Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
|
|
- Lőrinc Aurél Balla
- 6 évvel ezelőtt
- Látták:
Átírás
1 Operációkutatás I. 2017/ Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás
2 Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és x R n max f(x) x Lehetnek adottak korlátozó feltételek: g i (x) 0, i = 1,..., m és/vagy g j (x) = 0, j = m + 1,..., m + k. Ha adottak, feltételes, különben feltétel nélküli optimalizálási feladatról beszélünk. f és g i függvények lehetnek lineárisak (LP), vagy nemlineárisak is, de feltesszük, hogy folytonosak x-re nincs g i -ken kívül megszorítás (pl. nem köthetjük meg, hogy egészek) jelöljük S-sel a lehetséges megoldások halmazát
3 Az optimalizálás alapfeladata Mit jelent az, hogy x egy megoldás? Lokális optimum Egy x lokális maximum (optimum), ha δ > 0, úgy, hogy f(x ) f(x) x S és x x < δ esetén. Globális optimum Egy x globális maximum (optimum), ha f(x ) f(x) x S esetén.
4 Az optimalizálás alapfeladata ábra Kérdés Mikor lesz minden lokális maximum (minimum) globális is? Ha f konkáv (konvex) függvény, akkor biztosan.
5 Feltétel nélküli optimalizálás: Szükséges és elegendő feltétel optimalitásra Tétel (szükséges feltétel). Ha x az f(x) függvény maximuma (minimuma), akkor f (x ) = 0. Ez nem elegendő, ld. pl. f(x) = x 3 függvény. Tétel (elegendő feltétel). Ha f (x ) = 0 és f (x ) negatív (pozitív), akkor x lokális maximuma (minimuma) f-nek. Azokat a pontokat, ahol f (x) = 0 stacionárius pontoknak nevezzük. A max f(x) x [a,b] feladat megoldását a stacionárius pontjai illetve a és b közt keressük.
6 Példák monoton függvényre
7 Példák konkáv és konvex függvényekre
8 Példa se nem konkáv se nem konvex függvényre
9 Példa optimumra nem 0 deriválttal
10 Legmeredekebb lejtő módszere Több dimenziós feladatoknál az f (x) = 0 feltételt felváltja a f(x) = (f x 1 (x), f x 2 (x),..., f x n (x)) = 0 szükséges feltétel. Ez nem feltétlenül könnyen megoldható egyenletrendszerre vezet, ezért iteratív megoldáshoz folyamodunk. Lokális kereső eljárás Legyen x 0 a kezdő megoldásunk, az iterációs lépés pedig x i+1 = x i + µd i, i = 0,1,2,... ahol d i egy növekvő irány maximalizálásnál, µ pedig a lépéshossz. Ha x i+1 x i ɛ, azaz az új lépes nem elég nagy, STOP. Ahogy f (x) a növekvő irányba mutat 1D-ben, úgy f(x) a legmeredekebb növekedés irányába mutat nd-ben. Így d i = f(x i ) jó választás. µ-t vagy az egydimenziós max µ x i + µd i feladat megoldásával, vagy közeĺıtéssel határozzuk meg.
11 Legmeredekebb lejtő: példa Példa. Maximalizáljuk az f(x, y) = (x 3) 2 3(y 1) 2 függvényt! ( ) f f = x f y = ( ) ( 2(x 3) 6 2x = = 6(y 1) 6 6y x 0 = (0,0) x 1 = (0,0) + µ(6,6) = (6µ,6µ), vagyis max µ f(6µ,6µ)-t keressük! max µ f(6µ,6µ) = max (6µ 3) 2 3(6µ 1) 2 = max 144(µ 1/4) 2 3 ) µ = 1/4 x 1 = (6/4,6/4)!!!
12 x 2 x 1 x 3 x * x 2 x 1
13 Feltételes optimalizálás: Lagrange függvény Adott a következő feltételes probléma max x R n f(x) g j (x) = 0, j = 1,..., m Az L(x, λ) = f(x) m λ j g j (x) j=1 függvényt a feladat Lagrange függvényének nevezzük. Tétel (szükséges feltétel). Ha x az (1) feladat maximuma, akkor létezik λ amire x a Lagrange függvény stacionárius pontja, azaz L(x, λ ) = 0. A λ vektor elemeit Lagrange multiplikátoroknak nevezzük.
14 Lagrange függvény példa Példa. Maximalizáljuk f(x, y) = x + y függvényt, feltéve x 2 + y 2 = 1. Lagrange függvény. L(x, y, λ) = x + y λ(x 2 + y 2 1) = x + y λx 2 λy 2 + λ A szükséges feltétel L(x, y, λ) = L x L y L λ = 1 2λx 1 2λy x 2 y = Megoldva: x = y = 1/(2λ), λ = ±1/ 2 így (x, y) = ( 2/2, 2/2), illetve (x, y) = ( 2/2, 2/2). Ebből f( 2/2, 2/2) = 2 a maximum, f( 2/2, 2/2) = 2 a minimum
15 Lagrange függvény példa
16 A log-barrier módszer Motiváció: ahelyett, hogy megoldanánk egy feltételes optimalizálási feladatot, beépítjük a feltételeket a célfüggvénybe. (ld. mint Lagrange függvény) Ötlet: Tegyük fel, hogy adott egy kezdő lehetséges megoldásunk (x 0 S). Készítsünk szakadékot az S határán. A feladat: A barrier függvény: max x R n f(x) feltéve g i (x) 0, i = 1,..., m B µ (x) = f(x) + µφ(x) ahol φ(x) legyen ha x nem megengedett megoldás, és kis negatív ha megengedett!
17 A log-barrier módszer: A φ függvény lehetséges választásai φ(x) = m log( g i (x)) i=1 φ(x) = m i=1 1 g i (x) Az x 0 feltétel esetén Az x 0 feltétel esetén A µ paraméter megválasztása kontrollálja az akadály szigorúságát: µ nagy: fokozatos akadály (kék) µ kicsi: éles akadály (barna)
18 A log-barrier módszer: példa Példa. max x + y ha x 2 + y 2 1 B µ = x + y + µ x 2 +y 2 1 Induljunk ki az x 0 megengedett kezdő megoldásunkból, oldjuk meg a max B µ feladatot, majd µ-t fokozatosan csökkentve újra meg újra oldjuk meg a max B µ feladatot!
19 A log-barrier módszer: Megjegyzések A B µ feladatok megoldása tart az eredeti feladat megoldásához ha µ 0, de nem éri el ha g i (x ) = 0 (B µ (x ) = µ > 0). Csak egyenlőtlenség feltételek mellett alkalmazható, különben nincs lehetséges megoldása! Kis µ esetén a barrier függvény rosszul kondícionált, azaz numerikusan nehezen megoldható (túl nagy a célfüggvényérték különbség kis lépésre is). A feltételeket nem hagyhatjuk figyelmen kívül: ha kilépünk a lehetséges tartományból a függvényünk vagy nem értelmezett (logaritmus), vagy rossz megoldást ad (reciprok).
20 Szimplex vs. belső pontos módszer A log-barrier módszer lineáris programozási feladatra való alkalmazásából született az ú.n. belső pontos módszer!
21 Büntetőfüggvény Mi a helyzet akkor, ha nincs meg a kezdő lehetséges megoldás (azaz egy belső pont...)? Ötlet: Legyen a büntető függvény P ρ (x) = f(x) + ρψ(x), ahol ρ < 0 szám a büntető paraméter és { 0, ha x lehetséges megoldás ψ(x) = > 0, különben. Cél: max P ρ(x) x problémák sorozatának megoldása, ahol ρ. Vagyis: a nem lehetséges megoldások esetén a célfüggvény legyen egyre kisebb.
22 Büntetőfüggvény Tekintsük a feltételekkel adott feladatot. max x R n f(x) feltéve g j (x) 0, j = 1,..., m feltéve g j (x) = 0, j = m + 1,..., l A ψ függvény lehetséges választásai: ψ(x) = m l max{0, g i (x)} + g i (x) i=1 i=m+1 Vagy a négyzetes büntetőfüggvény ψ(x) = m l max{0, g i (x)} 2 + g i (x) 2 i=1 i=m+1
23 Büntetőfüggvény: példa Példa. max x + y ha x 2 + y 2 1 P ρ = x + y + ρ max{0, x 2 + y 2 1} 2
24 Büntetőfüggvény: példa
25 Büntetőfüggvény Nem tudjuk előre, mekkora ρ fog kelleni ρ < 0, ha ρ túl nagy, a feladat rosszul kondicionált Csökkentsük fokozatosan ρ értékét A keresést mindig az előző megoldásból indítsuk Ha konvergál a függvényérték, megállunk Van olyan feladat amire csak nem megengedett megoldást ad (ld. következő ábra)
26 Barrier vs büntetőfüggvény ábra Példa. max e x f.h. x 0
27 Barrier vs büntetőfüggvény ábra Barrier függvények Büntető függvények
Nemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése
2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
Matematika III előadás
Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris
Többváltozós függvények differenciálhatósága f(x) f(x Az egyváltozós függvények differenciálhatóságát a lim 0 ) x x0 x x 0 függvényhatárértékkel definiáltuk, s szemléletes jelentése abban mutatkozott meg,
Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar
Szélsőértékszámítás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Szélsőértékszámítás 1 / 21 2. SZÉLSOÉRTÉKSZÁMÍTÁS 2.1 A szélsőérték fogalma, létezése Azt
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Boros Zoltán február
Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n
MATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
11. Előadás. 1. Lineáris egyenlőség feltételek melletti minimalizálás
Optimalizálási eljárások MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2011. április 27. 1. Lineáris egyenlőség feltételek melletti minimalizálás Múlt héten nem szerepeltek
1. Parciális függvény, parciális derivált (ismétlés)
Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt
A lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris
Nem-lineáris programozási feladatok
Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 6. Előadás Áttekintés Kezdjük újra a klasszikus erőforrás allokációs problémával (katonák,
Opkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 8. Előadás Bevezetés Egy olyan LP-t, amelyben mindegyik változó egészértékű, tiszta egészértékű
ANALÍZIS III. ELMÉLETI KÉRDÉSEK
ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges
Lagrange-féle multiplikátor módszer és alkalmazása
Eötvös Loránd Tudományegyetem Természettudományi Kar Nemesné Jónás Nikolett Lagrange-féle multiplikátor módszer és alkalmazása Matematika BSc, Matematikai elemz szakirány Témavezet : Szekeres Béla János,
Függvények határértéke, folytonossága FÜGGVÉNYEK TULAJDONSÁGAI, SZÉLSŐÉRTÉK FELADATOK MEGOLDÁSA
Függvények határértéke, folytonossága FÜGGVÉNYEK TULAJDONSÁGAI, SZÉLSŐÉRTÉK FELADATOK MEGOLDÁSA Alapvető fogalmak: Függvény fogalma Függvény helyettesítési értéke (függvényérték) Függvény grafikonja A
2012. október 2 és 4. Dr. Vincze Szilvia
2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex
Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás
Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
P 2 P 1. 4.1 ábra Az f(x) függvény globális minimuma (P 1 ) és egy lokális minimuma (P 2 ).
Paláncz Béla - Numerikus Módszerek - 211-4. Optimalizálás 4 Optimalizálás Bevezetés Az optimalizáció, egy függvény szélsőértéke helyének meghatározása, talán a legfontosabb numerikus eljárások közé tartozik.
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI
3. Fuzzy aritmetika Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Intervallum-aritmetika 2 Fuzzy intervallumok és fuzzy számok Fuzzy intervallumok LR fuzzy intervallumok
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Nemlineáris programozás: algoritmusok
Nemlineáris programozás: algoritmusok illes@math.elte.hu Operációkutatási Tanszék Budapest 2010. I. félév Feltétel nélküli optimalizálási feladat Feltétel nélküli optimalizálási feladat: Legyen adott az
1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy
January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,
Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,
Kétváltozós függvények differenciálszámítása
Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt
Lineáris regressziós modellek 1
Lineáris regressziós modellek 1 Ispány Márton és Jeszenszky Péter 2016. szeptember 19. 1 Az ábrák C.M. Bishop: Pattern Recognition and Machine Learning c. könyvéből származnak. Tartalom Bevezető példák
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI
FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI FÜGGVÉNY: Adott két halmaz, H és K. Ha a H halmaz minden egyes eleméhez egyértelműen hozzárendeljük a K halmaznak egy-egy elemét, akkor a hozzárendelést
1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex
Numerikus módszerek 1.
Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk
2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
Matematika A1. 9. feladatsor. A derivált alkalmazásai. Függvény széls értékei
Matematika A1 9. feladatsor A derivált alkalmazásai Függvény széls értékei 1. Keressük meg a függvények abszolút maximumát és minimumát a megadott intervallumon. Ezután rajzoljuk fel a függvény grakonját.
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i
I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
A lineáris programozás 1 A geometriai megoldás
A lineáris programozás A geometriai megoldás Készítette: Dr. Ábrahám István A döntési, gazdasági problémák optimalizálásának jelentős részét lineáris programozással oldjuk meg. A módszer lényege: Az adott
LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei
Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
1. A szerkezetszintézis matematikai módszerei 1.1 Történelmi áttekintés
1. 1.1 Történelmi áttekintés Tudatosan, vagy tudat alatt az emberek a mindennapi életük során optimálnak, hogy a lehető legjobb eredményt érjék el a rendelkezésre álló feltételek mellett. A tudatosság
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai
Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál
Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka
Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
A Matematika I. előadás részletes tematikája
A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok
függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
Diszkrét Matematika MSc hallgatók számára. 4. Előadás
Diszkrét Matematika MSc hallgatók számára 4. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2012. február 28. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét
FÜGGVÉNYEK. A derékszögű koordináta-rendszer
FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot
4. Előadás: Erős dualitás
Optimalizálási eljárások/operációkutatás MSc hallgatók számára 4. Előadás: Erős dualitás Előadó: Hajnal Péter 2018. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét d
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
GPK M1 (BME) Interpoláció / 16
Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának
Szélsőérték feladatok megoldása
Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =
Analízis. 1. fejezet Normált-, Banach- és Hilbert-terek. 1. Definíció. (K n,, ) vektortér, ha X, Y, Z K n és a, b K esetén
1. fejezet Analízis 1.1. Normált-, Banach- és Hilbert-terek. Zártés teljes ortonormált rendszer. Fourier-sor. Riesz-Fischer tétel Hilbert-térben. Szeparábilis Hilbert terek izomorfiája. 1.1.1. Normált-,
A szimplex tábla. p. 1
A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
Legkisebb négyzetek módszere, Spline interpoláció
Közelítő és szimbolikus számítások 10. gyakorlat Legkisebb négyzetek módszere, Spline interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Optimálási módszerek Galántai Aurél
Optimálási módszerek Galántai Aurél 2004-2-8 Optimálási módszerek, 2003/2004, II. félév (óravázlat) 2 1 Bevezetés Optimalizálási feladat számos helyen elýofordul. Példák: 1. Dido probléma. 2. Legrövidebb
Valós függvények tulajdonságai és határérték-számítása
EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye
HORNUNG TAMÁS * Diszkrét egyenletes közelítés: a lineáris programozás egy alkalmazása
Bevezetés HORNUNG TAMÁS * Diszkrét egyenletes közelítés: a lineáris programozás egy alkalmazása Discrete smooth approximation: an application of linear programming The best discrete approximation can be
Diszkrét Matematika MSc hallgatók számára. 14. Előadás
Diszkrét Matematika MSc hallgatók számára 14. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2012. Nem maradt rá idő 1. Feltétel nélküli optimalizálás 1.1. Az eljárások alapjai A feltétel nélküli
ACM Snake. Orvosi képdiagnosztika 11. előadás első fele
ACM Snake Orvosi képdiagnosztika 11. előadás első fele ACM Snake (ismétlés) A szegmentáló kontúr egy paraméteres görbe: x Zs s X s, Y s,, s A szegmentáció energia funkcionál minimalizálása: E x Eint x
MÉSZÁROS JÓZSEFNÉ, NUMERIKUS MÓDSZEREK
MÉSZÁROS JÓZSEFNÉ, NUmERIKUS módszerek 9 FÜGGVÉNYKÖZELÍTÉSEK IX. SPLINE INTERPOLÁCIÓ 1. SPLINE FÜGGVÉNYEK A Lagrange interpolációnál említettük, hogy az ún. globális interpoláció helyett gyakran célszerű
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév
Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?
Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással
pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek
Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n
Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának
9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban
9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
E-tananyag Matematika 9. évfolyam 2014. Függvények
Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést
1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI
1/12 Operációkutatás 5. gyakorlat Hiperbolikus programozási feladat megoldása Pécsi Tudományegyetem PTI 2/12 Ha az Hiperbolikus programozási feladat feltételek teljesülése mellett a A x b x 0 z(x) = c
r a sugara, h a magassága a hengernek a maximalizálandó függvényünk a V (r, h) = πr 2 h. Az érintkezési pontokban x 2 + y 2 = r 2 és z = h/2.
Feltételes szélsőérték Keressük úgy egy kétváltozós f (x, y) függvény szélsőértékét, hogy közben eleget tegyünk egy másik, g(x, y) = 0 típusú megszorításnak. Példa Határozzuk meg egy forgásellipszoidba
Bevezetés az algebrába 2 Vektor- és mátrixnorma
Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.
A derivált alkalmazásai
A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten MÁSODFOKÚ EGYENLETEK ÉS EGYENLŽTLENSÉGEK Készítette: Gábor Szakmai felel s: Gábor
Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11.
11. gyakorlat Branch-and-Bound a korlátozás és szétválasztás módszere 1. Az egészértéketű programozás 1.1. Bevezető Bizonyos feladatok modellezése kapcsán előfordulhat olyan eset, hogy a megoldás során
Modellek és Algoritmusok - 2.ZH Elmélet
Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)
EuroOffice Optimalizáló (Solver)
1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer
MODELLEK ÉS ALGORITMUSOK ELŐADÁS
MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük