1.1. Alapfeladatok. hogy F 1 = 1, F 2 = 1 és általában F n+2 = F n+1 + F n (mert a jobboldali ág egy szinttel lennebb van, mint a baloldali).
|
|
- Márk Farkas
- 8 évvel ezelőtt
- Látták:
Átírás
1 1.1. Alapfeladatok Megoldás. Jelöljük F n -el az n-ed rendű nagyapák számát. Az ábra alapján látható, hogy F 1 = 1, F = 1 és általában F n+ = F n+1 + F n mert a jobboldali ág egy szinttel lennebb van, mint a baloldali) ábra. A méhek családfája Hasonló módon, ha az n-ed rendű nagyanyák számát N n -el jelöljük, akkor N 1 = 1, N = és N n+ = N n+1 + N n, tehát N n = F n+1. A reprezentáció alapján látható, hogy F n = ) Megoldás. Legyen a természetes számok halmazán n egy tízes számrendszerbeli szám. Ha számjegyei között az összes számjegy szerepelhet, akkor 009 a a 010. helyen található szám. Keressük a 6-ost és 7-est nem tartalmazó számok közül a 010.-et. A feltételnek megfelelő számokban cseréljük ki a 8-as számjegyeket 6-osokra, a 9-eseket 7-esekre. A továbbiakban így a 010., 8-as számrendszerbeli számot keressük. A tízes számrendszerbeli 010. számot a 009 -t) átalakítjuk 8-as számrendszerbe. Az így kapott szám a A kapott szám a 010., 8-as számrendszerbeli szám lesz. Ha a szám tartalmaz 6-os, 7-es sz ámjegyet, akkor azt kicseréljuk 8-as, illetve 9-esre. Az így kapott eredmény a Megoldás. Az 1 és 5 azonos paritású számok és adott paritású csúcsról csak ellentétesre léphetünk, ezért páratlanról páratlanra csak páros számú lépésben juthatunk el. Tehát a n 1 = 0. Jelölje a n az A 1 -ből A 5 -be tartó n ugrást tartalmazó útvonalak számát és b n az A 3 -ből A 5 -be tartó n ugrást tartalmazó útvonalak számát, mely egyenlő az A 7 -ből A 5 -be tartó útvonalak számával. Jelöléseink alapján a n = a n +b n, mert A 1 ről indulhatunk A 3 illetve A 7 felé, vagy visszatérhetünk A 1 -be. Hasonlóan b n = b n + a n, tehát { an = a n + b n b n = b n + a n n, 1
2 ahol b = 1, a = 0. Az a n = x n és b n = y n jelölésekkel { xn = x n 1 + y n 1 y n = x n 1 + y n 1 Az első egyenletből: y n 1 = 1 x n x n 1 ) és y n = 1 x n+1 x n ), tehát behelyetesítve a másodikba az 1 x n+1 x n ) = 1 x n x n 1 + x n 1 ) azaz x n+1 x n + x n 1 = 0, x 1 = 0, x = rekurziót kapjuk. A karakterisztikus egyenlet r 4r + = 0, amelynek a gyökei r 1, = ±, tehát x n = c c. Az x 1 = 0 és x = feltételek alapján a konstansokra a c 1 = értékhez jutunk, tehát c = + és így a n = 1 [ ]. x n = Megoldás. A rekurzió alapján a sorozat szigorúan növekvő és x n+ 6x nx n+ + x n 8x n+1 = 0, n 0. Ezt tekinthetjük másodfokú egyenletnek x n -ben is, tehát x n = 3x n+ ± 8 x n+ + n+1) x, n 0. Mivel a sorozat növekvő az előbbi egyenlőségben a gyök előtt nem lehet + előjel, vagyis x n = 3x n+ 8 x n+ + xn+1), n 0. Ugyanakkor tehát x n+3 = 3x n x n+1 + x n+), n 0, x n+3 + x n = 3x n+1 + 3x n+, n 0, és így a sorozat minden tagja természetes szám.
3 1.1. ALAPFELADATOK Megoldás. Jelölje x n a n-es tábla különböző lefödéseinek számát. A bal alsó sarkat kétféle módon fedhetjük le. Vagy levágunk egy 1-es részt ebben az esetben a maradékot x n 1 különböző módon fedhetjük le - lásd a 1. első ábráját) vagy egy 1 - es darabot fedünk le a sarokban. A második esetben a bal felső sarok csak egyféleképpen fedhető le és ezért egy n )-es tábla marad lásd a 1. ábrát). Ez alapján írhatjuk, hogy x n = x n 1 + x n, n 1. Mivel x 1 = 1 és x = állíthatjuk, hogy x n = F n, ahol F n az n-edik Fibonacci szám F 0 = 1, F 1 = 1, F n+ = F n+1 + Fn). 1.. ábra. n-es tábla lefedése dominókkal Megoldás. Egy kis próbálkozás után rájöhetünk, hogy nem elégséges a 3 n-es tábla lefödéseit vizsgálni, hanem azt is meg kell számlálnunk, hogy hány lefödése lehetséges egy olyan táblának, amit a 3 n 1)-es táblából kapunk az egyik sarokmező eltávolításával ábra. 3 n-es tábla lefedése dominókkal Ha x n jelöli a 3 n-es és y n a csonka 3 n 1)-es tábla lefödéseinek számát, akkor az 1.3 ábra alapján x n = x n 1 + y n + y n 1 és az 1.4 ábra alapján y n = x n 1 + y n 1.
4 4 Az előbbi két rekurzióból következik, hogy és így az x 1 = 3, x = 11 feltételek alapján x n = x n 4x n 1 + x n = n 3) ábra. 3 n-es hiányos tábla lefedése dominókkal 1.. Versenyfeladatok Megoldás. Tekitsük a P Pascal háromszöget. Az n-edik sor k-adik eleme pontosan P k n = Ck n, ahol 0 k n Szerkesszünk egy egy újabb B háromszöget, melynek az elemei pontosan a fenti háromszög középső, megjelölt, elemeinek felelnek meg levágjuk az oldalakon lévő 1-eseket). Ennek a háromszögenek az n-edik sorának a k-adik eleme pontosan Bn k = Ck+1 n+, n 0, 0 k n, mert az eredeti Pascal háromszöghöz képest mindig két sorral lennébb és egy oszloppal bennébb lépünk. A feladat megoldása során figyelembe vesszük, hogy a keresett háromszöget csak az oldalakon lévő elemek határozzák meg, mert a képzési szabály pontosan megadja a többi elem értékét. Ha vizsgáljuk a B háromszög és a P háromszög különbségéből származó újabb háromszöget, akkor észrevehetjük, hogy az oldalakon pontosan ugyanazok az elemek jelennek meg mint a keresett A háromszögünk oldalán. Mivel a képzési szabály azonos, ezért ez azt jelenti, hogy pontosan az A háromszöget kapjuk eredményül. Másszóval A = B P, amiből, következik, hogy A k n = Bk n P k n, vagyis A k n = C k+1 n+ C k n, n 0, 0 k n.
5 1.. VERSENYFELADATOK Megoldás. Előbb ábrázoljuk az első néhány iteráltat. A grafikus képek alapján a fixpontok számára a következőket kapjuk: F f = 1, F f = 3, F f 3 = 4, F f 4 = 7. Ez alapján az sejthető, hogy az F f n 1 sorozatban minden tag az előtte álló kettő összege. Igazoljuk ezt a tulajdonságot. Az { ) f f n+1 x) = f n n x + 1 fx)) =, ha 0 x 1 f n x), ha 1 x 1 egyenlőség alapján az f n+1 függvénynek a [ 0, ] 1 intervallumhoz tartozó grafikus képe ugyanaz, mint az f n -nek az [ 1, 1] -hez tartozó grafikus képe az Ox irányban a felére kicsinyítve, és az f n+1 -nek az [ 1, 1] -hez tartozó grafikus képe az f n -nek a [0, 1]-hez tartozó grafikus képéből kapható meg egy tükrözéssel és egy Ox menti 1 arányú kicsinyítéssel. Ez gyakorlatilag azt jelenti, hogy az f n+1 grafikus képe megkapható az f n 1 és az f n grafikus képéből, ha mindkettőt tükrözzük, egymás mellé illesztjük, és az Ox irányban a felére csökkentjük f n 1 grafikus képéből kapjuk az f n grafikus képének az [ 1, 1] -hez tartozó részét, és ez éppen az f n+1 grafikus képében a [ 0, ] 1 -hez tartozó rész) ábra. Az aszimmetrikus sátorfüggvény és. iteráltja 1.6. ábra. Az aszimmetrikus sátorfüggvény 3. és 4. iteráltja Ugyanakkor a grafikus képek csak két típusú szakaszt tartalmaznak: olyanokat, amelyek 0 és 1 ordinátájú pontokat kötnek össze nevezzük ezeket H típusúaknak) és olyanokat, amelyek 1 és 1 ordinátájú pontokat kötnek össze ezeket nevezzük R típusúaknak). Az
6 6 első szögfelező a grafikus kép minden H típusú szakaszát elmetszi, de az R típusúak közül csak azokat, amelyek az [ 1, 1] intervallumhoz tartoznak. Így érdemes bevezetni a következő sorozatokat: a n az f n grafikus képében a [ 0, ] 1 -hez tartozó H típusú szakaszok száma; b n az f n grafikus képében a [ 0, 1 ] -hez tartozó R típusú szakaszok száma; c n az f n grafikus képében a [ 1, 1] intervallumhoz tartozó H típusú szakaszok száma; d n az f n grafikus képében a [ 1, 1] intervallumhoz tartozó R típusú szakaszok száma. Az előbbi észrevételek alapján felírhatjuk a következő rekurziókat: A fixpontok száma viszont F f n = a n + c n + d n, tehát a n+1 =c n = a n 1 + c n 1 1.1) b n+1 =d n = b n 1 + d n 1 1.) c n+1 =a n + c n 1.3) d n+1 =b n + d n 1.4) F f n+1 = a n+1 + c n+1 + d n+1 = a n 1 + c n 1 + a n + c n + b n + d n = = a n + c n + d n ) + a n 1 + c n 1 + b n ) = F f n + F f n 1, vagyis a fixpontok számára észlelt rekurzió valóban érvényes. Az L 0 =, L 1 = 1 és L n+ = L n+1 +L n összefüggéseket teljesítő sorozatot Lucas-sorozatnak nevezzük. Gyakorlatilag azt igazoltuk, hogy F f n = L n, n 1. Ebből azonnal következik, hogy F f n = Megoldás. Az feladat megoldásához hasonlóan járunk el. Egy kis számolással beláthatjuk, hogy a sorozat minden tagja nagyobb mint 1 és a sorozat szigorúan csökkenő. 3 A számolások egyszerűsítésének céljából a b n = 4a n sorozattal dolgozunk. A rekurzió alapján b n 4b n b n + 1) + 8b n+1 b n+1 1) = 0, tehát b n -re megoldva b n = 4b n+1 + ± 6b n Mivel b n 4 az előbbi egyenlőségben minden n 1 esetén a negatív előjelt kell választanunk és így az eredeti rekurziót n + 1-re felírva következik, hogy 8b n+ 6b n+1 + b n = 4, n 1.. Ez alapján és így b n = a n = , n 1. 4
7 1.. VERSENYFELADATOK Megoldás. A cosx) cosnx) = cosn+1)x+cosn 1)x trigonometriai összefüggés alapján a P n polinomokra teljesül a P n+1 y) = yp n y) P n 1 y) y [ 1, 1] rekurzió. Ez csak akkor lehetséges, ha az előbbi egyenlőség minden y R esetén teljesül. Így P 0 x) = 1, P 1 x) = x, P x) = x 1 P 3 x) = 4x 3 3x, P 4 x) = 8x 4 8x + 1. Az együtthatók abszolút értékéből elkészíthetjük a következő táblázatot: x 6 x 5 x 4 x 3 x x 1 x 0 n 1 n = n = n = n = n = n = n = 6 Ennek a táblázatnak a generálása a következő séma szerint is lehetséges: a 0 0 b a + b 0 Ez belátható a rekurzió alapján. Így viszont ha S n a P n együtthatóinak abszolút értékéből képezett összeg, akkor teljesül az S n+ = S n+1 + S n, n 0 rekurzió is, tehát S n = ), n Megoldás. Ha az alsó sor n korongból áll és a következő sor j korongból, akkor a az alsó két sor egymáshoz viszonyítva n j különböző pozicióban lehet j 0 esetén. Ennek következtében felírhatjuk a n 1 K n = K n 1 + K n + 3K n n 1)K = 1 + j=1 jk n j rekurziót. Ez azt mutatja, hogy az fx) = nx n és gx) = n x n 0 n 0K n generátorfüggvényekre teljesül az egyenlőség. Mivel gx) = fx)gx) + x 1 x = fx) x, írhatjuk, hogy 1 x) fx) = x x 1 3x + x. Ebből következik, hogy K n = F n 1, n 1.
Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 00/009-es tanév első (iskolai) forduló haladók II.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos
Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam
01/01 1. évfolyam 1. Egy röplabda bajnokságban minden csapat pontosan egyszer játszik a többi csapat mindegyikével. A bajnokságból még két forduló van hátra és eddig 104 mérkőzést játszottak le. Hány csapat
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig
Oktatási Hivatal Az forduló feladatainak megoldása (Szakközépiskola) Melyek azok az m Z számok, amelyekre az ( m ) x mx = 0 egyenletnek legfeljebb egy, az m x + 3mx 4 = 0 egyenletnek legalább egy valós
4,5 1,5 cm. Ezek alapján 8 és 1,5 cm lesz.
1. Tekintse az oldalsó ábrát! a. Mekkora lesz a 4. sor téglalap mérete? b. Számítsa ki az ábrán látható három téglalap területösszegét! c. Mekkora lesz a 018. sorban a téglalap oldalai? d. Hány téglalapot
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) Javítási értékelési útmutató 1. Melyek azok a pozitív p és q prímek, amelyekre a számok mindegyike
Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa
Németh László Matematikaverseny 007. április 16. A 9-10. osztályosok feladatainak javítókulcsa Feladatok csak 9. osztályosoknak 1. feladat a) Vegyük észre, hogy 7 + 5 felírható 1 + 3 + 6 + alakban, így
8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.
8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont
Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú
FPI matek szakkör 8. évf. 4. szakkör órai feladatok megoldásokkal. 4. szakkör, október. 20. Az órai feladatok megoldása
4. szakkör, 2004. október. 20. Az órai feladatok megoldása Most csak három önmagában nem nehéz feladatot kapsz, és a feladatot magadnak kell általánosítani, szisztematikusan adatot gyűjteni, általános
I. Egyenlet fogalma, algebrai megoldása
11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel
Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész
Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )
Exponenciális és logaritmikus kifejezések Megoldások
Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása
Elemi matematika szakkör
Elemi matematika szakkör Kolozsvár, 2016. január 11. 1.1. Feladat. (V:266,.L. 1/2000) z háromszögben m(â) = 30 és m( ) = 45. z és oldalakon vegyük fel az és pontokat úgy, hogy 3 = és 2 =. Számítsd ki az
Matematika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály I. rész: Hatvány, gyök, logaritmus Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész
MATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!
Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat 1. feladat. Fogalmazza meg a következő ítélet kontrapozícióját: Ha a sorozat csökkenő és alulról korlátos, akkor konvergens. 2. feladat. Vezessük be
Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások
) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
1. Fuggveny ertekek. a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I. x = arcsin(x) ha 1 x 0 x = 1, arctg(x) ha 0 < x < + a) f (x) = 4 x 2 x+log
1. Fuggveny ertekek 1 Szamtsuk ki az alabbi fuggvenyek erteket a megadott helyeken! a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I b) f (x) = sin x 1 x = π 2, π 4, 3 3 2π, 10π I arcsin(x) ha 1 x 0 1 c) f
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)
Megoldások 1. Ábrázold és jellemezd a következő függvényeket! a) f (x) = sin (x π ) + 1 b) f (x) = 3 cos (x) c) f (x) = ctg ( 1 x) 1 a) A kérdéses függvényhez a következő lépésekben juthatunk el: g (x)
11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22.
osztály Oldja meg az egyenletrendszert a valós számok halmazán! y + yz = 8 yz + z = 9 z + y = 5 (0 pont) Megoldás: A három egyenlet összege: ( + yz + z) = Ebből kivonva az egyenleteket: y =, yz = 6, z
Fraktálok. Klasszikus fraktálpéldák I. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék
Fraktálok Klasszikus fraktálpéldák I Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 86 Bevezetés. 2 of 86 TARTALOMJEGYZÉK Bevezetés. Az önhasonlóságról intuitív módon Klasszikus
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:
Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Exponenciális, logaritmikus függvények
Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)
y + a y + b y = r(x),
Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan
IV. RADÓ FERENC EMLÉKVERSENY. Kolozsvár, június 3. V. osztály
Kolozsvár, 000. június 3. V. osztály. Határozd meg az 999 99...9 szorzás eredményében a számjegyek összegét! 999 db 9 es. Egy kerek asztal köré 6 széket helyeztünk el. Számozd meg a székeket a 0,,, 3,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0801 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók
352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm
5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88
Algoritmizálás, adatmodellezés tanítása 11. előadás. (Horváth Gyula előadása alapján)
Algoritmizálás, adatmodellezés tanítása 11. előadás (Horváth Gyula előadása alapján) Rekurzió Klasszikus példák Faktoriális n! Fibonacci-számok Fib n A rekurzió lényege: önhivatkozás n * n 1! ha n 0 1
Numerikus módszerek 1.
Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal A 0/04 tanévi Országos Középiskolai Tanulmányi erseny második forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 57 olyan háromjegyű szám, amelynek számjegyei
MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.
1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon
Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny / Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása. Oldja meg a valós számok legbővebb részhalmazán a egyenlőtlenséget!
2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 12. évfolyam
01. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 1. évfolyam A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás
Függvény határérték összefoglalás
Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis
Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa
Hódmezővásárhelyi Városi Matematikaverseny 2003. április 14. A 11-12. osztályosok feladatainak javítókulcsa 1. feladat Egy számtani sorozatot az első eleme és különbsége egyértelműen meghatározza, azt
FELVÉTELI VIZSGA, július 17.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 2017. július 17. Írásbeli vizsga MATEMATIKÁBÓL I. TÉTEL (30 pont) 1) (10 pont) Igazoljuk, hogy tetszőleges m R esetén
XXVI. Erdélyi Magyar Matematikaverseny Zilah, február I. forduló osztály
Zilah, 016. február 11 14. 1. feladat: Oldd meg a következő egyenletet: 1 1 1 1 5 4 1 4 3 3 1 3 5 4 4 10 Turdean Katalin, Zilah Felírjuk a létezési feltételeket:5 4 1 0, 4 3 3 0, 1 3 5 0, 4 4 10 0. Bevezetjük
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
2010. október 12. Dr. Vincze Szilvia
2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének
Differenciaegyenletek
Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2009/10 tanév, I. félév Losonczi László (DE) Differenciaegyenletek 2009/10 tanév, I. félév 1 / 11
2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!
1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege?
! " # $ %& '()(* $ A táblára felírtuk a 0-tól 00-ig terjedő egész számokat (tehát összesen 004 db számot). Mekkora a táblán levő számjegyek összege? 0 0 0 0 0. 9 7. 9 9 9 + ')./ &,- $ Először a 0-tól 999-ig
Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.
Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =
First Prev Next Last Go Back Full Screen Close Quit
Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.
Németh László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa
Németh László Matematikaverseny, Hódmezővásárhely 2013. április 8. A 9-10. osztályosok feladatainak javítókulcsa 1. Jelöljük x-szel az adott hónapban megkezdett 100 kb-s csomagok számát. Az első szolgáltatónál
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.
Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész
8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész
Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=
Javítókulcs, Válogató Nov. 25.
Javítókulcs, Válogató 2016. Nov. 25. 1. Az A, B, C pontok által meghatározott hegyesszögű háromszögben az egyes csúcsokhoz tartozó magasságvonalak talppontjait jelölje rendre T A, T B és T C. A T A T B
NULLADIK MATEMATIKA ZÁRTHELYI
NULLADIK MATEMATIKA ZÁRTHELYI 08-09-07 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?
1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan
b. Ha R16-os felnit és 55-ös oldalfalmagasságot választunk, akkor legfeljebb mennyi lehet a gumi szélessége? (10 pont) MEGOLDÁS:
1. Az autógyártók előírnak az autó felnijéhez egy gumiméretet, amihez ragaszkodni kellene. De sokan szeretik a nagyobb felnit, vagy a szélesebb gumiabroncsot. Az autógumik méretét három számmal szokták
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen
Bevezetés az algebrába az egész számok
Bevezetés az algebrába az egész számok Wettl Ferenc V. 15-09-11 Wettl Ferenc Bevezetés az algebrába az egész számok V. 15-09-11 1 / 32 Jelölések 1 Egész számok és sorozataik 2 Oszthatóság 3 Közös osztók
Egészrészes feladatok
Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges
Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 2. forduló Haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 017/018-as tanév. forduló Haladók II. kategória Megoldások és javítási útmutató 1. Egy tanár kijavította egy 1 f s csoport dolgozatait.
A III. forduló megoldásai
A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. A 2014-et felírtuk három természetes szám összegeként úgy, hogy ha az első számot elosztjuk
Feladatok a logaritmus témaköréhez 11. osztály, középszint
TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy
Rekurzió. (Horváth Gyula és Szlávi Péter előadásai felhasználásával)
Rekurzió (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Rekurzió Klasszikus példák Faktoriális n! n * n 1! ha n 0 1 ha n 0 Fibonacci-számok Fib n 0 ha n 0 1 ha n 1 Fib n 1 Fib n 2 ha n 1 A
Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7
A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat
NULLADIK MATEMATIKA ZÁRTHELYI
A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával
XXII. Vályi Gyula Emlékverseny április 8. V. osztály
V. osztály 1. Egy anya éveinek száma ugyanannyi, mint a lánya életkora hónapokban kifejezve. Mennyi idősek külön-külön, ha az anya 23 évvel és 10 hónappal idősebb a lányánál? 2. Melyek azok a 2016-nál
Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/01-ös tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. Adott az alábbi két egyenletrendszer:
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:
f(x) a (x x 0 )-t használjuk.
5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Függvény differenciálás összefoglalás
Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a
Függvény fogalma, jelölések 15
DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK
IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;
Megoldások 9. osztály
XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege
Abszolútértékes és gyökös kifejezések Megoldások
Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása