Megerősítéses tanulás
|
|
- Ilona Dudásné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Gépi tanulás (Szekvenciális döntési probléma) Megerősítéses tanulás Pataki Béla BME I.E. 414,
2
3 Az egész világot nem tudjuk modellezni, gyakran (szinte mindig) alkalmazott trükk bontsuk két részre! (dekomponáljuk nem vagyunk a végsőkig holisztikusak) Ami kívül: az a környezet Ami belül: az a rendszer információ a környezetről fizikai hatás a környezetre információbegyűjtés eszközei szenzorok hatáskifejtés eszközei beavatkozók...
4 Megerősítéses tanulás Induktív tanulás: minden mintához megvan a jó válasz, egy tanító mindig megmondja, hogy jót vagy rosszat válaszoltunk, rendszerint azt is, hogy mennyire jó vagy rossz a válasz. Megerősítéses tanulás: nincs tanító, csak időnként kapunk visszajelzést, hogy az eddigi lépéssorozat pillanatnyi eredménye jó vagy rossz-e. Pl. sakkjáték: tanító nélkül is van visszacsatolás a játék végén: nyert vagy vesztett = +/- jutalom, azaz pozitív vagy negatív megerősítés. (Pozitív: összességében jó, amit csináltunk, negatív: összességében rossz.)
5
6 Megerősítéses tanulás Megerősítés: milyen gyakran? milyen erős? milyen értékű? A feladat: (ritka) jutalmakból megtanulni egy sikeres ágens-függvényt (optimális eljárásmód: melyik állapot, melyik cselekvés hasznos). Nehéz probléma: az információhiány miatt az ágens sohasem tudja, hogy mik a jó lépések, sőt azt sem, hogy melyik jutalom/büntetés melyik cselekvés(ek)ből származik.
7
8 Ágens tudása: Induláskor: vagy ismeri már a környezetet és a cselekvéseinek hatását, vagy pedig még ezt is meg kell tanulnia. Megerősítés: lehet csak a végállapotban, de lehet menet közben bármelyik állapotban is. Ágens: passzív tanuló: figyeli a világ alakulását és tanul, előre rögzített eljárásmód, nem mérlegel, előre kódoltan cselekszik aktív tanuló: a megtanult információ birtokában az eljárásmódot is alakítja, optimálisan cselekednie is kell (felfedező ) Ágens kialakítása: megerősítés hasznosság leképezés
9 Bellman egyenlet: Optimális eljárásmód Két lehetőség: U( s) R( s) max T( s, a, s') U( s') - leszámítolási tényező U(s) hasznosságfüggvény tanulása minden egyes állapot hasznosságát meg akarjuk határozni, ennek alapján a cselekvések eldöntése úgy, hogy az elérhető hasznosság várható értéke maximális legyen (környezet/ágens modellje szükséges, környezet: T(s,a,s )) Q(a, s) cselekvésérték függvény (állapot-cselekvés párok) tanulása, valamilyen várható hasznot tulajdonítva egy adott helyzetben egy adott cselekvésnek (környezet/ágens modell nem szükséges) Q tanulás (model-free) a s'
10 Fontos egyszerűsítés: a sorozat hasznossága = a sorozat állapotaihoz rendelt hasznosságok összege. (a hasznosság additív) Az állapot hátralevő-jutalma (reward-to-go) az adott lépéssorozatban: azon jutalmak összege, amelyet akkor kapunk, ha az adott állapotból valamelyik végállapotig eljutunk. Egy állapot várható hasznossága = a hátralevő-jutalom várható értéke t U ( s) E R( s ), s s t t 0 (közönségesen: várható érték=az előfordulási gyakorisággal súlyozott átlag) U ( s) R( s) T ( s, s ') U ( s ') s'
11 Passzív megerősítéses tanulás Markov döntési folyamat (MDF), szekvenciális döntés U ( s) R( s) T( s, ( s), s') U ( s') Passzív tanulás esetén az ágens π(s) stratégiája rögzített, az s állapotban mindig az a = π(s) cselekvést hajtja végre. A cél egyszerűen a stratégia jóságának tehát az U π (s) hasznosságfüggvénynek a megtanulása. Fontos különbség a Markov döntési folyamathoz, szekvenciális döntéshez képest, hogy a passzív ágens nem ismeri az állapotátmenet-modellt (transition model), a T(s, a, s')-t, amely annak a valószínűséget adja meg, hogy az a cselekvés hatására az s állapotból az s' állapotba jutunk, továbbá nem ismeri a jutalomfüggvényt (reward function), R(s)-et, amely minden állapothoz megadja az ott elnyerhető jutalmat. Egyszerűbb jelölés az állapotátmenetre: T ( s, ( s ), s ) helyett T P( s s a ( s )) k k m km k m k s'
12 Passzív tanulás - Közvetlen hasznosságbecslés Az állapotok hasznosságát a definíció alapján tanuljuk. Definíció: a hasznosság a hátralevő jutalom várhatóértéke (praktikusan átlaga) Sok kísérletet végzünk, és feljegyezzük, hogy amikor az s állapotban voltunk, akkor mennyi volt a végállapotig gyűjtött jutalom, amit az út során gyűjtöttünk. Ezen jutalmak átlaga ha nagyon sok kísérletet végzünk az U(s)-hez konvergál. Viszont nem használja ki a Bellman egyenletben megragadott összefüggést az állapotok közt, ezért lassan konvergál, nehezen tanul. U ( s) R( s) T ( s, ( s), s ') U ( s ') s' R( s) T ( s, s ') U ( s ') s'
13 Passzív tanulás - Adaptív Dinamikus Programozás Az állapotátmeneti valószínűségek T(s k,s m )= T km a megfigyelt gyakoriságokkal becsülhetők. Amint az ágens megfigyelte az összes állapothoz tartozó jutalom értéket, és elég tapasztalatot gyűjtött az állapotátmenetek gyakoriságáról, a hasznosság-értékek a következő lineáris egyenletrendszer megoldásával kaphatók meg: megtanult U ( s) R( s) T ( s, s ') U ( s ') megfigyelt s' 1 U R TU U ( I T) R.és ha nem megy?
14 A fontosak nem a konkrét értékek, hanem a jelleg! (logaritmikus skála!)
15 Passzív tanulás - Időbeli különbség (IK) tanulás (TD Temporal Difference) Ha csak az aktuális jutalmat néznénk: U( s) U( s) ( R ( s) U( s)) Ha a teljes megfigyelt hátralévő jutalomösszeget használjuk ki kell várni az epizód végét. Alapötlet: a hátralevő összjutalom helyett használjuk fel a megfigyelt állapotátmeneteknél a hasznosság aktuálisan becsült értékét! A jutalom becslése: Az előző becsléstől való eltérés: Frissítés: U ( s) U ( s) ( s) Uˆ ( s ) R ( s ) U ( s ') U ( s) ( R( s) U ( s ') U ( s)) - bátorsági faktor, tanulási tényező γ - leszámítolási tényező (ld. MDF) Az egymást követő állapotok hasznosságkülönbsége időbeli különbség (IK). ( s) Uˆ ( s) U ( s) R( s) U ( s ') U ( s)
16 Az összes időbeli különbség eljárásmód alapötlete 1. Korrekt hasznosság-értékek esetén lokálisan fennálló feltételek rendszere: U ( s) R( s) T ( s, s ') U ( s ') Ha egy adott ss átmenetet tapasztalunk a jelenlegi sorozatban, akkor úgy vesszük, mintha T(s,s )=1 lenne, tehát fenn kéne álljon. U ( s) R( s) U ( s ') 2. Ebből a módosító egyenlet, amely a becsléseinket ezen egyensúlyi" egyenlet irányába módosítja: U( s) U( s) ( R( s) U( s') U( s)) 3. Az ADP módszer felhasználta a modell teljes ismeretét. Az IK a szomszédos (egy lépésben elérhető) állapotok közt fennálló kapcsolatokra vonatkozó információt használja, de csak azt, amely az aktuális tanulási sorozatból származik. Az IK változatlanul működik előzetesen ismeretlen környezet esetén is. (Nem használtuk ki a T(s,s ) ismeretét!) s'
17 Egy egyszerű demóprobléma végállapotok: (4,2) és (4,3) =0 minden állapotban, amelyik nem végállapot R(s)= - 0,04 (pl. így lehet modellezni a lépésköltséget) 0,8 valószínűséggel a szándékolt irányba lép, 0,2 valószínűséggel a választott irányhoz képest oldalra. (Falba ütközve nem mozog.) Optimális * stratégia (eljárásmód) Az ezzel kapható hasznosságok
18 ADP U(1,1)=0,705 U(3,2)=0,66 U(1,1) rms hibája 20, egyenként 100 futásból álló kísérletre átlagolva Egyetlen 100-as sorozat, a 78-diknál jut először a -1-be IK U(1,1) rms hibája 20, egyenként 100 futásból álló kísérletre átlagolva
19 Ismeretlen környezetben végzett aktív megerősítéses tanulás Most nem kötött a stratégia, az ágens dönti el, hogy az s állapotban melyik cselekvést válassza. A stratégiát is tanulja az ágens, nem csak a hasznosságokat. ( s) U s R s s' T s a s U s a ( ) ( ) max (,, ') ( ') Döntés: melyik cselekvést válassza? a cselekvésnek mik a kimeneteleik? hogyan hatnak az elért jutalomra? = R( s) max T ( s, ( s), s ') U ( s ') A környezeti modell: a többi állapotba való átmenet valószínűsége egy adott cselekvés esetén. a s'
20 Aktív megerősítéses tanulás A feladat kettős: az állapottér felderítése és a jutalmak begyűjtése - a két cél gyakran ellentmondó cselekvést igényel Nehéz probléma, a fő kérdés: Helyes-e azt a cselekvést választani, amelynek a jelenlegi hasznosságbecslés alapján legnagyobb a közvetlen várható hozama? (Mohóság) Ez figyelmen kívül hagyja a cselekvésnek a tanulásra gyakorolt hatását!
21 Az állapottér felderítése A döntésnek kétféle hatása van: 1. Jutalma(ka)t eredményez a jelenlegi szekvenciában. 2. Ismeretekre tesz szert a környezetről, befolyásolja az észleléseket, és ezáltal az ágens tanulási képességét így jobb jutalmakat eredményezhet a jövőbeni szekvenciákban. Kompromisszum a jelenlegi jutalom, amit a pillanatnyi hasznosságbecslés tükröz, és a hosszú távú előnyök közt.
22 Az állapottér felderítése Két szélsőséges megközelítés a cselekvés kiválasztásában: Hóbortos, Felfedező : véletlen módon cselekszik, annak reményében, hogy végül is felfedezi az egész környezetet Mohó : a jelenlegi becslésre alapozva maximalizálja a hasznot. Előnyök/hátrányok: Hóbortos: képes jó hasznosság-becsléseket megtanulni az összes állapotra. Sohasem sikerül fejlődnie az optimális hozam elérésében. Mohó: gyakran talál egy viszonylag jó utat. Utána ragaszkodik hozzá, és általában nem tanulja meg a többi állapot hasznosságát, a legjobb utat.
23 Mohó: gyakran talál egy viszonylag jó utat. Utána ragaszkodik hozzá, és soha nem tanulja meg a többi állapot hasznosságát, a legjobb utat. A mohó ágens által talált stratégia A mohó ágens által talált optimális út A valódi optimális út
24 Mohó: gyakran talál egy viszonylag jó utat. Utána ragaszkodik hozzá, és soha nem tanulja meg a többi állapot hasznosságát, a legjobb utat. A mohó ágens által talált stratégia A mohó ágens által talált optimális út A valódi optimális út Optimális stratégia
25 Hóbortos: eljárási (stratégia) veszteség az optimálishoz képest Mohó: az állapothasznosságok átlagos rms hibája Mohó: eljárási (stratégia) veszteség az optimálishoz képest Hóbortos: az állapothasznosságok átlagos rms hibája Kísérletek száma A mohó és hóbortos eljárásmód tipikus eredményei folytonos vonal: az állapothasznosságok (a környezet) megismerésének hibája szaggatott vonal: mennyivel kevesebb jutalmat gyűjt átlagosan, mint egy optimális stratégiát használó ágens
26 Felfedezési stratégia Az ágens addig legyen hóbortos, amíg kevés fogalma van a környezetről, és legyen mohó, amikor a valósághoz közeli modellel rendelkezik. Létezik-e optimális felfedezési stratégia? Az ágens előnybe kell részesítse azokat a cselekvéseket, amelyeket még nem nagyon gyakran próbált, a már elég sokszor kipróbált és kis hasznosságúnak tapasztalt cselekvéseket pedig kerülje el, ha lehet.
27 1. Felfedezési stratégia - felfedezési függvény R ha n < N f ( u, n) e u különben U ( s) R( s) max f ( T ( s, a, s ') U ( s '), N( a, s)) a s' U + (i): az i állapothoz rendelt hasznosság optimista becslése N(a,i): az i állapotban hányszor próbálkoztunk az a cselekvéssel R + a tetszőleges állapotban elérhető legnagyobb jutalom optimista becslése Az a cselekvés, amely felderítetlen területek felé vezet, nagyobb súlyt kap. mohóság kíváncsiság f (u,n) : u-ban monoton növekvő (mohóság), n-ben monoton csökkenő (a próbálkozások számával csökkenő kíváncsiság)
28 Ismételjük meg a régi fóliát Egy egyszerű demóprobléma: végállapotok: (4,2) és (4,3) =0 minden állapotban, amelyik nem végállapot R(s)= - 0,04 (pl. így lehet modellezni a lépésköltséget) 0,8 valószínűséggel a szándékolt irányba lép, 0,2 valószínűséggel a választott irányhoz képest oldalra. (Falba ütközve nem mozog.) Optimális * stratégia (eljárásmód) Az ezzel kapható hasznosságok
29 Felfedezési függvény: R + =2, N e =5 U ( s) R( s) max f ( T( s, a, s') U ( s'), N( a, s)) a R ha n < N f ( u, n) e u különben s' Valós hasznosságok, opt. stratégia
30 2. Felfedezési stratégia - ε-mohóság (N cselekvési lehetősége van) 1-ε valószínűséggel mohó, tehát a legjobbnak gondolt cselekvést választja ilyen valószínűséggel az ágens ε valószínűséggel véletlen cselekvést választ egyenletes eloszlással, tehát ekkor 1/(N-1) valószínűséggel a nem a legjobbnak gondoltak közül 3. Felfedezési stratégia - Boltzmann-felfedezési modell egy a cselekvés megválasztásának valószínűsége egy s állapotban: P( a, s) e e a' hasznosság ( a, s)/ T hasznosság ( a', s)/ T Az összes, s-ben lehetséges N db a cselekvésre összegezve a T hőmérséklet a két véglet között szabályoz. Ha T, akkor a választás tisztán (egyenletesen) véletlen, ha T 0, akkor a választás mohó.
31 U(1)=5 U(2)=1 U(3)=2 T: 20-tól csökken -0,2 lépésekben 0,2-ig (T/20-at ábrázoltuk) exp(u(k)/t) exp(u(1)/t)+exp(u(2)/t)+exp(u(3)/t) Boltzmann felfedezési modell, 3 lehetséges cselekvés, 3 követő állapotba visz. A követő állapotok hasznosságából becsülhető értékük U(a1,1)=5, U(a2,2)=1, U(a3,3)=2 P( a, s) e e a' hasznosság ( a, s)/ T hasznosság ( a', s)/ T
32 A cselekvésérték függvény tanulása A cselekvés-érték függvény egy adott állapotban választott adott cselekvéshez egy várható hasznosságot rendel: Q-érték U( s) max Q( a, s) A Q-értékek fontossága: a feltétel-cselekvés szabályokhoz hasonlóan lehetővé teszik a döntést modell használata nélkül, közvetlenül a jutalom visszacsatolásával tanulhatók. Mint a hasznosság-értékeknél, itt is felírhatunk egy kényszer egyenletet, amely egyensúlyi állapotban, amikor a Q-értékek korrektek, fenn kell álljon: Q( a, s) R( s) T ( s, a, s ') max Q( a ', s ') s' a a'
33 A cselekvés-érték függvény tanulása Ezt az egyenletet közvetlenül felhasználhatjuk egy olyan iterációs folyamat módosítási egyenleteként, amely egy adott modell esetén a pontos Q-értékek számítását végzi. De ez nem lenne modell-mentes. Az időbeli különbség viszont nem igényli a modell ismeretét. Az IK módszer Q-tanulásának módosítási egyenlete: Q( a, s) Q( a, s) R( s) max Q( a ', s ') Q( a, s) a' SARSA Q-tanulás (State-Action-Reward-State-Action) Q( a, s) Q( a, s) [ R( s) Q( a', s') Q( a, s)] (a' megválasztása pl. Boltzmann felfedezési modellből)
34 A megerősítéses tanulás általánosító képessége Eddig: ágens által tanult hasznosság: táblázatos (mátrix) formában reprezentált = explicit reprezentáció Kis állapotterek: elfogadható, de a konvergencia idő és (ADP esetén) az iterációnkénti idő gyorsan nő a tér méretével. Gondosan vezérelt közelítő ADP: állapot, vagy ennél is több. De a való világhoz közelebb álló környezetek szóba se jöhetnek. (Sakk állapottere nagyságrendű. Az összes állapotot látni kell, hogy megtanuljunk játszani?!) Egyetlen lehetőség: a függvény implicit reprezentációja: Pl. egy játékban a táblaállás tulajdonságainak valamilyen halmaza f 1, f n. Az állás becsült hasznosság-függvénye: Uˆ ( s ) f ( s ) f ( s )... f ( s ) C. Shannon, Programming a Computer for Playing Chess, Philosophical Magazine, 7th series, 41, no. 314 (March 1950): A.L. Samuel, Some Studies in Machine Learning Using the Game of Checkers. B.II-Recent Progress, IBM. J. 3, (1959), kb. 20 tulajdonság Deep Blue (Feng-Hsiung Hsu) kb tulajdonság, spec. sakk-csip n n
35 A hasznosság-függvény n értékkel jellemezhető, pl érték helyett. Egy átlagos sakk kiértékelő függvény kb súllyal épül fel, tehát hatalmas tömörítést értünk el. Az implicit reprezentáció által elért tömörítés teszi lehetővé, hogy a tanuló ágens általánosítani tudjon a már látott állapotokról az eddigiekben nem látottakra. Az implicit reprezentáció legfontosabb aspektusa nem az, hogy kevesebb helyet foglal, hanem az, hogy lehetővé teszi a bemeneti állapotok induktív általánosítását. Az olyan módszerekről, amelyek ilyen reprezentációt tanulnak, azt mondjuk, hogy bemeneti általánosítást végeznek.
36 4 x 3 világ Hasznosság implicit reprezentációja U ˆ ( x, y) x y Hibafüggvény: a jósolt és a kísérleti ténylegesen tapasztalt hasznosságok különbségének négyzete 1 E ( ) ˆ ( ) ( ) 2 j s U s u j s 2 E () ˆ j s ˆ U () s Frissítés i i i u j ( s) U ( s) u ( s) Uˆ ( s) u ( s) Uˆ ( s) x j u ( s) Uˆ ( s) y j j i i
37 Gyakorlófeladat - Aktív Q-tanulás, IK módszer a1=fel a2=le a3=jobbra 0,8 0,8 0,8 +1 0,7 xxx 0,65-1 0,68 0,6 0,5-0,89 a4=balra 0,5 0,6 0,7 +1 0,5 xxx 0,4-1 0,47 0,42 0,32 0,3 0,6 0,35 0,2 +1 0,3 xxx 0,10-1 0,4 0,3 0,0 0,0 0,83 0,88 0, ,71 xxx -0,8-1 0,2 0,1 0,1-0,2 Feladat: 1. Az (1,1) bal alsó sarok állapotból indulunk, a jelenlegi (a fenti táblázatokban megadott) Q ˆ( a, s) becsléseink alapján melyik cselekvést milyen valószínűséggel választjuk, ha mohó eljárással biztosítjuk a felfedezést hóbortos eljárással biztosítjuk a felfedezést -mohó eljárással biztosítjuk a felfedezést és =0,1, Boltzmann lehűtéssel biztosítjuk a felfedezést, és a jelenlegi iterációnál T=20? Adja meg a valószínűségeket T=1 és T=0,01 esetre is!
38 2. Tegyük fel, hogy a választott cselekvés a JOBBRA lett, és ennek hatására az (1,2)-re léptünk. Hogyan alakul az IK-tanulás alapján a Qˆ ( FEL,(1,1)), Qˆ ( JOBBRA,(1,1)), Qˆ ( LE,(1,1)), Qˆ ( BALRA,(1,1)) becslésünk, ha a bátorsági (vagy tanulási) faktor) 0,1; a leszámítolási tényező 0,5?
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Megerősítéses tanulás Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Ágens tudása: Induláskor: vagy ismeri már a környezetet
RészletesebbenMegerősítéses tanulási módszerek és alkalmazásaik
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Megerősítéses tanulási módszerek és alkalmazásaik Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc, 2017. szeptember 15. Tartalom
RészletesebbenMegerősítéses tanulás 7. előadás
Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig
RészletesebbenKorszerű információs technológiák
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Korszerű információs technológiák Megerősítéses tanulási módszerek és alkalmazásaik Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc,
RészletesebbenAdaptív menetrendezés ADP algoritmus alkalmazásával
Adaptív menetrendezés ADP algoritmus alkalmazásával Alcím III. Mechwart András Ifjúsági Találkozó Mátraháza, 2013. szeptember 10. Divényi Dániel Villamos Energetika Tanszék Villamos Művek és Környezet
RészletesebbenFELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét
RészletesebbenStratégiák tanulása az agyban
Statisztikai tanulás az idegrendszerben, 2019. Stratégiák tanulása az agyban Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Kortárs MI thispersondoesnotexist.com
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Gépi tanulás elemei Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Egy intelligens rendszer
RészletesebbenMegerősítéses tanulás
Megerősítéses tanulás elméleti kognitív neurális Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II:
RészletesebbenTanulás elosztott rendszerekben/3
Tanulás elosztott rendszerekben/3 MARL Multi Agent Reinforcement Learning Többágenses megerősítéses tanulás Kezdjük egy ágenssel. Legyenek a környezeti állapotai s-ek, cselekvései a-k, az ágens cselekvéseit
RészletesebbenMegerősítéses tanulás 2. előadás
Megerősítéses tanulás 2. előadás 1 Technikai dolgok Email szityu@eotvoscollegium.hu Annai levlista http://nipglab04.inf.elte.hu/cgi-bin/mailman/listinfo/annai/ Olvasnivaló: Sutton, Barto: Reinforcement
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Keresés ellenséges környezetben Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Ellenség
RészletesebbenMegerősítéses tanulás 9. előadás
Megerősítéses tanulás 9. előadás 1 Backgammon (vagy Ostábla) 2 3 TD-Gammon 0.0 TD() tanulás (azaz időbeli differencia-módszer felelősségnyomokkal) függvényapproximátor: neuronháló 40 rejtett (belső) neuron
RészletesebbenAlap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Racionalitás: a hasznosság és a döntés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
RészletesebbenGépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
RészletesebbenSorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész
RészletesebbenBonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége, hogy ilyen problémákkal mégis megbirkozzék.
Vizsga, 2015. dec. 22. B cs. B1. Hogyan jellemezhetők a tanulást igénylő feladatok? (vendégelőadás) Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége,
RészletesebbenKÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
RészletesebbenKÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
RészletesebbenGépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
RészletesebbenE.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.
E.4 Markov-láncok Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével. Egy Markov-láncot (MC) meghatároznak az alapját adó sorbanállási hálózat állapotai és az ezek
RészletesebbenDiverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
Részletesebben2. A példahalmazban n = 3 negatív és p = 3 pozitív példa van, azaz a példahalmazt képviselő döntési fa információtartalma: I = I(1/2, 1/2) = 1 bit.
Példa 1. Döntési fa számítása/1 1. Legyen a felhasználandó példahalmaz: Példa sz. Nagy(x) Fekete(x) Ugat(x) JóKutya(x) X1 Igen Igen Igen Nem X2 Igen Igen Nem Igen X3 Nem Nem Igen Nem X4 Nem Igen Igen Igen
RészletesebbenRegresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
RészletesebbenGépi tanulás Gregorics Tibor Mesterséges intelligencia
Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat
RészletesebbenTanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
RészletesebbenProgramozási módszertan. A gépi tanulás alapmódszerei
SZDT-12 p. 1/24 Programozási módszertan A gépi tanulás alapmódszerei Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu SZDT-12 p. 2/24 Ágensek Az új
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Részletesebben11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
RészletesebbenMérés és modellezés Méréstechnika VM, GM, MM 1
Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
RészletesebbenKonjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
RészletesebbenGauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
RészletesebbenA sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
RészletesebbenSapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus
Csíkszereda IRT-. kurzus 3. Előadás: A mohó algoritmus 1 Csíkszereda IRT. kurzus Bevezetés Az eddig tanult algoritmus tipúsok nem alkalmazhatók: A valós problémák nem tiszta klasszikus problémák A problémák
RészletesebbenMéréselmélet MI BSc 1
Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
RészletesebbenIrányításelmélet és technika II.
Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november
Részletesebben5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39
5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es
RészletesebbenDunaújvárosi Főiskola Informatikai Intézet. Intelligens ágensek. Dr. Seebauer Márta. főiskolai tanár
Dunaújvárosi Főiskola Informatikai Intézet Intelligens ágensek Dr. Seebauer Márta főiskolai tanár seebauer.marta@szgti.bmf.hu Ágens Ágens (agent) bármi lehet, amit úgy tekinthetünk, hogy érzékelők (sensors)
RészletesebbenMarkov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
RészletesebbenAdatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
RészletesebbenMit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
RészletesebbenHidden Markov Model. March 12, 2013
Hidden Markov Model Göbölös-Szabó Julianna March 12, 2013 Outline 1 Egy példa 2 Feladat formalizálása 3 Forward-algoritmus 4 Backward-algoritmus 5 Baum-Welch algoritmus 6 Skálázás 7 Egyéb apróságok 8 Alkalmazás
RészletesebbenGépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)
Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de
RészletesebbenExplicit hibabecslés Maxwell-egyenletek numerikus megoldásához
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,
RészletesebbenDOKTORANDUSZ FÓRUM, 1999 Miskolc, 1999. november. Megerősítő tanulási módszerek alkalmazása az informatikában
DOKTORANDUSZ FÓRUM, 1999 Miskolc, 1999. november Megerősítő tanulási módszerek alkalmazása az informatikában STEFÁN PÉTER Miskolci Egyetem, Alkalmazott Informatikai Tanszék 3515 Miskolc-Egyetemváros 1.
RészletesebbenTartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)
Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - csak lokális információra alapozva Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Lokálisan
RészletesebbenGauss elimináció, LU felbontás
Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek
RészletesebbenKiterjesztések sek szemantikája
Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból
RészletesebbenRekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26
Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
RészletesebbenMátrixjátékok tiszta nyeregponttal
1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják
RészletesebbenKOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor
RészletesebbenTovábbi forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék
További forgalomirányítási és szervezési játékok 1. Nematomi forgalomirányítási játék A forgalomirányítási játékban adott egy hálózat, ami egy irányított G = (V, E) gráf. A gráfban megengedjük, hogy két
RészletesebbenElővizsga, dec. 15. Szívhez szóló megjegyzések és megoldások Adja meg a kontrollált természetes nyelv definícióját (vendégelőadás)
Elővizsga, 2015. dec. 15. Szívhez szóló megjegyzések és megoldások Tisztelt Hallgatók! Az elővizsga meglepően rossz eredménye késztet néhány megjegyzés megtételére. A félév elején hangsúlyoztam, hogy a
RészletesebbenMatematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
RészletesebbenIntelligens ágensek. Mesterséges intelligencia február 28.
Intelligens ágensek Mesterséges intelligencia 2014. február 28. Ágens = cselekvő Bevezetés Érzékelői segítségével érzékeli a környezetet Beavatkozói/akciói segítségével megváltoztatja azt Érzékelési sorozat:
RészletesebbenMegoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
RészletesebbenMozgásmodellezés. Lukovszki Csaba. Navigációs és helyalapú szolgáltatások és alkalmazások (VITMMA07)
TÁVKÖZLÉSI ÉS MÉDIAINFORMATIKAI TANSZÉK () BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM (BME) Mozgásmodellezés Lukovszki Csaba Áttekintés» Probléma felvázolása» Szabadsági fokok» Diszkretizált» Hibát
RészletesebbenValószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
RészletesebbenOnline algoritmusok. Algoritmusok és bonyolultságuk. Horváth Bálint március 30. Horváth Bálint Online algoritmusok március 30.
Online algoritmusok Algoritmusok és bonyolultságuk Horváth Bálint 2018. március 30. Horváth Bálint Online algoritmusok 2018. március 30. 1 / 28 Motiváció Gyakran el fordul, hogy a bemenetet csak részenként
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
RészletesebbenSorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2
Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt
RészletesebbenSzámításelmélet. Második előadás
Számításelmélet Második előadás Többszalagos Turing-gép Turing-gép k (konstans) számú szalaggal A szalagok mindegyike rendelkezik egy független író / olvasó fejjel A bemenet az első szalagra kerül, a többi
Részletesebben4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
RészletesebbenBiostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
RészletesebbenMatematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
RészletesebbenLeast Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
Részletesebben1.1. Alapfeladatok. hogy F 1 = 1, F 2 = 1 és általában F n+2 = F n+1 + F n (mert a jobboldali ág egy szinttel lennebb van, mint a baloldali).
1.1. Alapfeladatok 1.1.1. Megoldás. Jelöljük F n -el az n-ed rendű nagyapák számát. Az ábra alapján látható, hogy F 1 = 1, F = 1 és általában F n+ = F n+1 + F n mert a jobboldali ág egy szinttel lennebb
RészletesebbenStatisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
RészletesebbenProgramozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
RészletesebbenA Markowitz modell: kvadratikus programozás
A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,
RészletesebbenBiomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
RészletesebbenKétszemélyes játékok Gregorics Tibor Mesterséges intelligencia
Kétszemélyes játékok Kétszemélyes, teljes információjú, véges, determinisztikus,zéró összegű játékok Két játékos lép felváltva adott szabályok szerint, amíg a játszma véget nem ér. Mindkét játékos ismeri
RészletesebbenAzonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.
Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból
Részletesebben0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)
Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses
RészletesebbenBudapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79
RészletesebbenTanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Részletesebben2010. október 12. Dr. Vincze Szilvia
2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének
Részletesebben1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok
1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok (x, y) valós számpárokból állnak, két (a, b) és (c, d) pontnak a távolsága (a c)
RészletesebbenSzámsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n
Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának
RészletesebbenExponenciális kisimítás. Üzleti tervezés statisztikai alapjai
Exponenciális kisimítás Üzleti tervezés statisztikai alapjai Múlt-Jelen-Jövő kapcsolat Egyensúlyi helyzet Teljes konfliktus Részleges konfliktus: 0 < α < 1, folytatódik a múlt, de nem változatlanul módosítás:
RészletesebbenGépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
RészletesebbenFüggvények növekedési korlátainak jellemzése
17 Függvények növekedési korlátainak jellemzése A jellemzés jól bevált eszközei az Ω, O, Θ, o és ω jelölések. Mivel az igények általában nemnegatívak, ezért az alábbi meghatározásokban mindenütt feltesszük,
RészletesebbenDr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
RészletesebbenIntegr alsz am ıt as. 1. r esz aprilis 12.
Integrálszámítás. 1. rész. 2018. április 12. Területszámítás f : [a, b] IR + korlátos függvény. Mennyi a függvény grafikonja és az x tengely közti terület? Riemann integrál, ismétlés F: Az összes lehetséges
RészletesebbenIntelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
RészletesebbenMérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
Részletesebbenminden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
RészletesebbenOptimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
RészletesebbenKeresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Részletesebbenelőadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás
13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét
RészletesebbenFraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.
Fraktálok Hausdorff távolság Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. március 14. TARTALOMJEGYZÉK 1 of 36 Halmazok távolsága ELSŐ MEGKÖZELÍTÉS Legyen (S, ρ) egy metrikus tér, A, B S, valamint
RészletesebbenJAVASLAT A TOP-K ELEMCSERÉK KERESÉSÉRE NAGY ONLINE KÖZÖSSÉGEKBEN
JAVASLAT A TOP-K ELEMCSERÉK KERESÉSÉRE NAGY ONLINE KÖZÖSSÉGEKBEN Supporting Top-k item exchange recommendations in large online communities Barabás Gábor Nagy Dávid Nemes Tamás Probléma Cserekereskedelem
RészletesebbenA következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.
Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ
RészletesebbenSzámítógép és programozás 2
Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,
Részletesebben