolat alapján tüzelnek Az aktivitás a meglepetés mértékével és előjelével arányos
8 Az ágens-környezet modell Ágens: a tanulórendszer Környezet: minden, amit nem belsőleg állít elő Bemenet: aktuális állapot, jutalom Kimenet: cselekvés
9 Állapotok értékének tanulása Legegyszerűbb eset: véges mennyiségű állapotból áll a környezet minden állapot, s, a mentális model lateens változóinak ego kikövetkeztetett értékkombinációja (pl. vehetjük az a posteriori legvalószínűbb értékeket) minden állapothoz hozzárendelünk egy értéket, V(s), amely az állapot kívánatosságát kódolja minden döntés után, t időpillanatban, frissítjük az állapotértékek becslését a korábbi becslések és az aktuális jutalom alapján intuíció: egy állapot értékét meghatározza az abban kapható jutalom és a belőle kevés cselekvéssel elérhető további állapotok értéke Russell & Norvig,
10 A jutalom hosszútávú maximalizációja Összesített jutalom: valamilyen becslést kell alkalmazni a jövőre nézve Különbség a felügyelt tanulástól: egyiknél azt tudjuk, hogy a képtérben milyen messze vagyunk az optimálistól, a másiknál arra kapunk egy becslést, hogy a paramétertérben mennyire térünk el az optimálistól
11 Temporal Difference tanulás A predikciós hibából tanulunk Az aktuálisan meglátogatott állapot értéke az előzőleg meglátogatottét önmagához hasonlóbbá teszi Korábban meglátogatott állapotokra is visszaterjeszthetjük a változtatást
12 Cselekvésválasztás Az ágens a környezet állapotaihoz értéket rendelő függvény tanul V: s -> R Ahhoz, hogy kiválaszthassunk egy cselekvést, tudnunk kell, hogy az aktuális állapotból melyik cselekvés melyik állapotba vezet át M: (s,a) -> s illetve általánosabban M: (s1,s2,a) -> P ezt az M függvényt nevezzük a környezet modelljének Minden olyan RL megoldásban, ahol állapotérték-függvényt tanulunk, meg kel tanulnunk a modellfüggvényt is ezeket modellalapú megoldásoknak nevezzük
13 Modellmentes RL A környezet modelljének megtanulása helyett tannulhatjuk közvetlenül állapotcselekvés párok értékét Q: (s,a) -> R hasonló tanulóalgoritmusok használhatóak ebben az esetben is a cselekvésválasztáshoz csak a Q függvényre van szükség, modellre nem
14 Deliberatív és reaktív rendszerek A Q függvények (#állapotok x #cselekvések) mennyiségű parametere van, míg a V-nek csak (#állapotok) sokkal több adatra van szükségünk a Q becsléséhez mint a V-éhez Modellalapú megoldásokban az M újrahasznosítható új feladatnál, a Q-t nulláról kell újratanulni Modellalapú megoldásokban sokkal számításigényesebb a cselekvésválasztás de a modell segítségével készíthetünk hosszútávú terveket a modellmentes megoldások reflexek halmazához hasonlók a kit rendszer kiegészítheti egymást, főként egy feladat elsajátításának különböző fázisaiban
15 Exploration vs. exploitation Amikor még keveset tudunk a környezetről, nincs értelme az első jutalomhoz vezető cselekvéssort ismételni a végtelenségig Amikor többet tudunk, akkor viszont érdemes a lehető legjobb stratégiát alkalmazni folyamatosan Szokásos megoldás: próbálkozzunk véletlenszerűen az elején, és fokozatosan emeljük a legjobbnak becsült cselekvés választásának valószínűségét
16 Az állapotérték-függvény reprezentációja Ha nincs olyan sok érték, használhatunk táblázatot Nagy illetve esetleg folytonos állapotterekben csak az állapotváltozókat tudjuk közvetlenül reprezentálni, nem az összes lehetséges értékkombinációt általánosítanunk kell olyan állapotokra, amiket sosem látogattunk meg korábban a többrétegű neurális hálózatok alkalmasak mindkét probléma megoldására mivel ezek tanításához szükséges egy elvárt kimenet minden lépésben, ezt a TD algoritmus predikciós hibájából kell megalkotnunk
17 Optimális döntések tanulása neurális hálózattal Gerald Tesauro: TD-Gammon Többrétegű neuronhálózat Bemenet: a lehetséges lépések nyomán elért állapotok Kimenet: a nyerés valószínűsége az adott állapotból Ez alapján ki lehet választani, hogy melyik állapotba szeretnénk kerülni Eredmény: a legjobb emberi játékosokkal összemérhető A teljes tanítási folyamat ma: 5s
18 TD neurális reprezentációval Prediction error felhasználása a tanuláshoz Az állapotérték frissítése neurális reprezentációban: w( ) w( )+" (t)u(t ) (t) = X t A prediction error kiszámítása A teljes jövőbeli jutalom kellene hozzá r(t + ) v(t) Egylépéses lokális közelítést alkalmazunk X r(t + ) v(t) r(t)+v(t + 1) t Ha a környezet megfigyelhető, akkor az optimális stratégiához konvergál A hibát visszaterjeszthetjük a korábbi állapotokra is
19 Számítógépes játékok tanulása reinforcement learning + deep networks megfigyelés: a képernyő pixelei + pontszám!19 Mnih et al, 2015
20 Fizikai mozgás
21 A jutalom reprezentációja az agyban
22 RL-változatok korrelátumai az agyban Glascher, Daw, Dayan & O'Doherty, Neuron, 2010
23 RL-változatok korrelátumai az agyban Deliberatív modellalapú RL prefrontális és parietális kéreg Reaktív modellmentes RL kéreg alatti struktúrák
24
25 HF Add meg a kincskeresős játékhoz tartozó állapot- és cselekvésteret Valósítsd meg valamilyen programnyelven az ágens és a környezet szimulált interakcióját Q-learning segítségével tanuld meg, melyik állapotban melyik cselekvés a leghasznosabb Eredményedet ábrákkal illusztráld
Megerősítéses tanulás
Megerősítéses tanulás elméleti kognitív neurális Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II:
Megerősítéses tanulás
Megerősítéses tanulás 2 Múltbeli események Tudás A világ tanult szabályosságai Tudatosság? A konkrét megfigyelésből kikövetkeztetett információ Döntéshozás Érzékelés Izomvezérlés How to build a decision
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Megerősítéses tanulási módszerek és alkalmazásaik
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Megerősítéses tanulási módszerek és alkalmazásaik Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc, 2017. szeptember 15. Tartalom
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét
Korszerű információs technológiák
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Korszerű információs technológiák Megerősítéses tanulási módszerek és alkalmazásaik Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc,
Megerősítéses tanulás 2. előadás
Megerősítéses tanulás 2. előadás 1 Technikai dolgok Email szityu@eotvoscollegium.hu Annai levlista http://nipglab04.inf.elte.hu/cgi-bin/mailman/listinfo/annai/ Olvasnivaló: Sutton, Barto: Reinforcement
Megerősítéses tanulás 9. előadás
Megerősítéses tanulás 9. előadás 1 Backgammon (vagy Ostábla) 2 3 TD-Gammon 0.0 TD() tanulás (azaz időbeli differencia-módszer felelősségnyomokkal) függvényapproximátor: neuronháló 40 rejtett (belső) neuron
Megerősítéses tanulás 7. előadás
Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig
Tanulás az idegrendszerben
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Funkcióvezérelt modellezés Abból indulunk ki, hogy milyen feladatot valósít meg a rendszer Horace Barlow: "A
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79
Megerősítéses tanulás
Gépi tanulás (Szekvenciális döntési probléma) Megerősítéses tanulás Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Az egész világot nem tudjuk modellezni,
Modellkiválasztás és struktúrák tanulása
Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális
I. LABOR -Mesterséges neuron
I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Megerősítéses tanulás Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Ágens tudása: Induláskor: vagy ismeri már a környezetet
Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.
: Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3
Programozási módszertan. A gépi tanulás alapmódszerei
SZDT-12 p. 1/24 Programozási módszertan A gépi tanulás alapmódszerei Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu SZDT-12 p. 2/24 Ágensek Az új
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére
Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére Bányai Mihály! MTA Wigner FK! Computational Systems Neuroscience Lab!! KOKI-VIK szeminárium! 2014. február 11. Struktúra és funkció
Az idegrendszeri memória modelljei
Az idegrendszeri memória modelljei A memória típusai Rövidtávú Working memory - az aktuális feladat Vizuális, auditórikus,... Prefrontális cortex, szenzorikus területek Kapacitás: 7 +-2 minta Hosszútávú
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók
NEURÁLIS HÁLÓZATOK 1. eloadás 1
NEURÁLIS HÁLÓZATOKH 1. eloadás 1 Biológiai elozmények nyek: az agy Az agy az idegrendszerunk egyik legfontosabb része: - képes adatokat tárolni, - gyorsan és hatékonyan mukodik, - nagy a megbízhatósága,
Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján
Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika rendszerek Irányítástechnika Budapest, 2008 2 Az előadás felépítése 1. 2. 3. 4. Irányítástechnika Budapest, 2008
TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...
TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő
Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok
Zrínyi Miklós Gimnázium Művészet és tudomány napja Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok 10/9/2009 Dr. Viharos Zsolt János Elsősorban volt Zrínyis diák Tudományos főmunkatárs
Adaptív menetrendezés ADP algoritmus alkalmazásával
Adaptív menetrendezés ADP algoritmus alkalmazásával Alcím III. Mechwart András Ifjúsági Találkozó Mátraháza, 2013. szeptember 10. Divényi Dániel Villamos Energetika Tanszék Villamos Művek és Környezet
Neurális hálózatok.... a gyakorlatban
Neurális hálózatok... a gyakorlatban Java NNS Az SNNS Javás változata SNNS: Stuttgart Neural Network Simulator A Tübingeni Egyetemen fejlesztik http://www.ra.cs.unituebingen.de/software/javanns/ 2012/13.
Irányításelmélet és technika II.
Irányításelmélet és technika II. Modell-prediktív szabályozás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010 november
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók
Neurális hálózatok bemutató
Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:
Egy csodálatos elme modellje
Egy csodálatos elme modellje A beteg és az egészséges agy információfeldolgozási struktúrái Bányai Mihály1, Vaibhav Diwadkar2, Érdi Péter1 1 RMKI, Biofizikai osztály 2 Wayne State University, Detroit,
Visszacsatolt (mély) neurális hálózatok
Visszacsatolt (mély) neurális hálózatok Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Sima előrecsatolt neurális hálózat Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Pl.: kép feliratozás,
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
Intelligens ágensek. Mesterséges intelligencia február 28.
Intelligens ágensek Mesterséges intelligencia 2014. február 28. Ágens = cselekvő Bevezetés Érzékelői segítségével érzékeli a környezetet Beavatkozói/akciói segítségével megváltoztatja azt Érzékelési sorozat:
Gyártórendszerek irányítási struktúrái
GyRDin-10 p. 1/2 Gyártórendszerek Dinamikája Gyártórendszerek irányítási struktúrái Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék e-mail: hangos@scl.sztaki.hu GyRDin-10 p. 2/2 Tartalom
Gépi tanulás Gregorics Tibor Mesterséges intelligencia
Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat
Irányításelmélet és technika II.
Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november
Hibadetektáló rendszer légtechnikai berendezések számára
Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő
Mérési struktúrák
Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Keresés ellenséges környezetben Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Ellenség
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
Mit mond a XXI. század emberének a statisztika?
Mit mond a XXI. század emberének a statisztika? Rudas Tamás Magyar Tudományos Akadémia Társadalomtudományi Kutatóközpont Eötvös Loránd Tudományegyetem Statisztika Tanszék Nehéz a jövőbe látni Változik
Dinamikus modellek szerkezete, SDG modellek
Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.
Probabilisztikus modellek V: Struktúra tanulás. Nagy Dávid
Probabilisztikus modellek V: Struktúra tanulás Nagy Dávid Statisztikai tanulás az idegrendszerben, 2015 volt szó a normatív megközelítésről ezen belül a probabilisztikus modellekről láttatok példákat az
Forgalmi modellezés BMEKOKUM209
BME Közlekedésüzemi és Közlekedésgazdasági Tanszék Forgalmi modellezés BMEKOKUM209 Szimulációs modellezés Dr. Juhász János A forgalmi modellezés célja A közlekedési igények bővülése és a motorizáció növekedése
Intelligens orvosi műszerek VIMIA023
Intelligens orvosi műszerek VIMIA023 Neurális hálók (Dobrowiecki Tadeusz anyagának átdolgozásával) 2017 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679 A
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás
Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre
5. Hét Sorrendi hálózatok
5. Hét Sorrendi hálózatok Digitális technika 2015/2016 Bevezető példák Példa 1: Italautomata Legyen az általunk vizsgált rendszer egy italautomata, amelyről az alábbi dolgokat tudjuk: 150 Ft egy üdítő
Számítsuk ki a nyelvet! Matematika, fizika és algoritmusok a nyelvben
Számítsuk ki a nyelvet! Matematika, fizika és algoritmusok a nyelvben Biró Tamás Eötvös Loránd Tudományegyetem KöMaL Ifjúsági Ankét, 2015. október 28. Biró Tamás Számítsuk ki a nyelvet! Matematika, fizika
Kétszemélyes játékok Gregorics Tibor Mesterséges intelligencia
Kétszemélyes játékok Kétszemélyes, teljes információjú, véges, determinisztikus,zéró összegű játékok Két játékos lép felváltva adott szabályok szerint, amíg a játszma véget nem ér. Mindkét játékos ismeri
Konvolúciós neurális hálózatok (CNN)
Konvolúciós neurális hálózatok (CNN) Konvolúció Jelfeldolgozásban: Diszkrét jelek esetén diszkrét konvolúció: Képfeldolgozásban 2D konvolúció (szűrők): Konvolúciós neurális hálózat Konvolúciós réteg Kép,
Sarokba a bástyát! = nim
Nim-összeadás, játékok összege Sarokba a bástyát! = nim Nim (két csomóval) Két kupac kaviccsal játszunk. Egy lépésben valamelyikből (de csak az egyikből!) elvehetünk bármennyit. Az nyer, aki az utolsó
Magasabb idegrendszeri folyamatok
Magasabb idegrendszeri folyamatok Viselkedés A szenzoros bemenetekre adott (motoros) válasz. Az ember és állat viselkedését genetikusan kódolt, az egész szervezet szintjén érvényesülő idegi és kémiai faktorok
Szoftverminőségbiztosítás
NGB_IN003_1 SZE 2017-18/2 (9) Szoftverminőségbiztosítás Specifikáció alapú (black-box) technikák A szoftver mint leképezés Szoftverhiba Hibát okozó bement Hibás kimenet Input Szoftver Output Funkcionális
Logikai ágensek. Mesterséges intelligencia március 21.
Logikai ágensek Mesterséges intelligencia 2014. március 21. Bevezetés Eddigi példák tudásra: állapotok halmaza, lehetséges operátorok, ezek költségei, heurisztikák Feltételezés: a világ (lehetséges állapotok
V & V Feladatok. V & V Feladatok
V & V Feladatok 2008.01.08 2. Feladat tartozik! A relációjel fordított. Hibás bemenetekre nem teszteltünk. Figyelmen kívül hagytuk az objektum konstruálás időigényét. A pointer értéke null. A program lefut,
V. Tanuláselméleti perspektíva. Behaviorizmus
V. Tanuláselméleti perspektíva Behaviorizmus Tanuláselméleti perspektíva Kiindulópont: az élettapasztalat nyomán változunk, törvényszerű, és előre jelezhető módon Személyiség: korábbi tapasztalatok nyomán
Az idegrendszeri memória modelljei
Az idegrendszeri memória modelljei A memória típusai Rövidtávú Working memory - az aktuális feladat Vizuális, auditórikus,... Prefrontális cortex, szenzorikus területek Kapacitás: 7 +-2 minta Hosszútávú
Aszinkron sorrendi hálózatok
Aszinkron sorrendi hálózatok Benesóczky Zoltán 24 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.
Döntési rendszerek I.
Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 8 Gyakorlat Alapfogalmak A terület alapfogalmai megtalálhatók Pluhár András Döntési rendszerek
Kibernetika korábbi vizsga zárthelyi dolgozatokból válogatott tesztkérdések Figyelem! Az alábbi tesztek csak mintául szolgálnak a tesztkérdések megoldásához, azaz a bemagolásuk nem jelenti a tananyag elsajátítását
Intelligens Rendszerek Elmélete
Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL
A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL Dr. Ludányi Lajos mk. alezredes egyetemi adjunktus Zrínyi Miklós Nemzetvédelmi Egyetem Vezetés- és Szervezéstudományi Kar Fedélzeti Rendszerek Tanszék
Mesterséges intelligencia alapú regressziós tesztelés
Mesterséges intelligencia alapú regressziós tesztelés Gujgiczer Anna, Elekes Márton* * AZ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA ÚNKP-16-1-I. KÓDSZÁMÚ ÚJ NEMZETI KIVÁLÓSÁG PROGRAMJÁNAK TÁMOGATÁSÁVAL KÉSZÜLT
Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök
Gyires-Tóth Bálint Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök http://smartlab.tmit.bme.hu Deep Learning Híradó Hírek az elmúlt 168 órából Deep Learning Híradó Google
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék
További forgalomirányítási és szervezési játékok 1. Nematomi forgalomirányítási játék A forgalomirányítási játékban adott egy hálózat, ami egy irányított G = (V, E) gráf. A gráfban megengedjük, hogy két
Az orvosi pszichológia alapjai III. Tanulás és emlékezés
Az orvosi pszichológia alapjai III. Tanulás és emlékezés A MAGATARTÁSTUDOMÁNYOK ALAPJAI Tisljár Roland, Ph.D. tisljar.roland@sph.unideb.hu Tanulás Viszonylag állandó, a tapasztalatok következtében kialakuló
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái -hálók 306/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - csak lokális információra alapozva Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Lokálisan
társadalomtudományokban
Gépi tanulás, predikció és okság a társadalomtudományokban Muraközy Balázs (MTA KRTK) Bemutatkozik a Számítógépes Társadalomtudomány témacsoport, MTA, 2017 2/20 Empirikus közgazdasági kérdések Felváltja-e
Döntéselmélet II. ELŐADÁS DÖNTÉSI FOLYAMAT
Döntéselmélet II. ELŐADÁS DÖNTÉSI FOLYAMAT döntés döntéselőkészítés D ö n t é s i f o l y a m a t döntés és megvalósítás döntéselőkészítés Döntési folyamat A probléma felismerése, azonosítása, megfogalmazása
Bevezetés az informatikába
Bevezetés az informatikába 9. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási
Tanulás Boltzmann gépekkel. Reiz Andrea
Tanulás Boltzmann gépekkel Reiz Andrea Tanulás Boltzmann gépekkel Boltzmann gép Boltzmann gép felépítése Boltzmann gép energiája Energia minimalizálás Szimulált kifűtés Tanulás Boltzmann gép Tanulóalgoritmus
Funkcionális konnektivitás vizsgálata fmri adatok alapján
Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions
Mesterséges Intelligencia 1
Mesterséges Intelligencia Egy ember kecskét, farkast és kápostát seretne átvinni egy folyón, de csak egy kis csónakot talál, amelybe rajta kívül csak egy tárgy fér. Hogyan tud a folyón úgy átkelni, hogy.
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Az egységugrás függvény a 0 időpillanatot követően 10 nagyságú jelet ad, valamint K=2. Vizsgáljuk meg a kimenetet:
II Gyakorlat A gyakorlat célja, hogy megismerkedjük az egyszerű szabályozási kör stabilitásának vizsgálati módszerét, valamint a PID szabályzó beállításának egy lehetséges módját. Tekintsük az alábbi háromtárolós
Adatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
Regressziós játékok. Pintér Miklós. XXVII. OPKUT Konferencia 2007, június 7-9. Balatonöszöd. Budapesti Corvinus Egyetem Matematika Tanszék
Budapesti Corvinus Egyetem Matematika Tanszék XXVII. OPKUT Konferencia 2007, június 7-9. Balatonöszöd Tartalomjegyzék 1 2 3 Statisztikus játék Legyen (Ω, M, P) valószínűségi mező rögzítet, v : Ω P(N) R
Számítógép és programozás 2
Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi
Tartalom Bevezetés az állapottér-elméletbe Irányítható alak Megfigyelhetőségi alak Diagonális alak Állapottér transzformáció 2018 1 A szabályozáselmélet klasszikus, BODE, NICHOLS, NYQUIST nevéhez kötődő,
Tartalom. Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás
Tartalom Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás 2018 1 Állapottér reprezentációk tulajdonságai Általánosan egy lineáris, SISO dinamikus rendszer
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás http:/uni-obuda.hu/users/kutor/ IRE 7/50/1 A neurális hálózatok általános jellemzői 1. A
III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ
infokommunikációs technológiák III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ KECSKEMÉTI ANNA KUN JEROMOS KÜRT Zrt. KUTATÁSI
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Statisztikai tanulás az idegrendszerben, Bevezetés. Bányai Mihály
Statisztikai tanulás az idegrendszerben, 2016. Bevezetés Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Elméleti idegtudomány Természettudományos szemszögből
E x μ x μ K I. és 1. osztály. pontokként), valamint a bayesi döntést megvalósító szeparáló görbét (kék egyenes)
6-7 ősz. gyakorlat Feladatok.) Adjon meg azt a perceptronon implementált Bayes-i klasszifikátort, amely kétdimenziós a bemeneti tér felett szeparálja a Gauss eloszlású mintákat! Rajzolja le a bemeneti