Konvex optimalizálás feladatok
|
|
- Kristóf Ágoston Dobos
- 9 évvel ezelőtt
- Látták:
Átírás
1 (1. gyakorlat, szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x függvény konvex (deníció szerint)! 3. Feladat. Legyen c 1, c 2 R és r R rögzített. Mutassuk meg, hogy a {(x, y) R 2 (x c 1 ) 2 + (y c 2 ) 2 r 2 } halmaz konvex! Általánosítsuk a problémát, és igazoljuk, hogy ha X normált tér, p X és r > 0 tetsz legesek, akkor B(p, r) cl := {x X x p r} konvex halmaz! 4. Feladat. Mutassuk meg, hogy a {(x, y) R 2 x > 0, y > 0, xy 1} halmaz konvex! Határozzuk meg a halmaz konvex burkát, kúp burkát, an burkát és lineáris burkát! 5. Feladat. Igazoljuk, hogy ha H konvex halmaz, akkor cone(h) is konvex! 6. Feladat. Vizsgáljuk meg a halmazt konvexitás szempontjából! {f C R ([0, 1]) f(0) = 0, f(1) = 1, f(1/2) 1/2}
2 (2. gyakorlat, szeptember 23.) 1. Feladat. Igazoljuk, hogy (1) az üres halmaz konvex; (2) ha X lineáris tér, és K(X) jelöli az X konvex részhalmazainak összességét, akkor K(X) konvex kúp; (3) ha X és Y lineáris tér és A X Y konvex, akkor π X (A) és π Y (A) is konvex. 2. Feladat. Mutassuk meg, hogy ha X lineáris tér, akkor bármely x 0,..., x n X elemek esetén teljesül! aff{x 0,..., x n } = x 0 + lin{x 1 x 0,..., x n x 0 } 3. Feladat. Legyen X topologikus vektortér, D X zárt, konvex halmaz. Mutassuk meg, hogy bármely x X esetén ( ) cl T x (K) := λ (K {x}) konvex kúp. (Segítség: rajzoljuk le el tte a halmazt; mi történik, ha x K?) λ>0 4. Feladat. Számoljuk ki a halmaz an burkát! {f C([0, 1]) f(0) = 0, f(1) = 1, f(1/2) 1/2} 5. Feladat. Legyen X lineáris tér, valamint f : X R adott függvény. Mutassuk meg, hogy (1) ha f konvex, akkor {f c} konvex halmaz minden c R számra; (2) f pontosan akkor kvázikonvex, ha {f c} konvex minden c R számra! 6. Feladat. Legyen X lineáris tér, D X pedig olyan, hogy 0 D. Mutassuk meg, hogy az f : X R, f(x) := inf{λ R + x λd} függvény pontosan akkor konvex a D halmazon, ha D konvex! 7. Feladat. Legyen X lineáris tér, D X és D := {(λx, λ) λ > 0, x D}. Mutassuk meg, hogy D pontosan akkor konvex, ha D konvex kúp! 8. Feladat. Legyen I R valódi intervallum. Igazoljuk, hogy egy f : I R függvény pontosan akkor konvex, ha epi(f) := {(x, y) I R f(x) y} konvex halmaz. (Az f függvény pontosan akkor alulról félig folytonos, ha epi(f) zárt halmaz.) 9. Feladat. Határozzuk meg a {(0, 0), (0, 1), (1, 0)} R 2 halmaz konvex burkát! Vizsgáljuk meg a halmazt konvexitás szempontjából! H := {(x, y) R 2 x, y 0, x + y 1} R 2
3 (3. gyakorlat, szeptember 30.) 1. Feladat. Tekintsük a H := {(x, y, z) R 3 x + y + z 1} halmazt (poliéder el állítás). a.) Mutassuk meg, hogy H konvex halmaz! b.) Adjuk meg a H halmaz politóp el állítását! c.) Adjuk meg a cone(h), aff(h) és lin(h) halmazokat! 2. Feladat. Mutassuk meg, hogy H := {f C R ([0, 1]) f(0) + f(1) = 0, f(1/2) 1} konvex halmaz, és adjuk meg cone(h) és lin(h) halmazokat! 3. Feladat. Mutassuk meg, hogy az f : X R függvény pontosan akkor an, ha f f(0) lineáris (X lineáris tér)! 4. Feladat. Legyen X metrikus tér a d metrikával, H X és deniáljuk az f H függvényt a következ módon: f H : X [0, + [, f H (x) := inf d(x, y). y H Mutassuk meg, hogy ha H konvex halmaz, akkor f H konvex függvény 5. Feladat. Legyen X normált tér, ezen kívül tartsuk meg a 4. Feladat összes jelölését! Mutassuk meg, hogy f H Lipschitz-tulajdonságot teljesít, következésképpen folytonos függvény! 6. Feladat. Igazoljuk, hogy egy {x 1,..., x k } R n vektorrendszer pontosan akkor an függ, ha az {x 1 x k,..., x k 1 x k } rendszer lineárisan függ! 7. Feladat. Legyen X lineáris tér és p : X [0, + [ tetsz leges norma X-en. Mutassuk meg, hogy az {(x, r) X [0, + [ p(x) r} halmaz konvex! (Gyengíthet k-e a p függvényre tett feltételek úgy, hogy ez az állítás érvényben maradjon?) Ha r > 0 rögzített, akkor mit lehet mondani az halmaz konvexitásáról? {(x, a) X R p(x) r, a R} 8. Feladat. Mutassuk meg, hogy ha X lineáris tér és f : X R lineáris függvény, akkor az {(x, f(x)) x X} halmaz an! 9. Feladat. Legyen X lineáris tér és D X konvex halmaz! Mutassuk meg, hogy konvex halmaz! A D := {x X létezik λ [0, 1] : λx D}
4 (4. gyakorlat, október 07.) Tétel. (Konvex halmazok szeparálása lineáris függvénnyel.) Legyen X topologikus vektortér, A, B X konvex halmazok, és tegyük fel, hogy int(a), B és A B =. Ekkor létezik ϕ : X R folytonos lineáris függvény, hogy sup ϕ(p) inf ϕ(p). p A p B 1. Feladat. Legyen A := {(x, y) R 2 y 0}, valamint B := {(x, y) R 2 x, y > 0, xy 1}. Adjuk meg az összes olyan ϕ : R 2 R (folytonos) lineáris függvényt, amely szeparálja a megadott halmazokat a fenti értelemben! 2. Feladat. Legyen A := (conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}) o, valamint B := {( 1 3, 1 3, 1 3)}. Adjuk meg az összes olyan ϕ : R 3 R (folytonos) lineáris függvényt, amely szeparálja a megadott halmazokat a fenti értelemben! 3. Feladat. Legyen A := conv{(1, 1, 1), (1, 2, 3), (2, 3, 1), (3, 1, 2)}, valamint B := {(2, 2, 2)}. Adjuk meg az összes olyan ϕ : R 3 R (folytonos) lineáris függvényt, amely szeparálja a megadott halmazokat a fenti értelemben!
5 (6. gyakorlat, november 04.) 1. Feladat. Legyen X lineáris tér, valamint A, B X nemüres halmazok. Igazoljuk, hogy ekkor (1) cor(a) cor(b) cor(a B), (2) cor(a) cor(b) = cor(a B), (3) ha A B, akkor cor(a) cor(b). Deníció. Legyen X lineáris tér, valamint D X konvex halmaz. Egy f : D R konvex függvény p D pontbeli szubgradiensén a f(p) := {ϕ : X R ϕ lineáris és ϕ(h) f (p, h) minden h X esetén}. halmazt értjük, ahol f 1 (p, h) := lim (f(p + th) f(p)). t 0+ t Azt mondjuk, hogy az f a p pontban szubdierenciálható, hogy f(p) nem az üres halmaz. Szubdierenciálási szabályok: (1) minden p D esetén (f + g)(p) = f(p) + g(p), (2) minden p D és λ > 0 esetén (λ f)(p) = λ f(p), (3) ha g := max{f 1,..., f n }, ahol f j : D R konvex függvény minden j-re, akkor ( ) g(p) = conv f j(p). f j(p)=g(p) 2. Feladat. (Házi feladat) Igazoljuk, hogy a szubgradiens mindig konvex halmaz! 3. Feladat. Mutassuk meg, hogy az alábbi függvények konvexek, de nem szubdierenciálhatók az x 0 = 0 pontban: (1) legyen f(0) := 1, és f(x) := 0, ha x > 0; (2) legyen f(x) := x, ha x Feladat. Adjuk meg az f : R R, f(x) := x függvény szubgradiensét minden p R pontban! Ábrázoljuk a szubgradiens elemeinek meredekségét a p pont függvényében! Igaz-e, hogy a dierenciálható függvények osztálya zárt a maximumképzésre nézve? 5. Feladat. Adjuk meg az f : R R, f(x) := x χ {y 0} (x) + x 2 χ {y>0} (x) függvény szubgradiensét minden p R pontban! Ábrázoljuk a p f(p) halmazérték leképezés értékkészletét!
6 (7. gyakorlat, november 11.) Ha g : R R, g(x) := max{f 1 (x),..., f n (x)} (n 2), akkor g (p, h) = max{f j(p, h) f j (p) = g(p)}, ( ) g(p) = conv f j(p). f j(p)=g(p) minden p D g és h R \ {0} esetén. 1. Feladat. Írjuk fel az f : R R, f(x) := max{0, x 2 1} függvény szubgradiensét tetsz leges p R pontban, majd ábrázoljuk a p f(p) leképezés értékkészletét. 2. Feladat. Adjuk meg az f : R R, f(x) := max{2x + 1, 3 4x} függvény szubgradiensét tetsz leges p R pontban. Ábrázoljuk a p f(p) halmazérték leképezés értékkészletét. 3. Feladat. Legyen x 0 R és 0 < t < 1 rögzített. Határozzuk meg az függvény szubgradiensét minden p R pontban. f : R R, f(x) := t(x 0 x) + + (1 t)(x 0 x) 4. Feladat. Határozzuk meg az f : R 3 R, f(x, y, z) := max{0, x + y + z}, g : R 2 R, g(x, y) := max{ (x, y) 2, x + 3y} függvények szubgradiensét minden értelmezési tartománybeli pontban.
7 (9. gyakorlat, november 25.) 1. Tétel. (KarushKuhnTucker) Legyen X lineáris tér, D X konvex halmaz, továbbá f 0, f 1,..., f n : D R konvex függvények és H := {x D f 1 (x) 0,..., f n (x) 0}. Tegyük fel, hogy f 0 -nak a p cor(d) pontban minimumhelye van, azaz f 0 (p) f 0 (x), ha x H. Ekkor léteznek olyan λ 0, λ 1,..., λ n 0 valós számok, hogy (1) λ λ n = 1, (2) 0 λ 0 f 0 (p) + + λ n f n (p), és (3) λ j f j (p) = 0, ha j = 1,..., n. Másfel l, ha (1) és (2) teljesül egy olyan λ 0, λ 1,..., λ n 0, λ λ n = 1 konvex kombinációs rendszerrel, ahol λ 0 > 0, akkor f 0 -nak minimumhelye van a p pontban a fenti H halmazon. 1. Feladat. Keressük meg az f : R 2 R, f(x, y) := x függvény minimumhelyeit az x y 1 és x 2 + y 2 1 feltételek mellett, tehát ha H = {(x, y) R 2 f 1 (x, y) := x y 1 0, f 2 (x, y) := x 2 + y 2 1 0}. 2. Feladat. Legyen A := {(x, y) R 2 x < 1} és B := {(x, y) R 2 y x}. Adjuk meg azon (a, b) R 2 párokat, amelyre sup (ax + by) inf (ax + by). (x,y) A (x,y) B 3. Feladat. Minimalizáljuk az f : R 2 R, f(x, y) := x + 3y függvényt az x + 2 y és x 2 2 y 2 feltételek mellett.
8 1. zárthelyi dolgozat Konvex optimalizálás, október 28. Összesen 25 pont szerezhet. Az értékelés független a feladatok megoldásának sorrendjét l. 1. Feladat. Legyenek n, m N tetsz legesen rögzített természetes számok, H D R n R m konvex, nemüres halmaz, továbbá f : H D R konvex, alulról korlátos függvény. Mutassa meg, hogy a g : H R, g(x) := inf{f(x, y) y D}. függvény konvex! (A függvény alulról való korlátossága azért kell, hogy g deníciója értelmes legyen!) 2. Feladat. Igazolja, hogy a H := {f C R ([0, 1]) 3f(1) + f(0) = 0, f(1/3) 2} halmaz konvex! Határozza meg a cone(h) és lin(h) burkokat! 3. Feladat. Tekintsük az A := conv{(0, 0, 0), (1, 2, 0), (0, 1, 2), (2, 0, 1)} és B := {(1, 1, 1)} halmazokat R 3 -ban. a.) Határozza meg az A halmaz poliéder el állítását! b.) Adja meg az összes olyan ϕ : R 3 R folytonos lineáris függvényt, melyekre teljesül! sup ϕ(x, y, z) inf ϕ(x, y, z) (x,y,z) A (x,y,z) B (5+5 pont) 4. Feladat. Legyen X lineáris tér és D X konvex halmaz! Mutassa meg, hogy ekkor az halmaz is konvex! A D := {x X létezik λ ]0, 1] : λx D}
9 2. zárthelyi dolgozat 1 Konvex optimalizálás, december 16. Összesen 25 pont szerezhet. Az értékelés független a feladatok megoldásának sorrendjét l. 1. Feladat. Optimalizálja az f : R 2 R, f(x, y) := 3x + 2y függvényt az y 2 3 (x 1) 2 és y 1 x feltételek mellett! (10 pont) 2. Feladat. Számolja ki deníció alapján a g : R R, g(x) := 2x χ R (x)+x 3 χ R+ {0}(x) függvény iránymenti deriváltját és szubgradiensét minden értelmezési tartománybeli pontban! 3. Feladat. Határozza meg a. 2 : R 2 R + {0}, (x, y) 2 := x 2 + y 2 függvény iránymenti deriváltját és szubgradiensét minden (p, q) R 2 pontban! 4. Feladat. Igazolja, hogy a k : [ 1, + [ R, k(x) := x + 1 függvény konvex! Szubdierenciálható-e k a p 0 = 1, illetve q 0 = 2 pontokban? (A függvény konvexitásának igazolásához bármilyen, arra alkalmas módszer felhasználható!) Szorgalmi feladatok 1. Feladat. Legyen X lineáris tér, A X nemüres konvex halmaz. Mutassa meg, hogy bármely x 0 core(a), y A és 0 < λ 1 esetén λx 0 + (1 λ)y core(a). (1 pont) 2. Feladat. Legyen X lineáris tér. Mutassa meg, hogy ha A X nemüres konvex halmaz, akkor core(a) = core(core(a)) Mely irányú tartalmazás marad érvényben, ha az A halmazról nem tesszük fel, hogy konvex? (1 pont) 3. Feladat. Ábrázolja a második feladatban szerepl g függvény esetén a p g(p) halmazérték leképezés értékkészletét! (1 pont) (1 pont) 1 Jelölések: R := {u R u < 0}, R + := {u R u > 0}, illetve ha A R, akkor χ A (x) = 1, ha x A és χ A (x) = 0, ha x R \ A. (Azaz χ A jelöli az A halmaz karakterisztikus függvényét.)
1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
RészletesebbenBoros Zoltán február
Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n
RészletesebbenOptimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges
RészletesebbenFeladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
RészletesebbenMetrikus terek, többváltozós függvények
Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész
RészletesebbenFunkcionálanalízis. Gyakorló feladatok március 22. Metrikus tér, normált tér és skalárszorzat tér
Funkcionálanalízis Gyakorló feladatok 2017 március 22 Metrikus tér, normált tér és skalárszorzat tér N1 Metrikát deniálnak-e R-en az alábbi függvények: (a) d(x, y) = x y (b) d(x, y) = x y (c) d(x, y) =
RészletesebbenA fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Részletesebben1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
RészletesebbenFunkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
Részletesebben1. Parciális függvény, parciális derivált (ismétlés)
Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt
RészletesebbenHALMAZELMÉLET feladatsor 1.
HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,
RészletesebbenAlapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka
Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza
RészletesebbenSorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
RészletesebbenA lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris
RészletesebbenDierenciálhányados, derivált
9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez
RészletesebbenMatematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
RészletesebbenVIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
RészletesebbenMatematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN Készült a TÁMOP-4.1.-08//a/KMR-009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék
RészletesebbenDierenciálhatóság. Wettl Ferenc el adása alapján és
205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási
RészletesebbenSzemidenit optimalizálás és az S-lemma
Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium 2011. október 6. Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok
RészletesebbenValós függvények tulajdonságai és határérték-számítása
EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye
RészletesebbenNemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
RészletesebbenANALÍZIS III. ELMÉLETI KÉRDÉSEK
ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
RészletesebbenKalkulus 2., Matematika BSc 1. Házi feladat
. Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben
RészletesebbenFraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
RészletesebbenMatematika A1. 9. feladatsor. A derivált alkalmazásai. Függvény széls értékei
Matematika A1 9. feladatsor A derivált alkalmazásai Függvény széls értékei 1. Keressük meg a függvények abszolút maximumát és minimumát a megadott intervallumon. Ezután rajzoljuk fel a függvény grakonját.
RészletesebbenANALÍZIS III. ELMÉLETI KÉRDÉSEK
ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
RészletesebbenDiMat II Végtelen halmazok
DiMat II Végtelen halmazok Czirbusz Sándor 2014. február 16. 1. fejezet A kiválasztási axióma. Ismétlés. 1. Deníció (Kiválasztási függvény) Legyen {X i, i I} nemüres halmazok egy indexelt családja. Egy
RészletesebbenEgyváltozós függvények 1.
Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata
Részletesebben0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
RészletesebbenMATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
RészletesebbenNemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással
pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál
Részletesebben2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
Részletesebben2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése
2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )
Részletesebbenvalós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
RészletesebbenFÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI
FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI FÜGGVÉNY: Adott két halmaz, H és K. Ha a H halmaz minden egyes eleméhez egyértelműen hozzárendeljük a K halmaznak egy-egy elemét, akkor a hozzárendelést
RészletesebbenMegoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
RészletesebbenGazdasági Matematika I. Megoldások
. (4.feladatlap/2) Gazdasági Matematika I. Di erenciálszámítás alkalmazásai Megoldások a) Határozza meg az f(x) x 6x 2 + függvény x 2 helyen vett érint½ojének az egyenletét. El½oször meghatározzuk a pont
RészletesebbenParciális dierenciálegyenletek
Parciális dierenciálegyenletek 2009. május 25. A félév lezárásaként néhány alap-deníciót és alap-példát szeretnék adni a Parciális Dierenciálegynletek (PDE) témaköréb l. Épp csak egy kis izelít t. Az alapfeladatok
RészletesebbenUtolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20
Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális
RészletesebbenA Matematika I. előadás részletes tematikája
A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok
RészletesebbenA valós számok halmaza
VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben
RészletesebbenVektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
RészletesebbenKétváltozós függvények differenciálszámítása
Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt
RészletesebbenMatematika I. NÉV:... FELADATOK:
24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n
RészletesebbenFirst Prev Next Last Go Back Full Screen Close Quit
Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy
Részletesebben9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban
9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x
RészletesebbenA matematika nyelvér l bevezetés
A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások
RészletesebbenDiszkrét matematika 1. középszint
Diszkrét matematika 1. középszint 2017. sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenExponenciális, logaritmikus függvények
Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)
RészletesebbenMM CSOPORTELMÉLET GYAKORLAT ( )
MM4122-1 CSOPORTELMÉLET GYAKORLAT (2008.12.01.) 1. Ismétlés szeptember 1.szeptember 8. 1.1. Feladat. Döntse el, hogy az alábbi állítások közül melyek igazak és melyek (1) Az A 6 csoportnak van 6-odrend
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
RészletesebbenLineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
RészletesebbenRelációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor
RészletesebbenVEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok
VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenTöbbváltozós függvények Feladatok
Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk
RészletesebbenA következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.
Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ
Részletesebben2012. október 2 és 4. Dr. Vincze Szilvia
2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex
RészletesebbenRE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy
RészletesebbenKalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév
Klkulus II. Beugró kérdések és válszok 2012/2013 s tnév II. félév 1. Legyen ], b[ R nemüres, nyílt intervllum, f :], b[ R függvény. Hogyn vn értelmezve z f függvény primitív függvénye? Válsz. Legyen ],
RészletesebbenMatematika III előadás
Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők
Részletesebbenf(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
RészletesebbenMatematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl
RészletesebbenFeladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados
RészletesebbenA L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
RészletesebbenA derivált alkalmazásai
A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls
Részletesebben2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.
. Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján
RészletesebbenMindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
Részletesebben3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
Részletesebben1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:
1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre
Részletesebben9. feladatsor: Többváltozós függvények deriválása (megoldás)
Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz feladatsor: Többváltozós függvények deriválása (megoldás) 1 Számoljuk ki a következő függvények parciális deriváltjait
RészletesebbenMatematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
RészletesebbenA legjobb közeĺıtés itt most azt jelentette, hogy a lineáris
Többváltozós függvények differenciálhatósága f(x) f(x Az egyváltozós függvények differenciálhatóságát a lim 0 ) x x0 x x 0 függvényhatárértékkel definiáltuk, s szemléletes jelentése abban mutatkozott meg,
RészletesebbenSorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész
Részletesebben2014. november Dr. Vincze Szilvia
24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata
RészletesebbenMatematika 8. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály III. rész: Függvények Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék III. rész:
Részletesebbenfüggvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
RészletesebbenMatematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.
RészletesebbenAz R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
Részletesebben4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre
4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre Az értékelő függvény létezése (folytatás) p. 1/8 4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre
RészletesebbenAbszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
RészletesebbenDifferenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1
Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya
RészletesebbenMátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22
Mátrixfüggvények Wettl Ferenc 2016. április 28. Wettl Ferenc Mátrixfüggvények 2016. április 28. 1 / 22 Tartalom 1 Diagonalizálható mátrixok függvényei 2 Mátrixfüggvény a Jordan-alakból 3 Mátrixfüggvény
RészletesebbenAnalízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
RészletesebbenMatematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
RészletesebbenA tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat
A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és
RészletesebbenDescartes-féle, derékszögű koordináta-rendszer
Descartes-féle, derékszögű koordináta-rendszer A derékszögű koordináta-rendszerben a sík minden pontjához egy rendezett valós számpár rendelhető. A számpár első tagja (abszcissza) a pont y tengelytől mért
RészletesebbenAnalízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport
Analízis I. zárthelyi dolgozat javítókulcs, Informatika I. 2012. okt. 19. Elméleti kérdések A csoport 1. Hogyan számíthatjuk ki két trigonometrikus alakban megadott komplex szám szorzatát más alakba való
RészletesebbenFüggvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:
Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független
Részletesebben1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények
1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási
RészletesebbenAnalízis. 1. fejezet Normált-, Banach- és Hilbert-terek. 1. Definíció. (K n,, ) vektortér, ha X, Y, Z K n és a, b K esetén
1. fejezet Analízis 1.1. Normált-, Banach- és Hilbert-terek. Zártés teljes ortonormált rendszer. Fourier-sor. Riesz-Fischer tétel Hilbert-térben. Szeparábilis Hilbert terek izomorfiája. 1.1.1. Normált-,
Részletesebbenf(x) a (x x 0 )-t használjuk.
5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
RészletesebbenLineáris algebra gyakorlat
Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)
RészletesebbenMatematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.
Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)
RészletesebbenMatematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. Biró Zsolt. 1. Célkit zések Általános követelmények 1
Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 2 4. Oktatási módszer 2 5. Követelmények, pótlások 2 6. Tematika 2 6.1. Alapfogalmak, matematikai
RészletesebbenHozzárendelés, lineáris függvény
Hozzárendelés, lineáris függvény Feladat 1 A ménesben a lovak száma és a lábaik száma közötti összefüggést vizsgáljuk. Hány lába van 0; 1; 2; 3; 5; 7... lónak? Készíts értéktáblázatot, és ábrázold derékszögű
Részletesebben