Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel
|
|
- Alíz Soós
- 5 évvel ezelőtt
- Látták:
Átírás
1 Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Segédlet az A végeselem módszer alapjai tárgy 4. laborgyakorlatához Kossa Attila (kossa@mm.bme.hu) BME M szaki Mechanikai Tanszék 28. március 3. Feladat Írjunk algoritmust az alábbi, egyik végén befogott, másik végén rugalmasan alátámasztott tartó elmozdulásfüggvényének meghatározására. Adatok: l =,2 m, I z = 2,33 cm 4, s = 2 N/m, p = 75 N/m, E = 2 GPa. Számítás Alakváltozási energia Hajlított egyenes tartó esetén az alakváltozási energiát a nyomatéki függvény (M h (x)) segítségével a következ képpen számítjuk: U = 2 L Mh 2 (x) dx, () I z E ahol I z a keresztmetszetnek a hajlítás tengelyére számított másodrend nyomatéka, E a rugalmassági modulus. Mivel nekünk majd az elmozdulást kell meghatározni, emiatt a () kifejezésbe valahogy be kell csempészni az ismeretlen elmozdulásmez t (u (x)). Ezt a rugalmas szál dierenciálegyenletének felhasználásával megtehetjük, ami szerint a lehajlásfüggvény (elmozdulás függvény) második deriváltja arányos a nyomatékkal: u (x) = M h (x) I z E = M 2 h (x) = ( I z Eu (x) ) 2. (2) Visszaírva (2)-t ()-be kapjuk: U u = 2 L I z E (u ) 2 dx. (3) Vagyis az U alakváltozási energia függvénye az ismeretlen elmozdulás függvénynek (U egy funkcionál). Tehát az U alakváltozási energiát (ami egy skalár szám) ki tudnánk számolni a (3) segítségével ha ismernénk az u (x) elmozdulásfüggvényt (illetve annak második deriváltját). De u (x)-t nem ismerjük, emiatt egy olyan kifejezésünk van U-ra amiben egy ismeretlen függvényt kéne integrálnunk a megadott határon (a tartó L hossza) amit természetesen nem tudunk elvégezni. Azonban ha u (x)-re felvennénk valamilyen közelít függvényt ami az adott feladatra a peremfeltételek (pl: befogások, alátámasztás,...)
2 gyelembevételével kinematikailag lehetséges elmozdulásmez t (vagyis olyan a közelít függvény alakja, hogy például az alátámasztásnál zérus érték, illetve a befogásnál a deriválja is zérus,...) ad, akkor már el tudnánk végezni (3)-ben lév integrálást, hiszen akkor már lenne mit integrálni. Küls er k munkája A küls er k által végzett munka összetev dik a megoszló terhelés által okozott munkából (ami az a x b tartományon m köd p (x) megoszló terhelésb l következik), a koncentrált er k (amik diszkrét x i helyeken m ködnek) által okozott munkákból és a koncentrált er párok (nyomtékok)(amik diszkrét x j helyeken m ködnek) okozta munkákból: W u = b a u (x) p (x) dx+ n F u (x i ) F i + n M u (x j ) M j, (4) i= ahol n F a koncentrált er k, n M pedig a koncentrált er párok (nyomatékok) száma. Tehát a küls er k munkájának összege (ami egy skalár szám) (4) szerint számítható. Itt W u szintén egy funkcionál, mivel értéke (skalár) egy függvény függvénye. (4)-ben lév integrált, illetve a szummákat csak akkor tudjuk elvégezni, ha ismerjük u (x)-t (illetve adott egy függvény amivel u (x)-t közelítjük). Teljes potenciál A rendszer teljes potenciálja (π) az alakváltozási energia és a küls er k munkájának különbsége: j= π u = U W = 2 L I z E (u ) 2 dx b a u (x) p (x) dx n F u (x i ) F i n M u (x j ) M j (5) i= j= A megoldást szolgáltató u (x) függvény esetén ennek a π u funkcionálnak minimuma van. Ritz-módszer A feladat Ritz módszerrel történ megoldása során az ismeretlen u (x) lehajlásfüggvényt közelítjük egy olyan v (x) függvénnyel, ami kinematikailag lehetséges elmozdulsámez t biztosít. Ennek célszer alakja: n v (x) = a ω (x)+a ω (x) x+a 2 ω (x) x = ω (x) a k x k, (6) ahol az ω (x) alapfüggvény egy lehet legegyszer bben felírt kinematikailag lehetséges elmozdulásmez. Ezáltal a v (x) polinom mindegyik eleme kielégíti a peremfeltételeket. A közelítés rangja attól függ, hogy hány elemet veszünk a polinomból. Minél többet veszünk annál pontosabb eredményhez juthatunk, viszont a számítási id (a megoldandó matematikai egyenletek száma) megn. Tehát az ismeretlen u (x) függvényt egy olyan v (x) polinommal közelítjük, ami egy ismert (általunk felvett) ω (x) alapfüggvényb l, és a közelítés fokszámától függ en n + ismeretlen konstansból (a, a, a 2,... ) tev dik össze. Azért n +, mert ha nulladrend közelítés veszünk akkor is van egy ismeretlen konstansunk az a. A (6) közelít függvény esetén a (5) funkcionálnak akkor van széls értéke (minimuma), ha a k = teljesül minden a k -ra (k =,,2,... n). (7) Az adott feladatnál egy olyan alapfüggvény kell felvenni ami a következ peremfeltételeket biztosítja: a befogásnál (x = ): ω () = és ω () =, Az ezt biztosító (minél egyszer bb) alapfüggvény: k= ω (x) = x 2. (8) Amennyiben másodrend közelítéssel oldjuk meg a feladatot, akkor a közelít függvényünk és deriváltjai ((6) gyelembevételével): v (x) = ω (x) ( a +a x+a 2 x 2) = a x 2 +a x 3 +a 2 x 4, (9) v (x) = 2a x+3a x 2 +4a 2 x 3, () v (x) = 2a +6a x+2a 2 x 2 () 2
3 alakúak, ahol a, a, a 2 ismeretlenek. A feladat megoldása során ezen konstansok meghatározása a cél. Alakváltozási energia számítása: Az alakváltozási energia két részb l tev dik össze: egyik a rúdban felhalmozódó alakváltozási energia, a másik pedig a rúgóban keletkez energia: U = 2 Elvégezve az integrálást: U = I z E = 2 I ze = 2 I ze I z E ( v ) 2 dx+ 2 s (v (l))2 (2) ( 2a +6a x+2a 2 x 2) 2 dx+ 2 s ( a l 2 +a l 3 +a 2 l 4) 2 (3) ( 2a +6a x+2a 2 x 2) 2 dx+ 2 sl4 (a +l(a +a 2 l)) 2. (4) (2a 2l +6a a l 2 +6a 2l 3 +8a a 2 l 3 +8a a 2 l a2 2 l5 5 Küls er k munkája: A jelenlegi feladatnál csak a megoszló terhelséb l származik küls munka: W = v (x) p (x) dx = ) + 2 sl4 (a +l(a +a 2 l)) 2. (5) ( a x 2 +a x 3 +a 2 x 4) ( p) dx (6) = 3 a l 3 p 4 a l 4 p 5 a 2l 5 p. (7) A π potenciál, aminek a széls értékét (minimumát) keressük: π = U W π = I z E (2a 2l +6a a l 2 +6a 2l ) 3 +8a a 2 l 3 +8a a 2 l a2 2 l sl4 (a +l(a +a 2 l)) 2 (8) + 3 a l 3 p+ 4 a l 4 p+ 5 a 2l 5 p. (9) π-nek ott lesz minimuma ahol (7) teljesül. Mivel most másodrend közelítést alkalmaztunk, így három ismeretlen konstans együtthatónk van (a, a, a 2 ) amik szerint kell deriválnunk. Az alábbi három egyenletet kapjuk az ismeretlenekre: Behelyettesítve az adatokat: = = a 3 l2 (6EI z (3a +4a 2 l)+lp)+l 5 (a +a 2 l)s+a l ( 4EI z +l 3 s ), (2) = = 6EI z l 2 (a +l(2a +3a 2 l))+ l4 p a 4 +l5 (a +l(a +a 2 l))s, (2) = = ( 2EIz l 3 (2a +9l(5a +8a 2 l))+l 5 p ) +l 6 (a +l(a +a 2 l))s. a 2 5 (22) = a a +, a 2, (23) = 388, a +, a +2,389 6 a 2, (24) = 373,248+, a +2,389 6 a +3,973 6 a 2 (25) 3
4 Az ismeretlen együtthatókra nézve ez egy háromismeretlenes egyenletrendszer. Megoldása: a =,28656, a =,255394, a 2 =, (26) Tehát a megoldás a másodrend közelítéssel: Lehajlás a tartó végén: v (x) =,28656x 2 +,255394x 3,732536x 4. (27) v (x =,2) =.2347 m =,2347 mm. (28) Nullad-, illetve els rend közelítéssel végigszámolva az alábbi megoldások születnek: v (x) =,69735x 2, (29) v (x) =,82x x 3. (3) Ritz-módszer mátrixformalizmussal Az el bbi számítási algoritmust sokkal elegánsabbá, áttekinthet bbé (és egyszer bbé) tehetjük ha mátrixos alakban számolunk. A (9) szerinti másodrend közelítésünk felírható az alábbi alakban: ahol A = a a a 2, v (x) = B T A = A T B, (3) B = ω (x) A továbbiakban szükség lesz (3) els és második deriváltjára: Az alakváltozási energia számítása: ahol U = 2 = 2 x x 2 = x 2 x 3 x 4. (32) v (x) = B T A = A T B, (33) v (x) = B T A = A T B. (34) I z E ( v ) 2 dx+ 2 s (v (l))2 (35) I z E ( A T B B T A ) dx+ 2 sat B (l) B T (l) A (36) = 2 AT I z E ( B B T ) dx+sb (l) B T (l) A, (37) }{{} S S = I z E ( B B T ) dx+sb (l) B T (l). (38) A B B T,illetve B (l) B T (l) kifejezések nem a két vektor közötti skalárszorzást jelentik! Kiszámítása a diadikus szorzással történik: [ l 2 l 3 l 4 ] [ 2 6x 2x 2 ] l 2 l 3 l 4 l 4 l 5 l 6 l 5 l 6 l 7 l 6 l 7 l 8, 4 2 6x 2x 2 4 2x 24x 2 2x 36x 2 72x 3 24x 2 72x 3 44x 4, (39)
5 B (l) B T (l) = l 4 l 5 l 6 l 5 l 6 l 7 l 6 l 7 l 8 A (6) szerinti küls munka felírása: W = v (x) p (x) dx =, B B T = A T B ( p) dx = A T 4 2x 24x 2 2x 36x 4 72x 3 24x 2 72x 3 44x 4. (4) B ( p) dx, (4) } {{ } Q ahol Tehát a π potenciál: Q = B ( p) dx. (42) π = U W = 2 AT SA A T Q. (43) Felhasználva (7) kapjuk, hogy Ez egy lineáris mátrixegyenlet aminek a megoldása: Számítások: S = S = I z E SA Q = = SA = Q. (44) A = S Q. (45) I z E ( B B T ) dx+sb (l) B T (l) (46) S = 4 2x 24x 2 2x 36x 4 72x 3 24x 2 72x 3 44x 4 dx+s l 4 l 5 l 6 l 5 l 6 l 7 l 6 l 7 l ,4, ,4, , Q = B ( p) dx = p Q = S = ,8 373,248 x 2 x 3 x 4 dx = p l 3 3 l 4 4 l 5 5 (47) (48) (49) (5) 3,3267 4,58659, , ,5243 2,8264, ,8264,7756 A = S Q =,28656,255394, (5) (52) 5
6 Tehát a keresett elmozdulásmez : v (x) = B T A =,28656x 2 +,255394x 3,732536x 4 (53) MATHEMATICA notebook: L=.2; Iz=2.33*^-8; s=2*^5; p=75; RUG=2*^9; kozelites=2; omega=x^2; B=omega*Table[x^k,{k,,kozelites},{}]; db=d[b,x]; db2=d[b,{x,2}]; S=Integrate[Iz*RUG*dB2.Transpose[dB2],{x,,L}]+s*(B.Transpose[B])/.x->L; Q=Integrate[-p*B,{x,,L}]; A=LinearSolve[S,Q]; v=transpose[b].a; v=v[[,]] lehajl=v/.x->l Megjegyzés : Ahhoz, hogy a (39) szerinti szorzást egyszer en el tudjuk végezni MATHEMATICA-ban, a B változót (ami eredetileg egy három elem vektor) egy 3 -es mátrixként deniáljuk. Ekkor a mátrixok közötti szorzással könnyen kezelhet a diadikus szorzat. Ennek következtében a v elmozdulásfüggvény nem egy skalár szám lesz, hanem egy -es mátrix. MAPLE worksheet: restart:with(linearalgebra): L:=.2: Iz:=2.33e-8: s:=2e5: p:=75: RUG:=2e: kozelites:=2: omega:=x^2: B:=omega*Vector(kozelites+,i->x^(i-)): db:=map(diff,b,x): db2:=map(diff,b,x$2): S:=Iz*RUG*map(int,dB2.Transpose(dB2),x=..L)+s*subs(x=L,B.Transpose(B)): Q:=map(int,-p*B,x=..L): A:=LinearSolve(S,Q): v:=transpose(b).a; lehajl:=subs(x=l,v); 6
Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2013. szeptember 23. Javítva: 2013.10.09.
RészletesebbenPélda: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk
RészletesebbenStatikailag határozatlan tartó vizsgálata
Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben
RészletesebbenVégeselem analízis. 1. el adás
Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)
RészletesebbenBME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3
BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F
RészletesebbenMegoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Részletesebben(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,
Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ
RészletesebbenTERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22.
TERMÉKZIMULÁCIÓ Végeselem módszer Termékszimuláció tantárgy 6. elıadás 211. március 22. Elıadó: Dr. Kovács Zsolt egyetemi tanár A végeselem módszer lényege A vizsgált, tetszıleges geometriai kialakítású
RészletesebbenSegédlet: Kihajlás. Készítette: Dr. Kossa Attila BME, Műszaki Mechanikai Tanszék május 15.
Segédlet: Kihajlás Készítette: Dr. Kossa ttila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2012. május 15. Jelen segédlet célja tömören összefoglalni a hosszú nyomott rudak kihajlásra történő ellenőrzését.
RészletesebbenHajlított tartó: feladat Beam 1D végeselemmel
Hajlított tartó: feladat Beam 1D végeselemmel A feladatlapon szereplő példa megoldása. A megoldáshoz 1 dimenziós hajlított gerendaelemeket ("beam") használunk. Verzió: 2018.10.15. (%i1) kill(all)$ Az adatok
RészletesebbenPélda keresztmetszet másodrendű nyomatékainak számítására
Példa keresztmetszet másodrendű nyomatékainak számítására Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. február 22. Tekintsük az alábbi keresztmetszetet. 1. ábra. A vizsgált
RészletesebbenFeladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra
Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy
RészletesebbenKeresztmetszet másodrendű nyomatékainak meghatározása
BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra
RészletesebbenA végeselem módszer alapjai. 2. Alapvető elemtípusok
A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,
RészletesebbenVégeselem modellezés alapjai 1. óra
Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,
RészletesebbenGyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.
Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő
RészletesebbenPélda: Csúsztatófeszültség-eloszlás számítása I-szelvényben
Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 14. Határozzuk meg a nyírásból adódó csúsztatófeszültség
RészletesebbenHatározott integrál és alkalmazásai
Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,
RészletesebbenPélda: Normálfeszültség eloszlása síkgörbe rúd esetén
Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 20. Az 1. ábrán vázolt síkgörbe rúd méretei és terhelése ismert.
RészletesebbenUtolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20
Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális
RészletesebbenLineáris egyenletrendszerek
Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
RészletesebbenFeladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
RészletesebbenIpari matematika 2. gyakorlófeladatok
Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,
RészletesebbenTaylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!
Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el
RészletesebbenAlap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
RészletesebbenTrigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
RészletesebbenVasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet
Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban
RészletesebbenMatematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
RészletesebbenKOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenPélda: Háromszög síkidom másodrendű nyomatékainak számítása
Példa: Háromszög síkidom másodrendű nyomatékainak számítása Készítette: Dr. Kossa Attila kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék. február 6. Határozzuk meg az alábbi ábrán látható derékszögű háromszög
RészletesebbenPere Balázs október 20.
Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?
RészletesebbenDiszkrét idej rendszerek analízise az id tartományban
Diszkrét idej rendszerek analízise az id tartományban Dr. Horváth Péter, BME HVT 06. október 4.. feladat Számítuk ki a DI rendszer válaszát, ha adott a gerjesztés és az impulzusválasz! u[k = 0,6 k ε[k;
RészletesebbenLNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei
Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2
RészletesebbenIV. INTEGRÁLSZÁMÍTÁS Megoldások november
IV. INTEGRÁLSZÁMÍTÁS Megoldások 009. november Határozatlan integrálás.05. + C + C.06. + C + C.07. ( ( 5 5 + C.08. ( ( + 5 5 + + C.09. + ( + ln + + C.. ( + ( + ( + 5 5 + + C.. + ( + ( + ( + + ( + ( + +
RészletesebbenA dierenciálszámítás alapjai és az érint
A dierenciálszámítás alapjai és az érint 205. november 7.. Alapfeladatok. Feladat: Határozzuk meg az fx) x 2 3 x függvény deriváltját! Megoldás: Deriválás el tt célszer átalakítani a függvényt. A gyök
RészletesebbenBázistranszformáció és alkalmazásai 2.
Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja
RészletesebbenAz igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén.
Alkalmazott előjelszabályok Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén. A kényszererők számításánál a következő a szabály: Az erők iránya a pozitív
RészletesebbenMatematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
RészletesebbenEgyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
RészletesebbenA KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek
10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix
RészletesebbenLineáris algebra numerikus módszerei
Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y
RészletesebbenPolinomok, Lagrange interpoláció
Közelítő és szimbolikus számítások 8. gyakorlat Polinomok, Lagrange interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Polinomok
RészletesebbenVektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
RészletesebbenSegédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból
Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból 1 Átviteli tényező számítása: Lineáris rendszer: Pl1.: Egy villanymotor 100V-os bemenő jelre 1000 fordulat/perc kimenő jelet ad.
RészletesebbenTERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés
TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre
RészletesebbenPéldatár Lineáris algebra és többváltozós függvények
Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................
Részletesebben1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1
numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú
Részletesebben2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
RészletesebbenFüggvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim.
Függvények 205. július 3. Határozza meg a következ határértékeket!. Feladat: 2. Feladat: 3. Feladat: 4. Feladat: (2 + 7 5 ) (2 + 7 5 ) (2 + 0 ) (2 + 7 5 ) (2 + 7 5 ) (2 + 0) (2 + 0 7 5 ) (2 + 0 7 5 ) (2
RészletesebbenHatározatlan integrál
Határozatlan integrál 205..04. Határozatlan integrál 205..04. / 2 Tartalom Primitív függvény 2 Határozatlan integrál 3 Alapintegrálok 4 Integrálási szabályok 5 Helyettesítéses integrálás 6 Parciális integrálás
RészletesebbenA brachistochron probléma megoldása
A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e
Részletesebben9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2
Részletesebben6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)
SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy
RészletesebbenLineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
RészletesebbenTanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása. 5), akkor
Integrálszámítás Integrálási szabályok Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása Motivációs feladat Valószínűség-számításnál találkozhatunk
RészletesebbenEgyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások
) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja
RészletesebbenGyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
Részletesebbenrank(a) == rank([a b])
Lineáris algebrai egyenletrendszerek megoldása a Matlabban Lineáris algebrai egyenletrendszerek a Matlabban igen egyszer en oldhatók meg. Legyen A az egyenletrendszer m-szer n-es együtthatómátrixa, és
Részletesebben2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése
2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )
Részletesebben7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága
7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása
RészletesebbenMatematika. Emelt szintű feladatsor pontozási útmutatója
Matematika Emelt szintű feladatsor pontozási útmutatója Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével. Formai kérések: Kérjük, hogy piros tollal
RészletesebbenRugalmas állandók mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem
RészletesebbenHangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Részletesebben6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás
ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk
RészletesebbenQ 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
Részletesebben6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)
Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz 6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) 1. Írjunk fel egy olyan legalacsonyabbrendű valós,
RészletesebbenMATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén
RészletesebbenNumerikus integrálás április 20.
Numerikus integrálás 2017. április 20. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
RészletesebbenDifferenciálegyenletek megoldása próbafüggvény-módszerrel
Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós
RészletesebbenFourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.
ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés
Részletesebben7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága
7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása
RészletesebbenFeladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.
Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y
Részletesebben1. Parciális függvény, parciális derivált (ismétlés)
Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt
RészletesebbenHatározatlan integrál
Határozatlan integrál 05. április.. Alapfeladatok. Feladat: Határozzuk meg az alábbi határozatlan integrált! + sin ch Megoldás: Az integrálandó függvényen belül összeadás illetve kivonás m velete szerepel,
RészletesebbenKomplex számok. Komplex számok és alakjaik, számolás komplex számokkal.
Komplex számok Komplex számok és alakjaik, számolás komplex számokkal. 1. Komplex számok A komplex számokra a valós számok kiterjesztéseként van szükség. Ugyanis már középiskolában el kerülnek olyan másodfokú
RészletesebbenRugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv
(-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9 A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk
Részletesebben1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
RészletesebbenGauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
RészletesebbenEnergiatételek - Példák
9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l
RészletesebbenHatározatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit
Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos
RészletesebbenGibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén
Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert
RészletesebbenNumerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek
RészletesebbenGPK M1 (BME) Interpoláció / 16
Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának
RészletesebbenMagasabbfokú egyenletek
86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y
RészletesebbenMatematika III. harmadik előadás
Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)
RészletesebbenBázistranszformáció és alkalmazásai
Bázistranszformáció és alkalmazásai Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Elmélet Gyakorlati végrehajtás 2 Vektor bevitele a bázisba Rangszámítás Lineáris egyenletrendszer
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval
Részletesebbeny + a y + b y = r(x),
Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan
RészletesebbenHangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A
RészletesebbenMatematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
RészletesebbenX = 0 B x = 0. M B = A y 6 = 0. B x = 0 A y = 1000 B y = 400
1. feladat Számítsuk ki a bejelölt rúderőket! Az erők N-ban, a hosszak m-ben, a nyomatékok Nm-ben értendők Első lépésként határozzuk meg a kényszererőket. Az S 1 rúderő számítása: Egyensúlyi egyenletek:
RészletesebbenNavier-formula. Frissítve: Egyenes hajlítás
Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a
RészletesebbenMÉSZÁROS JÓZSEFNÉ, NUMERIKUS MÓDSZEREK
MÉSZÁROS JÓZSEFNÉ, NUmERIKUS módszerek 9 FÜGGVÉNYKÖZELÍTÉSEK IX. SPLINE INTERPOLÁCIÓ 1. SPLINE FÜGGVÉNYEK A Lagrange interpolációnál említettük, hogy az ún. globális interpoláció helyett gyakran célszerű
RészletesebbenAlkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
Részletesebben3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra
SZÉCHENYI ISÁN EGYEEM AAMAZO MECHANIA ANSZÉ 6. MECHANIA-ÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szüle eronika, eg. ts.) I. előadás. okális aroimáció elve, végeselem diszkretizáció egdimenziós feladatra.. Csomóonti
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos
RészletesebbenMECHANIKA I. rész: Szilárd testek mechanikája
Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre
RészletesebbenMatematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Részletesebben3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
Részletesebben