Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20"

Átírás

1 Utolsó el adás Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

2 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális dierenciálegyenletek Wettl Ferenc (BME) Utolsó el adás / 20

3 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális dierenciálegyenletek Wettl Ferenc (BME) Utolsó el adás / 20

4 K.É.P. Deníció (Explicit diegyenlethez tartozó kezdetiérték-probléma) Legyen f (n + 1)-változós valós függvény, P = (ξ, η 0, η 1,..., η n 1) az értelmezési tartományának egy pontja. Az y (n) = f (x, y, y,..., y (n 1) ) explicit diegyenlethez és a P ponthoz tartozó kezdetiérték-problémán olyan y függvény meghatározását értjük, mely (1) kielégíti a diegyenletet és (2) kielégíti az y(ξ) = η 0, y (ξ) = η 1,..., y (n 1) (ξ) = η n 1 kezdeti feltételeket. Wettl Ferenc (BME) Utolsó el adás / 20

5 Explicit diegyenlet megoldhatósága Tétel (CauchyPeano-féle egzisztenciatétel) Az y (n) = f (x, y, y,..., y (n 1) ) explicit diegyenlethez és a P = (ξ, η 0, η 1,..., η n 1) ponthoz tartozó kezdetiérték-probléma megoldható, ha az f (x, y 0, y 1,..., y n 1) függvény folytonos egy olyan R n+1 -beli tartományon, melynek P bels pontja! Wettl Ferenc (BME) Utolsó el adás / 20

6 Explicit diegyenlet megoldhatósága 2. Példa A következ kezdetiérték-probléma megoldható: y = 2 sin(y y 3 sin x + cos y ) y, y(0) = 1, y (0) = 5, y (0) = 3, 1 + y 2 mivel a P = (0, 1, 5, 3) pont egy környezetében folytonos az függvény. f : R 4 R; (x, y 0, y 1, y 2 ) 2 sin(y 1 y 2 ) y 3 0 sin x + cos y y 2 1 Wettl Ferenc (BME) Utolsó el adás / 20

7 Explicit diegyenlet egyértelm megoldhatósága Tétel (PicardLindelöf-féle unicitástétel) Az y (n) = f (x, y, y,..., y (n 1) ) explicit diegyenlethez és a P = (ξ, η 0, η 1,..., η n 1) ponthoz tartozó kezdetiérték-probléma egyértelm en megoldható, ha 1 f folytonos egy olyan R n+1 -beli tartományon, melynek P bels pontja (ez eddig a CP-tétel), és 2 f második változójától kezdve mindegyik változója szerint parciálisan diható, és a derivált korlátos. E tétel második feltételét egy kicsit er sebb alakban szokás kimondani, melyet Lipschitz-feltételnek hívnak. E feltétel azt biztosítja, hogy a lehetséges megoldások terében legyen egy összehúzás, melynek mindig egyetlen xpontja van, ami itt épp a megoldást adja. Wettl Ferenc (BME) Utolsó el adás / 20

8 Explicit diegyenlet egyértelm megoldhatósága 2. Példa Az y = xy 2 + sin(y ), y(0) = 0, y (0) = 1 k.é.p. egyértelm en megoldható, mert 1 az f (x, y 0, y 1 ) = xy sin(y 1) függvény folytonos az R 3 minden pontjában, így a P = (0, 0, 1) pont egy környezetében is, 2 és a f f = 2xy 0, = cos y 1 függvények korlátosak a P pont y 0 y 1 bármely korlátos környezetében. Wettl Ferenc (BME) Utolsó el adás / 20

9 Sorozatos közelítés (szukcesszív approximáció) Tétel Az y = f (x, y), y(ξ) = η 0 dierenciálegyenlet ekvivalens az x y(x) = η 0 + f (t, y(t)) dt ξ egyenlettel. Bizonyítás. ( ) y (x) = f (x, y(x)) y = x ξ f (t, y(t)) dt + C, de y(ξ) = η 0 miatt C = η 0. ( ) y(x) = η 0 + x ξ f (t, y(t)) dt (változó fels határú integrál deriváltjára vonatkozó tétel) y = f (x, y); másrészt x = ξ helyen az integrál 0 y(ξ) = η 0. Wettl Ferenc (BME) Utolsó el adás / 20

10 Sorozatos közelítés (szukcesszív approximáció) 2. Tegyük fel, hogy f eleget tesz a PicardLindelöf-tétel két feltételének. Ekkor az y(x) η 0 + x ξ f (t, y(t)) dt leképezés összehúzás a függvények terén, és ekkor az y 0 = η 0, y k+1(x) = η 0 + x ξ f (t, y k (t)) dt rekurzív függvénysorozat a xponthoz konvergál, mely a megoldással megegyezik. Wettl Ferenc (BME) Utolsó el adás / 20

11 Sorozatos közelítés (szukcesszív approximáció) 3. Példa Oldjuk meg az y = x + y, y(0) = 1 k.é.p.-t fokozatos közelítéssel, vagy legalább adjunk a megoldásra egy közelítést. Megoldás: y (x) = y(x) + x, y(0) = 1, az összehúzás xpontját megadó sorozat: y 0 = 1, x x y k+1(x) = η 0 + f (t, y k (t)) dt = 1 + y k (t) + t dt. 0 ξ A sorozat: y 1 = 1 + x t dt = 1 + [ t t2] x 0 = 1 + x x 2 y 2 = 1 + x 0 (1 + t t2 ) + t dt = 1 + x + x ! x 3 y 3 = 1 + x 0 (1 + t + t ! t3 ) + t dt = 1 + x + x x ! x 4 E sorozat az y(x) = 2e x x 1 Maclaurin-sorához tart, ami a megoldása e diegyenletnek. Wettl Ferenc (BME) Utolsó el adás / 20

12 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális dierenciálegyenletek Wettl Ferenc (BME) Utolsó el adás / 20

13 Parciális diegyenletek Deníció (Parciális dierenciálegyenlet) Egy egyenletet parciális dierenciálegyenletnek nevezünk, ha az ismeretlen függvény többváltozós, és az egyenletben a parciális deriváltjai, valamint az adott változók egyéb függvényei szerepelnek. Az egyenlet n-edrend, ha a legmagasabb parciális derivált rendje n. Deníció (Másodrend parciális diegyenlet) Az x, y változóktól függ u függvényre felírt másodrend parciális diegyenlet általános alakja: F (x, y, u, u x, u y, u xx, u xy, u yx, u yy ) = 0. Wettl Ferenc (BME) Utolsó el adás / 20

14 Másodrend parciális diegyenletek osztályozása Deníció (Másodrend homogén lineáris parciális diegyenlet) Az x, y változóktól függ u függvényre felírt másodrend homogén lineáris parciális diegyenlet általános alakja: au xx + 2bu xy + cu yy + du x + eu y + fu = 0, ahol a, b, c, d, e, f az x és y változók függvényei, u-ról feltételezzük, hogy parciális deriváltjai folytonosak. Azt mondjuk, hogy a parc. de. hiperbolikus, ha ac b 2 < 0 (pl. rezg húr diegyenlete) parabolikus, ha ac b 2 = 0 (pl. h vezetés diegyenlete) elliptikus, ha ac b 2 > 0 Wettl Ferenc (BME) Utolsó el adás / 20

15 A rezg húr diegyenlete (Részletesen lásd a régi Feladatgy jtemény III feladatait.) Tegyük az l hosszúságú tökéletesen rugalmas húrt, x-tengely [0, l] szakaszára. A húr minden pontja az x-tengelyre mer legesen mozog, pontjai helyzetét a t pillanatban az y(x, t) függvény írja le. A zikai levezetésb l az adódik, hogy a húr mozgását megadó u függvény kielégíti az y tt a 2 y xx = 0, egyenletet. Ha a húr két vége rögzítve van, akkor fönnállnak a következ peremfeltételek: y(0, t) = 0, y(l, t) = 0. A kezdeti feltételek: y(x, 0) = f (x) (a húr kezdeti helyzete), és y t (x, 0) = g(x) (a húr kezd sebessége). Wettl Ferenc (BME) Utolsó el adás / 20

16 A rezg húr diegyenlete 2: keressük a megoldást... Keressük a megoldást y(x, t) = X (x)t (t) alakban: y tt (x, t) = X (x)t (t), y xx (x, t) = X (x)t (t) X (x)t (t) = a 2 X (x)t (t) 1 T (t) a 2 T (t) = X (x) X (x) = λ hisz a bal oldal t-t l, a jobb x-t l függ, így mindkett csak konstans lehet. Ha λ = 0, akkor T = 0 és X = 0 diegyenletek megoldásaiból X = Ax + B, T = Ct + D, azaz u(x, t) = (Ax + B)(Ct + D). Ez ellentmond a peremfeltételünknek. Ha λ = k 2 > 0, akkor T a 2 k 2 T = 0 és X k 2 X = 0 diegyenletek megoldásai X (x) = Ae kx + Be kx, T (t) = Ce akt + De akt, azaz y(x, t) = (Ae kx + Be kx )(Ce akt + De akt ). Peremfeltételünknek ez is ellentmond. Wettl Ferenc (BME) Utolsó el adás / 20

17 A rezg húr diegyenlete 3 Ha λ = k 2 < 0, akkor T + a 2 k 2 T = 0 és X + k 2 X = 0 diegyenletek megoldásai X (x) = A cos kx + B sin kx, T (t) = C cos akt + D sin akt, azaz y(x, t) = (A cos kx + B sin kx)(c cos akt + D sin akt). Wettl Ferenc (BME) Utolsó el adás / 20

18 A rezg húr diegyenlete 4: a peremfeltételek 0 = y(0, t) = A(C cos akt + D sin akt) feltételb l A = 0. 0 = y(l, t) = B sin kl(c cos akt + D sin akt) feltételb l B 0 miatt sin kl = 0 kl = nπ k = nπ l ( y n (x, t) = a n cos nπat + b n sin nπat ) sin nπx l l l tehát y(x, t) = n=1 ( a n cos nπat l + b n sin nπat ) sin nπx l l feltéve, hogy a sor konvergens az x [0, l], t [0, ) tartományon. Wettl Ferenc (BME) Utolsó el adás / 20

19 A rezg húr diegyenlete 5: a kezdeti feltételek y(x, 0) = f (x) y(x, 0) = n=1 a n sin nπx l = f (x) azaz a n az f -b l képzett 2l szerint periodikus páratlan függvény Fourier-együtthatója. y t(x, t) = n=1 ( nπa a n sin nπat nπa + b n l l l amib l y t(x, 0) = g(x) y t(x, 0) = n=1 nπab n l cos nπat ) sin nπx l l sin nπx l így g-b l képzett 2l szerint periodikus páratlan függvény Fourier-együtthatójából megkapható. = g(x), Wettl Ferenc (BME) Utolsó el adás / 20

20 A rezg húr diegyenlete 6: a megoldás ahol y(x, t) = n=1 ( a n cos nπat l + b n sin nπat ) sin nπx l l a n = 2 l l 0 f (x) sin nπx l dx, b n = 2 nπa l 0 g(x) sin nπx l dx Wettl Ferenc (BME) Utolsó el adás / 20

Parciális dierenciálegyenletek

Parciális dierenciálegyenletek Parciális dierenciálegyenletek 2009. május 25. A félév lezárásaként néhány alap-deníciót és alap-példát szeretnék adni a Parciális Dierenciálegynletek (PDE) témaköréb l. Épp csak egy kis izelít t. Az alapfeladatok

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0, Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ

Részletesebben

(!), {z C z z 0 < R} K (K: konv. tart.) lim cn+1

(!), {z C z z 0 < R} K (K: konv. tart.) lim cn+1 Komlex analízis Komlex hatványsorok c n (z z 0 ) n ; R = lim n c n, R = (!), {z C z z 0 < R} K (K: konv. tart.) lim cn+ c n n=0. Van-e olyan komlex hatványsor, melynek a) üres a konvergenciatartománya,

Részletesebben

Matematika mérnököknek 2. Ismétlés Numerikus dierenciálás Diegyenletek Fourier Matlab Projekt Desc Linkek

Matematika mérnököknek 2. Ismétlés Numerikus dierenciálás Diegyenletek Fourier Matlab Projekt Desc Linkek Matematika mérnököknek 2 Ismétlés Numerikus dierenciálás Diegyenletek Fourier Matlab Projekt Desc Linkek 1 Ismétlés Di-számítás Határozatlan integrál Matematika mérnököknek 2 2 Di-számítás Desc Summa Fa

Részletesebben

Segédanyag az A3 tárgy gyakorlatához

Segédanyag az A3 tárgy gyakorlatához Segédanyag az A3 tárgy gyakorlatához Sáfár Orsolya Szeparábilis dierenciálegyenletek A megoldásról általában: A szeparábilis dierenciálegyenlet álatlános alakja: y (x) = f(x)g(y). Ebben az esetben g(y)-al

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése 2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz 6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) 1. Írjunk fel egy olyan legalacsonyabbrendű valós,

Részletesebben

Differenciálegyenletek. Vajda István március 4.

Differenciálegyenletek. Vajda István március 4. Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

Differenciálegyenletek december 13.

Differenciálegyenletek december 13. Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Boros Zoltán február

Boros Zoltán február Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n

Részletesebben

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j) Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények

Részletesebben

Matematika I. NÉV:... FELADATOK:

Matematika I. NÉV:... FELADATOK: 24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. 1.-2. Gyakorlat 1 / 42 Numerikus differenciálás

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Differenciálegyenletek numerikus megoldása

Differenciálegyenletek numerikus megoldása a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens

Részletesebben

(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e

(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e Az. gyakorlat HF-inak megoldása. Deriváljuk az alábbi függvényeket. sin x cos x = cos x sin x, x ln x = x / ln x + x x x, x x = x / = x/ = = e x cos x+e x sin x e x cos x cos x, x sin x ln x = + x x, x

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon. 215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Részletesebben

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

A derivált alkalmazásai

A derivált alkalmazásai A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls

Részletesebben

Dierenciálhatóság. Wettl Ferenc el adása alapján és

Dierenciálhatóság. Wettl Ferenc el adása alapján és 205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási

Részletesebben

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Tizenegyedi gyaorlat: Parciális dierenciálegyenlete Dierenciálegyenlete, Földtudomány és Környezettan BSc A parciális dierenciálegyenlete elmélete még a özönséges egyenleteénél is jóval tágabb, így a félévben

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Modellek és Algoritmusok - 2.ZH Elmélet

Modellek és Algoritmusok - 2.ZH Elmélet Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)

Részletesebben

Matematika A3 1. ZH+megoldás

Matematika A3 1. ZH+megoldás Matematika A3 1. ZH+megoldás 2008. október 17. 1. Feladat Egy 10 literes kezdetben tiszta vizet tartalmazó tartályba 2 l/min sebesséeggel 0.3 kg/l sótartalmú víz Áramlik be, amely elkeveredik a benne lévő

Részletesebben

3. el adás: Determinánsok

3. el adás: Determinánsok 3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns

Részletesebben

4. Laplace transzformáció és alkalmazása

4. Laplace transzformáció és alkalmazása 4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika Aa Analízis BMETE90AX00 Az exp és ln függvények H607, EIC 209-04-24 Wettl

Részletesebben

ANALÍZIS II. Példatár

ANALÍZIS II. Példatár ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3

Részletesebben

5. fejezet. Differenciálegyenletek

5. fejezet. Differenciálegyenletek 5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y

Részletesebben

Kalkulus 2., Matematika BSc 1. Házi feladat

Kalkulus 2., Matematika BSc 1. Házi feladat . Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben

Részletesebben

Végeselem modellezés alapjai 1. óra

Végeselem modellezés alapjai 1. óra Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

7. feladatsor: Laplace-transzformáció (megoldás)

7. feladatsor: Laplace-transzformáció (megoldás) Matematika Ac gyakorlat Vegyésmérnöki, Biomérnöki, Környeetmérnöki sakok, 017/18 ős 7. feladatsor: Laplace-transformáció (megoldás) 1. A definíció alapján sámoljuk ki a követkeő függvények Laplace-transformáltját.

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Differencia- és differenciálegy.-rsz. H607 2017-04-05

Részletesebben

Samu Viktória. A Helmholtz-egyenlet

Samu Viktória. A Helmholtz-egyenlet Eötvös Loránd Tudományegyetem Természettudományi Kar Samu Viktória A Helmholtz-egyenlet BSc Szakdolgozat Témavezet : Dr. Tóth Árpád Analízis Tanszék Budapest, 2014 Köszönetnyilvánítás Szeretném megköszönni

Részletesebben

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx

Részletesebben

Differenciálegyenletek

Differenciálegyenletek Differenciálegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, I. félév Losonczi László (DE) Differenciálegyenletek 2011/12 tanév, I. félév 1 /

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

Differenciálegyenletek gyakorlat december 5.

Differenciálegyenletek gyakorlat december 5. Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Segédlet az A végeselem módszer alapjai tárgy 4. laborgyakorlatához http://www.mm.bme.hu/~kossa/vemalap4.pdf Kossa Attila (kossa@mm.bme.hu)

Részletesebben

1. feladatsor, megoldások. y y = 0. y h = C e x

1. feladatsor, megoldások. y y = 0. y h = C e x 1. feladatsor, megoldások 1. Ez egy elsőrendű diffegyenlet, először a homogén egyenlet megoldását keressük meg, majd partikuláris megoldást keresünk: y y = 0 Ez pl. egy szétválasztható egyenlet, melynek

Részletesebben

Példatár Lineáris algebra és többváltozós függvények

Példatár Lineáris algebra és többváltozós függvények Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................

Részletesebben

Differenciálegyenletek gyakorlat Földtudomány szak III/1 Mincsovics Miklós Emil

Differenciálegyenletek gyakorlat Földtudomány szak III/1 Mincsovics Miklós Emil Differenciálegyenletek gyakorlat Földtudomány szak III/1 Mincsovics Miklós Emil Kurics Tamás, Simon Péter, Csomós Petra, Havasi Ági, Izsák Feri, Karátson János feladatsorainak felhasználásával készült.

Részletesebben

Kétváltozós függvények differenciálszámítása

Kétváltozós függvények differenciálszámítása Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt

Részletesebben

1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek

1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek 7 Elsőrendű lineáris differenciálegyenlet-rendszerek Legyen n N, I R intervallum és A: I M n n (R), B: I R n folytonos függvények, és tekintsük az { y (x) = A(x)y(x) + B(x) y(ξ) = η kezdeti érték problémát,

Részletesebben

Analízis III. gyakorlat október

Analízis III. gyakorlat október Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer

Részletesebben

Differenciálegyenletek

Differenciálegyenletek a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek Példák differenciálegyenletekre Newton második törvénye Egy tömegpont gyorsulása egyenesen arányos a rá ható erővel és fordítottan arányos

Részletesebben

Egyenes és sík. Wettl Ferenc Wettl Ferenc () Egyenes és sík / 16

Egyenes és sík. Wettl Ferenc Wettl Ferenc () Egyenes és sík / 16 Egyenes és sík Wettl Ferenc 2012-09-20 Wettl Ferenc () Egyenes és sík 2012-09-20 1 / 16 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont távolsága 2 Sík Sík

Részletesebben

Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz

Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz Halmazok 1. Feladat. Adott négy halmaz: az alaphalmaz, melynek részhalmazai az A, a B és a C halmaz: U {1, 2,,..., 20}, az A elemei a páros számok, a B elemei a hárommal oszthatók, a C halmaz elemei pedig

Részletesebben

Egyváltozós függvények 1.

Egyváltozós függvények 1. Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

1. Fuggveny ertekek. a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I. x = arcsin(x) ha 1 x 0 x = 1, arctg(x) ha 0 < x < + a) f (x) = 4 x 2 x+log

1. Fuggveny ertekek. a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I. x = arcsin(x) ha 1 x 0 x = 1, arctg(x) ha 0 < x < + a) f (x) = 4 x 2 x+log 1. Fuggveny ertekek 1 Szamtsuk ki az alabbi fuggvenyek erteket a megadott helyeken! a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I b) f (x) = sin x 1 x = π 2, π 4, 3 3 2π, 10π I arcsin(x) ha 1 x 0 1 c) f

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

Szemidenit optimalizálás és az S-lemma

Szemidenit optimalizálás és az S-lemma Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium 2011. október 6. Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok

Részletesebben

Differenciálegyenletek megoldása próbafüggvény-módszerrel

Differenciálegyenletek megoldása próbafüggvény-módszerrel Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós

Részletesebben

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma? . Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,

Részletesebben

Óravázlatok: Matematika 2.

Óravázlatok: Matematika 2. Óravázlatok: Matematika 2. Bartha Ferenc készültség: March 4, 2003 1. VEKTOR-SKALÁR FÜGGVÉNYEK DIFFERENCIÁLÁSA Legyen a továbbiakban M R n nyílt halmaz és f : M R valós függvény, x (x 1,.., x n ) M Ha

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

Differenciaegyenletek

Differenciaegyenletek Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2009/10 tanév, I. félév Losonczi László (DE) Differenciaegyenletek 2009/10 tanév, I. félév 1 / 11

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk

Részletesebben

Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22

Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22 Mátrixfüggvények Wettl Ferenc 2016. április 28. Wettl Ferenc Mátrixfüggvények 2016. április 28. 1 / 22 Tartalom 1 Diagonalizálható mátrixok függvényei 2 Mátrixfüggvény a Jordan-alakból 3 Mátrixfüggvény

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

7. Oldjuk meg az alábbi kezdetiérték-problémát: y x y = 6x, y(0) =

7. Oldjuk meg az alábbi kezdetiérték-problémát: y x y = 6x, y(0) = . feladatsor: szeparábilis és els rend lineáris dierenciálegyenletek x. Mutassuk meg, hogy y = e x e t2 dt + 3e x megoldása az alábbi dierenciálegyenletnek: y y = e x+x2. 2. Adjuk meg az y = e 3x + 2x

Részletesebben

Differenciálszámítás normált terekben

Differenciálszámítás normált terekben Eötvös Loránd Tudományegyetem Természettudományi Kar Kapui Dóra Differenciálszámítás normált terekben Szakdolgozat Matematika BSc, elemz szakirány Témavezet : Tarcsay Zsigmond Alkalmazott Analízis és Számításmatematikai

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

Analízis III Parciális differenciálegyenletek

Analízis III Parciális differenciálegyenletek Analízis III Parciális differenciálegyenletek Lineáris, másodrendű PDE-k 2012. január 20. 1. Bevezető A parciális differemciálegyenlet egy olyan összefüggés, ahol az ismeretlen egy többváltozós valós függvény.

Részletesebben

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy: Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék

2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék 2. (b) Hővezetési problémák Utolsó módosítás: 2013. február25. A változók szétválasztásának módszere (5) 1 Az Y(t)-re vonakozó megoldás: Így: A probléma megoldása n-re összegzés után: A peremfeltételeknek

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben