Analízis. 1. fejezet Normált-, Banach- és Hilbert-terek. 1. Definíció. (K n,, ) vektortér, ha X, Y, Z K n és a, b K esetén

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Analízis. 1. fejezet Normált-, Banach- és Hilbert-terek. 1. Definíció. (K n,, ) vektortér, ha X, Y, Z K n és a, b K esetén"

Átírás

1 1. fejezet Analízis 1.1. Normált-, Banach- és Hilbert-terek. Zártés teljes ortonormált rendszer. Fourier-sor. Riesz-Fischer tétel Hilbert-térben. Szeparábilis Hilbert terek izomorfiája Normált-, Banach- és Hilbert-terek 1. Definíció. (K n,, ) vektortér, ha X, Y, Z K n és a, b K esetén kommutatív: X Y = Y X, asszociatív: (X Y ) Z = X (Y Z), -nak van semleges eleme: 0 X = X 0 = X, X 1 : X X 1 = 0, asszociatív: a (b X) = (ab) X, skalárösszegre disztributivitás: (a + b) X = a X b X, vektorösszegre disztributivitás: a (X Y ) = a X a Y, -nak van semleges eleme: 1 X = X. 2. Definíció. (X, ρ) metrikus tér, ha X halmaz, ρ : X X R és x, y, z X ρ(x, y) 0 és ρ(x, y) = 0 x = y ρ(x, y) = ρ(y, x) ρ(x, y) + ρ(y, z) ρ(x, z) (háromszög-egyenlőtlenség) 1

2 3. Definíció. (X,. ) normált tér, ha X vektortér K felett,. : X R és x, y X x 0 és x = 0 x = 0 λx = λ x x + y x + y 4. Definíció. (X,.,. ) euklideszi tér, ha X vektortér K felett,.,. : X X K és x, y, z X, λ K x, x 0 és x, x = 0 x = 0 x, y = y, x (konjugált szimmetria) λx, y = λ x, y (linearitás az első változóban) x + y, z = x, z + y, z (linearitás az első változóban) Megjegyzés: A normált tér is metrikus tér ρ(x, y) := x y indukált metrikával. Az euklideszi tér is normált tér x := x, x indukált normával. 5. Definíció. A fenti tereket teljes térnek nevezzük, ha bennük minden Cauchy-sorozat konvergens, azaz: a : N X, ε > 0 : N N : n, m > N : ρ(a n, a m ) < ε Megjegyzés: α X : ε > 0 : N N : n > N : ρ(a n, A) < ε Teljes normált tér: Banach-tér. Teljes euklideszi tér: Hilbert-tér. Példák: Diszkrét metrika: ρ(x, y) = { 1 (x = y) 0 (x y) p-normák: { X = R n, x p := p n x i p max{ x 1,..., x n } (p [1, + )) (p = + ) Ekkor (R n,. p ) Banach-tér, mert minden véges dimenziós normált tér teljes. 2

3 Zárt- és teljes ortonormált rendszer 6. Definíció. f 1,..., f n,... X véges vagy végtelen ortonormált rendszer (ONR), ha i, j N, f i, f j X : f i, f j = δ ij 7. Definíció. (X,. ) normált tér esetén Z X zárt rendszer, ha L[Z] = X, ahol L[Z] = { z Z 0 α z z Z0 Z, Z 0 < +, α z K } (lineáris burok), illetve A X : A := A A, A := {x X : ε > 0 a A, a x : a k ε (x)} 8. Definíció. (X,.,. ) euklideszi tér, Y = {y 1,...} X ONR teljes, ha a X, y n Y : â = (â(n)) = ( a, y n ) 0 a = 0 9. Definíció. X szeparábilis, ha Y X, Y legfeljebb megszámláható, hogy: Y = X 1. Tétel. (X,. ) szeparábilis létezik legfeljebb megszámlálható zárt rendszer (X,.,. ) szeparábilis létezik legfeljebb megszámlálható zárt ONR 2. Tétel. (X,.,. ) euklideszi tér, Y X ONR esetén Y zárt Y teljes Hilbert-térben: Y teljes Y zárt Fourier-sor 10. Definíció. Fourier-sorok: (X,.,. ) euklideszi tér, Y = {y n n N} X ONR esetén: n-edik Fourier-együttható: ˆx(n) := x, y n n-edik részletösszeg: S n (x) := n k=0 ˆx(k)y k Fourier-sor: k=0 ˆx(k)y k 3. Tétel. Bessel-egyenlőtlenség: ( ˆx l 2 ) ˆx(k) 2 x 2 k=0 3

4 4. Tétel. (y n ) ONR { } n min x c k y k : c k R = x ˆx k y k 5. Tétel. k=1 z = α k y k α k = ẑ(k) x= Riesz-Fischer tétel Hilbert-térben, szeparábilis Hilbert terek izomorfiája 6. Tétel. Riesz-Fischer: (X,.,. ) Hilbert-tér, (y n ) X megszámlálható, zárt ONR esetén (tehát X szeparábilis) (y n ) Schauder-bázis (azaz minden térbeli elem egyértelműen előállítható a bázis elemeinek véges vagy végtelen lineáris kombinációjával) x X : x = i=0 ˆx(n)y n, ekkor ˆx l 2 és x = ˆx l2 (Parseval) α l 2 :!x α X : ˆx α = α Ezért x ˆx izomorf (homomorf, szürjektív és injektív) izometria (az argumentum és a függvényérték megfelelő normái azonosak), tehát minden szeparábilis Hilbert-tér izometrikusan izomorf l 2 -vel. x=1 φ : X l 2 bijektív, lineáris : x = φ(x) l2 7. Tétel. Neumann-féle paralelogramma-szabály: (X,. ).,. : x = x, x x, y X : x + y 2 + x y 2 = 2( x 2 + y 2 ) 8. Tétel. Cauchy-Bunyakovszki-egyenlőtlenség: x, y x y???gram-schmidt ortogonalizáció kell? 1.2. A legjobb approximáció feladata Banach- és Hilbert-térben. Riesz felbontási tétele. Projekciók A legjobb approximáció feladata Banach- és Hilberttérben 11. Definíció. (X, ρ) metrikus tér, = A, B X, ekkor ρ(a, B) := inf{ρ(x, y) x A, y B} 4

5 Speciálisan: A = {c} : ρ(c, B) := ρ(a, B) Approximáció kérdése: létezik-e a A, b B : ρ(a, b) = ρ(a, B) 9. Tétel. (X,. ) normált tér, L X végesdimenziós altér, ekkor c X l L : c l = ρ(c, L) Kérdés: egyértelműségről mit lehet mondani? Pl.: (R 2,. 2 ), L = {ax alakú egyenesek}, ekkor egyértelmű (R 2,. ), L = {(x, 0) x R}, x 0 = (0, 1), ekkor x 0 -hoz végtelen L- beli legközelebbi pont van 12. Definíció. (X,. ) szigorúan normált, ha x, y X : Például: x + y = x + y λ 0 : x = λy y = λx (R n,. p )(1 < p < ) (l p,. lp )(1 < p < ), ahol (x n ) lp N R : x lp < + } = ( i=0 x i p ) 1/p l p = {x : (L p (I),. p )(1 < p < ), ahol f p = ( I f p) 1/p, R : f p < + } L p = {f : I minden Hilbert-tér (C[a, b],. ) NEM 10. Tétel. (X,. ) szigorúan normált tér, ekkor: L X altér : x X : {l L : x l = ρ(x, L)} Tétel. (X,.,. ) euklideszi tér, L X teljes altér (altér, és minden Cauchy-sorozat egyben konvergens is és a limesz L-beli) x X!l L : ρ(x, L) = x l 13. Definíció. (X,.,. ) euklideszi tér, L X altér, ekkor: L := {x X : l L : x, l, = 0} 5

6 Riesz felbontási tétele 12. Tétel. Riesz-felbontás: Legyen L X egy teljes altér az (X,, ) euklideszi térben. Ekkor x X elemhez egyértelműen léteznek olyan L-beli x 1 és L -beli x 2 elemek, amelyekre: x = x 1 + x Projekciók 14. Definíció. Valamely (X,, ) euklideszi térben teljes L X altér esetén a P L : X L leképezést (operátort), amelyre az előbbi tétel jelöléseivel P L (x) = x 1 (x X), azaz x = x 1 + x 2 : x 1 L, x 2 L az L altérre való vetítésnek (projekciónak) nevezzük. Nyilvánvaló hogy P L lineáris: x, y X, µ, λ K : P L (µx + λy) = µp L (x) + λp L (y), valamint, hogy P L korlátos lineáris operátor, azaz: x X : P L (x) x. Speciálisan x L esetén az x = x + 0 egyenlőségből adódóan P L (x) = x következik, ami egyúttal azt is jelenti, hogy egyrészt ran(p L ) = L valamint, hogy a leképezés idempotens, azaz: P P = P. 13. Tétel. (X,.,. ) Hilbert-tér {e k k = 0... n} ONR bázis az L altérben, ekkor n P L (x) = x k, e k e k k=0 Az előző esetben P Ln = S n, P L = S, L n = L({l 0,..., l n }) és L = L({l 0,..., l n }) X = K n,. =., A 1,..., A m X, L = L({A 1,..., A n }) { m b X γ i K : b m } γ i A i = min b α i A i : α i K { m b γ i A i = max 1 k n b k A K n m, γ K m Ekkor γ approximatív megoldás } m α i A ik : α i K b Aγ = min α K m b Aα = min max α i k { b k } m α i A ik : α i K 6

7 Legkisebb négyzetek feladata: n min α i b i k=1 m 2 α i A ik 15. Definíció. Legfeljebb n-edfokú polinomok: P n = {P : P polinom [a, b] felett értelmezve, deg(p ) n}. Legfeljebb n-edfokú trigonometrikus polinomok: n T n = {α 0 + (α k cos(kx) + β k sin(kx)) α k, β k R(i = 1... n)}. k=1 14. Tétel. A = L n vagy A = S n esetén c > 0 : A c ln(n + 1) Következmény. 15. Tétel. A Banach-Steinhaus tétel alkalmazásával adódik a Lizonszkij- Harsiladze-tétel: tetszőleges T n : C 2π T n (n N) projekciósorozat esetén létezik olyan f C 2π függvény, amelyre a (T n f) sorozat nem konvergál egyenletesen, sőt sup n T n f = Definíció. Legyenek adottak az α nk K(n, k N) valós vagy komplex számok. Azt mondjuk, hogy az (x n )(n N) számsorozat szummábilis, ha n N esetén a y n := α nk x k k=0 sorösszeg létezik, y n K és az (y n )(n N) sorozat konvergens. Ha ez tetszőleges (x n )(n N) esetén igaz és még lim(x n ) = lim(y n ), akkor az α nk -k egy ún. permanens, vagy Toeplitz-típusú szummációt határoznak meg Korlátos, lineáris operátorok. Operátorok normája. Operátorok gyűrűje. B(X,Y) Banach-tér. Operátor sorozatok egyenletes- és pontonkénti konvergenciája. Banach-Steinhaus tétel és következménye Korlátos, lineáris operátorok 17. Definíció. X 1, X 2 lineáris tér K felett, A : X 1 X 2 lineáris operátor, ha x, y X 1, λ K : A(x + λy) = Ax + λay 7

8 L(X 1, X 2 ) := {A : X 1 X 2 lineáris} pl: f f, f 1 0 f 18. Definíció. (X i,. i )(i = 1, 2), A L(X 1, X 2 ) korlátos lineáris operátor, ha M > 0 : Ax 2 M x 1 ( x X 1 ) L(X 1, X 2 ) := {A L(X 1, X 2 ) korlátos lineáris} Operátorok normája 16. Tétel. A L(X 1, X 2 ) A C z X 1 : A C{z} L(X 1, X 2 ) lineáris tér A L(X 1, X 2 ), A A := inf{m 0 : Ax 2 M x 1 } norma (operátornorma) inf helyett írható min A = sup { Ax 2 : x 1 1} = sup { Ax 2 : x 1 = 1} (X 2,. 2 ) teljes esetén (L(X 1, X 2 ),. ) Banach-tér X 1 végesdimenziós esetén L(X 1, X 2 ) = L(X 1, X 2 ) Operátorok gyűrűje 19. Definíció. (X,, ) gyűrű, ha műveletre Abel-csoport: kommutatív csoport (asszociatív, van semleges elem, minden elemnek van inverze), műveletre félcsoport (asszociatív, van semleges elem) disztributív -ra nézve: (a b) c = a c b c, a (b c) = a b a c 20. Definíció. (X,, ) gyűrű esetén Y X részgyűrű, ha (Y,, ) gyűrű. 21. Definíció. (X,, ) gyűrű esetén I X részgyűrű ideál, ha I (I 1 ) I, X I I (balideál), 8

9 I X I (jobbideál). 22. Definíció. (X i,. i )(i = 1, 2) normált terek, A : X 1 X 2 operátor kompakt, ha Y X 1 korlátos: A[Y ] halmaz kompakt (azaz minden nyílt lefedéséből kiválasztható egy véges nyílt lefedése). Jelölés: K(X 1, X 2 ). L(X) := L(X, X) gyűrűt alkot az összeadásra és a kompozícióra nézve, ahol K(X) ideál L(X, Y ) Banach-tér Lásd: korábban Operátor sorozatok egyenletes- és pontonkénti konvergenciája 23. Definíció. A n L(X 1, X 2 ) pontonként konvergens M X 1 -en, ha x M : (A n x) konvergens 24. Definíció. A n L(X 1, X 2 ) erősen konvergens, ha x X 1 : (A n x) konvergens???ez helyes? Banach-Steinhaus tétel és következménye 17. Tétel. Banach-Steinhaus I.: X 1 Banach-tér, A n L(X 1, X 2 ) erősen kovergens sup n A n < Tétel. Banach-Steinhaus II.: X 1, X 2 Banach-terek, A n L(X 1, X 2 ), ekkor A n erősen konvergens Z X 1 zárt rendszer: (A n z) konvergens z Z sup n A n < + Következmények (X i,. i ) = (C 2π,. )[(C[a, b],. )] és A n = S n [L n ] esetén A n c log n f X 1 : (A n f) nem konvergens (X 1,. 1 ) = (C 2π,. ), (X 2,. 2 ) = (R,. ), A n f = S n F (a) f C 2π : (S n f(a)) divergens (X 1,. 1 ) = (C[a, b],. ), (X 2,. 2 ) = (R,. ), A n = Q n Q n f = n k=0 A nkf(x nk ) Q n f = n k=0 A nk Pólya-szegő: ρ : [a, b] [0, + ) f C[a, b] : lim Q n f = b a fρ 9

10 zárt rendszeren kovergens sup n n k=0 A nk < + Q kvadratikus szummációk: α nk K, x : N K, T x := ( k=0 α nkx k ) T szummáció permanens, ha x N K : x D T, T x konvergens, és lim(t x) = lim(x) Toeplitz: T permanens k : lim n α nk = 0 lim n k=0 α nk = 0 sup n k=0 α nk < +???permanens def. 19. Tétel. Fejér szummációs tétele: f C 2π : lim n σ nf f = 0, ahol σ n f = S 0f S n f n + 1 ( n N 0 ) 1.4. Hahn-Banach tétel és következményei. Duális tér. Riesz reprezentációs tétele. Adjungált operátor. Önadjungált operátorok Hilberttérben Duális tér 25. Definíció. X = K n, (X,. ) normált tér, X := L(X, K) az X duális tere, ekkor A X egy funkcionál (korlátos, lináris) Hahn-Banach tétel és következményei 20. Tétel. Hahn-Banach: Következmények: (X,. ) normált tér, Y X altér, f Y : F X : f F (azazf Y = f, f = F ) 10

11 0 x X : f X : f(x) = x, f = 1 Y X altér, a X : ρ(a, Y ) > 0 f X : f Y 0, f(a) = 1, f = 1 ρ(a,y ) S X S zárt rendszer ( f X : f 0 f S 0) (X,.,. ) euklideszi tér, a X, f a (x) := x, a f a = a Riesz reprezentációs tétele 21. Tétel. Riesz-féle reprezentációs tétel: (X,.,. ) Hilbert-tér, ekkor ( X = X ) Adjungált operátor f X :!a X : f = f a 26. Definíció. A L(X 1, X 2 ), f X2, A f(x) := f(ax)(x X 1 ) A f X1, A korlátos lineáris. Ekkor A L(X2, X 1 ) adjungált operátor. ( A = A ) Ha (X i,. i ) = (X,.,. ) Hilbert-tér, akkor x, a X : Ax, a = x, A a 27. Definíció. Ha A = A, akkor önadjungált Önadjungált operátorok Hilbert-térben 22. Tétel. (X,.,. ) Hilbert-tér K felett, A L(X, X) esetén: A önadjungált x, y X : Ax, y = x, Ay A önadjungált A = sup { Ax, x : x X, x 1} Megjegyzés. L(K m, K n ) izomorf K n m -mel. 11

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14. Fraktálok Hausdorff távolság Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. március 14. TARTALOMJEGYZÉK 1 of 36 Halmazok távolsága ELSŐ MEGKÖZELÍTÉS Legyen (S, ρ) egy metrikus tér, A, B S, valamint

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Matematika alapjai; Feladatok

Matematika alapjai; Feladatok Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

INFORMATIKAI KAR. Funkcionálanalízis a jelfeldolgozás és a szimuláció matematikai alapjai

INFORMATIKAI KAR. Funkcionálanalízis a jelfeldolgozás és a szimuláció matematikai alapjai EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Szili László Funkcionálanalízis a jelfeldolgozás és a szimuláció matematikai alapjai Budapest, 2007 A jegyzet a GVOP-3.2.2.-2004-07-0005/3.0 számú ELTE IKKK

Részletesebben

Bázisok, framek, waveletek

Bázisok, framek, waveletek Simon Péter Simon Péter Bázisok, framek, waveletek egyetemi tankönyv Bázisok, framek, waveletek Budapest, 2018 Simon Péter Bázisok, framek, waveletek egyetemi tankönyv Budapest, 2018 2 Ez a tankönyv az

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Debreceni Egyetem. Kalkulus I. Gselmann Eszter

Debreceni Egyetem. Kalkulus I. Gselmann Eszter Debreceni Egyetem Természettudományi és Technológiai Kar Kalkulus I. Gselmann Eszter Debrecen, 2011 A matematikában a gondolat, ami számít. (Szofja Vasziljevna Kovalevszkaja) Tartalomjegyzék 1. Halmazok,

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Bevezetés az algebrába 2 Vektor- és mátrixnorma

Bevezetés az algebrába 2 Vektor- és mátrixnorma Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Gy ur uk aprilis 11.

Gy ur uk aprilis 11. Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az

Részletesebben

Diszkrét matematika II., 8. előadás. Vektorterek

Diszkrét matematika II., 8. előadás. Vektorterek 1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.

Részletesebben

Modellek és Algoritmusok - 2.ZH Elmélet

Modellek és Algoritmusok - 2.ZH Elmélet Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)

Részletesebben

Analízis I. Vizsgatételsor

Analízis I. Vizsgatételsor Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2

Részletesebben

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat 8.2. Gyűrűk Fogalmak, definíciók: Gyűrű, kommutatív gyűrű, integritási tartomány, test Az (R, +, ) algebrai struktúra gyűrű, ha + és R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ) félcsoport,

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

Folytonos görbék Hausdorff-metrika Mégegyszer a sztringtérről FRAKTÁLGEOMETRIA. Metrikus terek, Hausdorff-mérték. Czirbusz Sándor

Folytonos görbék Hausdorff-metrika Mégegyszer a sztringtérről FRAKTÁLGEOMETRIA. Metrikus terek, Hausdorff-mérték. Czirbusz Sándor Metrikus terek, Hausdorff-mérték Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. március 22. Vázlat 1 Folytonos görbék Affin függvények Definíciók A Koch-görbe A Cantor-halmaz

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Wigner tétele kvantummechanikai szimmetriákról

Wigner tétele kvantummechanikai szimmetriákról Szegedi Tudományegyetem, Bolyai Intézet és MTA-DE "Lendület" Funkcionálanalízis Kutatócsoport, Debreceni Egyetem 2014. Október 30. Elméleti Fizika Szeminárium A tétel története Wigner tétele Tétel Legyen

Részletesebben

Boros Zoltán február

Boros Zoltán február Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n

Részletesebben

Programtervező informatikus I. évfolyam Analízis 1

Programtervező informatikus I. évfolyam Analízis 1 Programtervező informatikus I. évfolyam Analízis 1 2012-2013. tanév, 2. félév Tételek, definíciók (az alábbi anyag csupán az előadásokon készített jegyzetek mellékletéül szolgál) 1. Mit jelent az asszociativitás

Részletesebben

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Diszkrét matematika gyakorlat 1. ZH október 10. α csoport

Diszkrét matematika gyakorlat 1. ZH október 10. α csoport Diszkrét matematika gyakorlat 1. ZH 2016. október 10. α csoport 1. Feladat. (5 pont) Adja meg az α 1 β szorzatrelációt, amennyiben ahol A {1, 2, 3, 4}. α {(1, 2), (1, 3), (2, 1), (3, 1), (3, 4), (4, 4)}

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma. Vektorterek Több esetben találkozhattunk olyan struktúrával, ahol az összeadás és a (valós) számmal való szorzás értelmezett, pl. a szabadvektorok esetében, vagy a függvények körében, vagy a mátrixok esetében.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Operátorkiterjesztések Hilbert-téren

Operátorkiterjesztések Hilbert-téren Tarcsay Zsigmond Operátorkiterjesztések Hilbert-téren Szakdolgozat Témavezet : Sebestyén Zoltán egyetemi tanár Eötvös Loránd Tudományegyetem, Természettudományi Kar 2008 Tartalomjegyzék 1. Bevezetés 3

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk

Részletesebben

FRAKTÁLGEOMETRIA Feladatok. Czirbusz Sándor április 16. A feladatok végén zárójelben a feladat pontértéke található.

FRAKTÁLGEOMETRIA Feladatok. Czirbusz Sándor április 16. A feladatok végén zárójelben a feladat pontértéke található. FRAKTÁLGEOMETRIA Feladatok Czirbusz Sándor 010. április 16. I. rész Feladatok A feladatok végén zárójelben a feladat pontértéke található. 1. Példák fraktálokra 1.1. A Cantor - halmaz 1.1.1. Feladat. Igazoljuk,

Részletesebben

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén

Részletesebben

2010. október 12. Dr. Vincze Szilvia

2010. október 12. Dr. Vincze Szilvia 2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének

Részletesebben

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 3. Fuzzy aritmetika Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Intervallum-aritmetika 2 Fuzzy intervallumok és fuzzy számok Fuzzy intervallumok LR fuzzy intervallumok

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes 1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

1. feladatsor Komplex számok

1. feladatsor Komplex számok . feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4

Részletesebben

Banach-algebrákban. Darvas Tamás Babeş-Bolyai Tudományegyetem Matematika-informatika szak, II. év május 10.

Banach-algebrákban. Darvas Tamás Babeş-Bolyai Tudományegyetem Matematika-informatika szak, II. év május 10. Hatványsorok normált gyűrűkben és Banach-algebrákban Darvas Tamás Babeş-Bolyai Tudományegyetem Matematika-informatika szak, II. év 2006. május 10. Hatványsorok normált gyűrűkben és Banach-algebrákban 1

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

GPK M1 (BME) Interpoláció / 16

GPK M1 (BME) Interpoláció / 16 Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 11. előadás: A Newton-módszer és társai Lócsi Levente ELTE IK 2013. november 25. Tartalomjegyzék 1 A Newton-módszer és konvergenciatételei 2 Húrmódszer és szelőmódszer 3 Általánosítás

Részletesebben

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2

Részletesebben

harmadik, javított kiadás

harmadik, javított kiadás Lajkó Károly Analízis I. harmadik, javított kiadás Debreceni Egyetem Matematikai és Informatikai Intézet 00 1 c Lajkó Károly lajko @ math.klte.hu Amennyiben hibát talál a jegyzetben, kérjük jelezze a szerzőnek!

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

FELVÉTELI VIZSGA, július 17.

FELVÉTELI VIZSGA, július 17. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 2017. július 17. Írásbeli vizsga MATEMATIKÁBÓL I. TÉTEL (30 pont) 1) (10 pont) Igazoljuk, hogy tetszőleges m R esetén

Részletesebben

2. Fourier-elmélet Komplex trigonometrikus Fourier-sorok. 18 VEMIMAM244A előadásjegyzet, 2010/2011

2. Fourier-elmélet Komplex trigonometrikus Fourier-sorok. 18 VEMIMAM244A előadásjegyzet, 2010/2011 8 VEMIMAM44A előadásjegyzet, /. Fourier-elmélet.. Komplex trigonometrikus Fourier-sorok Tekintsük az [, ], C Hilbert-teret, ahol a skaláris szorzat definíciója f, g ftgt dt. Tekintsük a [, ] intervallumon

Részletesebben

Diszkrét Matematika II.

Diszkrét Matematika II. Bácsó Sándor Diszkrét Matematika II. mobidiák könyvtár Bácsó Sándor Diszkrét Matematika II. mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Bácsó Sándor Diszkrét Matematika II. egyetemi jegyzet mobidiák

Részletesebben

Lineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák

Lineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák Lineáris Algebra Pejó Balázs Tartalomjegyzék 1. Peano-axiomák 2 1.1. 1.................................................... 2 1.2. 2.................................................... 2 1.3. 3....................................................

Részletesebben

Funkcionálanalízis. egyetemi jegyzet június 16.

Funkcionálanalízis. egyetemi jegyzet június 16. Funkcionálanalízis egyetemi jegyzet 2014. június 16. i TARTALOMJEGYZÉK ii Tartalomjegyzék 1. Alap terek 1 1.1. Metrikus tér................................... 2 1.2. Normált tér...................................

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA

Részletesebben

Funkcionálanalízis. egyetemi jegyzet május 14.

Funkcionálanalízis. egyetemi jegyzet május 14. Funkcionálanalízis egyetemi jegyzet 2013. május 14. i TARTALOMJEGYZÉK ii Tartalomjegyzék 1. Alap terek 1 1.1. Metrikus tér................................... 2 1.2. Normált tér...................................

Részletesebben

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és

Részletesebben

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28 Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek

Részletesebben

Funkcionálanalízis. Gyakorló feladatok március 22. Metrikus tér, normált tér és skalárszorzat tér

Funkcionálanalízis. Gyakorló feladatok március 22. Metrikus tér, normált tér és skalárszorzat tér Funkcionálanalízis Gyakorló feladatok 2017 március 22 Metrikus tér, normált tér és skalárszorzat tér N1 Metrikát deniálnak-e R-en az alábbi függvények: (a) d(x, y) = x y (b) d(x, y) = x y (c) d(x, y) =

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Önadjungált és lényegében önadjungált operátorok

Önadjungált és lényegében önadjungált operátorok Molnár András Önadjungált és lényegében önadjungált operátorok Szakdolgozat Témavezet : Tarcsay Zsigmond adjunktus Eötvös Loránd Tudományegyetem, Természettudományi Kar 2016 Tartalomjegyzék 1. Bevezetés

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc

Részletesebben

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41 Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

konvergensek-e. Amennyiben igen, számítsa ki határértéküket!

konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,

Részletesebben

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35 Szinguláris értékek Wettl Ferenc 2016. április 12. Wettl Ferenc Szinguláris értékek 2016. április 12. 1 / 35 Tartalom 1 Szinguláris érték 2 Norma 3 Mátrixnorma 4 Alkalmazások Wettl Ferenc Szinguláris értékek

Részletesebben

Debreceni Egyetem Természettudományi Kar. Losonczi László. Funkcionálanalízis

Debreceni Egyetem Természettudományi Kar. Losonczi László. Funkcionálanalízis Debreceni Egyetem Természettudományi Kar 1 Losonczi László Funkcionálanalízis 2009 Tartalomjegyzék 0.1. El szó................................. 5 0.2. Jelölések................................ 6 0.3. Ábrák

Részletesebben

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1 numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú

Részletesebben

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk: 1. Halmazok, relációk, függvények 1.A. Halmazok A halmaz bizonyos jól meghatározott dolgok (tárgyak, fogalmak), a halmaz elemeinek az összessége. Azt, hogy az a elem hozzátartozik az A halmazhoz így jelöljük:

Részletesebben

Testek március 29.

Testek március 29. Testek 2014. március 29. 1. Alapfogalmak 2. Faktortest 3. Testbővítések 1. Alapfogalmak 2. Faktortest 3. Testbővítések [Sz] V/3, XIII/1,2; [F] III/1-7 (+ előismeretek!) Definíció Ha egy nemüres halmazon

Részletesebben

Sorozatok, sorozatok konvergenciája

Sorozatok, sorozatok konvergenciája Sorozatok, sorozatok konvergenciája Elméleti áttekintés Minden konvergens sorozat korlátos Minden monoton és korlátos sorozat konvergens Legyen a n ) n egy sorozat és ϕ : N N egy szigorúan növekvő függvény

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK

NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK Szerkesztette: Balogh Tamás 04. január 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el!

Részletesebben

Az általános (univerzális) algebra kialakulása,

Az általános (univerzális) algebra kialakulása, Néhány hasonló tétel. Az általános (univerzális) algebra kialakulása, néhány eredménye. Klukovits Lajos TTIK Bolyai Intézet 2013. május 8. A csoportelméleti homorfiatétel. Legyen G, H két csoport, ϕ: G

Részletesebben

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

ALKALMAZOTT ALGEBRA FELADATOK (2016 tavaszi félév)

ALKALMAZOTT ALGEBRA FELADATOK (2016 tavaszi félév) ALKALMAZOTT ALGEBRA FELADATOK (2016 tavaszi félév) Ismétlés 0. feladat O Adjunk meg olyan ϕ lineáris transzformációját a síknak, amelyre (a) ϕ-nek 1-dimenziós a képtere; (b) ϕ-nek nincsen sajátértéke;

Részletesebben

Matematika I. NÉV:... FELADATOK:

Matematika I. NÉV:... FELADATOK: 24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben