TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés
|
|
- Géza Mihály Szekeres
- 7 évvel ezelőtt
- Látták:
Átírás
1 TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre u.n. végeselemekre, - az elemek csomópontokon keresztül kapcsolódnak egymáshoz, - az elemek összekapcsolásával megkapjuk a vizsgált szerkezet modelljét - az egyes elemeken belül az elmozdulásmezőt (hőmérsékletmezőt, stb) lineáris, kvadratikus vagy magasabb fokszámú függvényekkel (rendszerint polinomokkal) közelítjük
2 - az eredmények (elmozdulás, feszültség, alakváltozás, hőmérséklet, stb) csomóponti mennyiségek
3 - az eredmények pontossága függ az elemmérettől és a közelítő függvény fokszámától, - finomabb hálóval (kisebb elemekkel) és/vagy magasabb fokszámú elemekkel pontosabb eredményt kaphatunk - különböző elemtípusok (truss vagy rúd, beam vagy gerenda, 2D-s, 3D-s, shell vagy héj elem,.) állnak rendelkezésre a szerkezeto viselkedés leírására, - a végeselem modellt - geometriai modell (elemek és csomópontok), - terhelési modell, - anyag modell, - és peremfeltételek alkotják. TIPPEK: Soha se fogadjuk el a végeselemes eredményeket automatikusan jónak! Az eredmények értelmezéséről, elemzéséről soha sem szabad megfeledkezni!
4 Gondoljuk át és tervezzük meg a munkánkat, mielőtt elkezdünk a számítógépen dolgozni! Mindig érdemes a hálósűrűséget ellenőrizni! Vizsgáljuk meg, hogy mennyit változnak a számítási eredmények finomabb háló alkalmazása esetén!
5 1.2. Végeselem analízis lépései - Analízis megtervezése, - A feladat vizsgálata szempontjából fontos változók kiválasztása (legnagyobb feszültség, átlagos feszültség, alakváltozás, feszültséggyűjtő helyek, hőmérséklet, sajátfrekvenciák, etc.), - Szükséges pontosság megállapítása, - Közelítő számítások (terhelések, anyagmodell, stb egyszerűsítésével), - Elég pontosak a közelítő számítással kapott eredmények? - Koncepcionális modell megalkotása: - elemtípus(ok) kiválasztása, - hálóstruktúra tervezése, - szimmetria feltételek, - peremfeltételek, - először 2D-s modell, - anyagi vagy geometriai nemlinearitás esetén érdemes először a feladat lineáris megoldását előállítani, - első modell megalkotása: végeselemes háló részletes terve, peremfeltételek, terhelések, anyagjellemzők, - először a deformált alakot érdemes ellenőrizni, - feszültségi eredmények vizsgálata és összehasonlításuk analitikus eredményekkel, - helyes eredményeket adott az első modell? - pontossági vizsgálat: hol kell a hálót sűríteni? (feszültségcsúcs környezetében, ahol az eredmények hirtelen változnak), - a hálófinomítás növeli a legnagyobb feszültség nagyságát, - a feszültségeloszlások összehasonlítása segít annak megítélésében, hogy szükség van-e további hálófinomításra, - megállapítások, következtetések, javaslatok a vizsgált szerkezeti elem tervezésére vonatkozóan.
6 Feladat definiálása Fontos változók kiválasztása Közelítő mérnöki számítások elvégzése nem Szükség van végeselemes analízisre? igen Koncepcionális modell Szoftver kiválasztása Első modell megalkotása Analízis futtatása Eredmények kiértékelése Finomított modell elkészítése Analízis futtatása Eredmények kiértékelése Szükség van további finomításra? igen nem Jelentés elkészítése, javaslatok megfogalmazása Végeselemes analízis lépései
7
8 1.3. Egy egyszerű végeselemes modell: Koncentrált erővel terhelt befogott tartó Mechanikai modell megalkotása F h l Adatok: l, h, v (vastagság), E (rugalmassági modulus), ν (Poisson tényező) és F Megfelelő elemtípus kiválasztása 2D-s feladat, a v vastagságtól függően síkfeszültségi vagy síkalakváltozási feladatnak tekinthető Végeselem modell megalkotása - a geometria elemekre bontása; - az elemek csomópontokon keresztül kapcsolódnak, y F x - csomóponti koordináták megadása Csomópont X Y Z
9 - elemek kapcsolódásának megadása Elem sorszáma Csomópontok sorszáma Peremfeltételek Csomóponti szabadságfokok megkötése Csomópont sorszáma ux uy uz Rx Ry Rz Terhelés 10-es csomópontnál y-irányú erő Anyagjellemzők (lineárisan rugalmas feladat) - Rugalmassági modulus: E - Poisson tényező: ν
10 1.4. Szerkezeti és végeselemes modell (példa) Repedés környezetének modellezése
A végeselem módszer alapjai. 2. Alapvető elemtípusok
A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,
RészletesebbenTERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22.
TERMÉKZIMULÁCIÓ Végeselem módszer Termékszimuláció tantárgy 6. elıadás 211. március 22. Elıadó: Dr. Kovács Zsolt egyetemi tanár A végeselem módszer lényege A vizsgált, tetszıleges geometriai kialakítású
RészletesebbenMUNKAGÖDÖR TERVEZÉSE
MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Munkatérhatárolás szerkezetei Munkagödör méretezés Plaxis programmal Munkagödör méretezés Geo 5 programmal Tartalom Bevezetés VEM - geotechnikai alkalmazási területek
RészletesebbenSZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG
RészletesebbenVégeselem analízis. 1. el adás
Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)
RészletesebbenPere Balázs október 20.
Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?
RészletesebbenCAD-CAM-CAE Példatár
CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: VEM Rúdszerkezet sajátfrekvenciája ÓE-A05 alap közepes haladó
RészletesebbenVégeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján. Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke
Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke 1 Tartalom Méretezési alapelvek Numerikus modellezés Analízis és
RészletesebbenV É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I
ALKALMAZOTT MECHANIKA TANSZÉK V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki Tudományi Doktori Iskola hallgatói számára
RészletesebbenVégeselem módszer 1. gyakorlat
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 1. gyakorlat (kidolgozta: Dr. Pere Balázs egyetemi docens, Szüle Veronika, egyetemi tanársegéd) Feladat: síkbeli rácsos tartó y
Részletesebbenidőpont? ütemterv számonkérés segédanyagok
időpont? ütemterv számonkérés segédanyagok 1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. műszaki számítások: - analitikus számítások
RészletesebbenTartószerkezet-rekonstrukciós Szakmérnöki Képzés
1_1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. mőszaki számítások: - analitikus számítások gyorsítása, az eredmények grafikus
RészletesebbenEjtési teszt modellezése a tervezés fázisában
Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,
Részletesebben3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben
1117 Végeselem alkalmazások a tűzvédelmi tervezésben 1117 NASTRAN végeselem rendszer Általános végeselemes szoftver, ami azt jelenti, hogy nem specializálták, nincsenek kimondottam valamely terület számára
RészletesebbenTartószerkezet-rekonstrukciós Szakmérnöki Képzés
1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek
RészletesebbenCsatlakozás a végeselem modulhoz SolidWorks-ben
Csatlakozás a végeselem modulhoz SolidWorks-ben Meglévő alkatrész vagy összeállítás modellt ellenőrizhetünk különböző terhelési esetekben a CAD rendszer végeselem moduljával ( SolidWorks Simulation ).
RészletesebbenTERMÉKSZIMULÁCIÓ I. 9. elıadás
TERMÉKSZIMULÁCIÓ I. 9. elıadás Dr. Kovács Zsolt egyetemi tanár Végeselem típusok Elemtípusok a COSMOSWorks Designer-ben: Lineáris térfogatelem (tetraéder) Kvadratikus térfogatelem (tetraéder) Lineáris
RészletesebbenCAD-CAM-CAE Példatár
CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: A01 VEM Síkbeli húzott rúd ÓE-A01 alap közepes haladó VEM
RészletesebbenPélda: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk
RészletesebbenSzerkezetek numerikus modellezése az építőmérnöki gyakorlatban
Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban tanszékvezető, főiskolai docens a Magyar Építész Kamara tagja a Magyar Mérnöki Kamara tagja a fib Magyar Tagozatának tagja az ÉTE Debreceni
RészletesebbenVégeselem-módszer alkalmazásának gyakorlata a gépészeti tervezésben
Új méretezési módszerek a gépészeti tervezésben I. Végeselem-módszer alkalmazásának gyakorlata a gépészeti tervezésben Dr. Oldal István 05. Magyar Mérnöki Kamara Gépészeti Tagozat Sorozat címe: Új méretezési
RészletesebbenFÉLMEREV KAPCSOLATOK NUMERIKUS SZIMULÁCIÓJA
FÉLMEREV KAPCSOLATOK NUMERIKUS SZIMULÁCIÓJA Vértes Katalin * - Iványi Miklós ** RÖVID KIVONAT Acélszerkezeti kapcsolatok jellemzőinek (szilárdság, merevség, elfordulási képesség) meghatározása lehetséges
RészletesebbenGÉPÉSZETI ALKALMAZOTT SZÁMÍTÁSTECHNIKA f iskolai mérnökhallgatók számára. A 4. gyakorlat anyaga. Adott: Geometriai méretek:
SZÉCHENYI ISTVÁN EGYETEM KÖZLEKEDÉSI ÉS GÉPÉSZMÉRNÖKI INTÉZET ÁLTALÁNOS GÉPÉSZETI TANSZÉK GÉPÉSZETI ALKALMAZOTT SZÁMÍTÁSTECHNIKA f iskolai mérnökhallgatók számára A 4. gyakorlat anyaga Feladat: Saját síkjában
RészletesebbenGyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.
Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő
RészletesebbenTartószerkezetek modellezése
Tartószerkezetek modellezése 5. elıadás Tervezési folyamat Szerkezetek mérete, modellje Végeselem-módszer elve, alkalmazhatósága Tervezési folyamat, együttmőködés más szakágakkal: mérnök építész mőszaki
RészletesebbenHajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel
Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Segédlet az A végeselem módszer alapjai tárgy 4. laborgyakorlatához http://www.mm.bme.hu/~kossa/vemalap4.pdf Kossa Attila (kossa@mm.bme.hu)
RészletesebbenFELADAT LEÍRÁSA MEGOLDÁS ANSYS-BAN
FELADAT LEÍRÁSA Határozzuk meg az alábbi ábrán látható tartó reakcióit, súlypontvonalának eltolódását ANSYS végeselemes szoftver használatával 2, illetve 3 gerendaelem alkalmazásával. Hasonlítsuk össze
RészletesebbenKiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései
Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései VII. Városi Villamos Vasúti Pálya Napra Budapest, 2014. április 17. Major Zoltán egyetemi tanársegéd Széchenyi István Egyetem, Győr
RészletesebbenAcélszerkezetek korszerű tűzvédelmének néhány kérdése
Acélszerkezetek korszerű tűzvédelmének néhány kérdése A viselkedés-alapú tervezés elemei Dr. Horváth László PhD, egyetemi docens 1 Tartalom Viselkedés-alapú tervezés fogalma Alkalmazási lehetőségei Acélszerkezetek
RészletesebbenCAD-CAM-CAE Példatár
CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: VEM befogott tartó ÓE-A15 alap közepes haladó CATIA V5 CAD,
RészletesebbenA V É G E S E L E M M Ó D S Z E R M E C H A N I K A I A L K A LM A Z Á S A I
GÉPÉSZMÉRNÖKI, INFORMATIKAI ÉS VILLAMOSMÉRNÖKI KAR ALKALMAZOTT MECHANIKA TANSZÉK A V É G E S E L E M M Ó D S Z E R M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki
RészletesebbenMunkatérhatárolás szerkezetei. programmal. Munkagödör méretezés Geo 5
MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése 2 Munkatérhatárolás szerkezetei Munkagödör méretezés Plaxis programmal Munkagödör méretezés Geo 5 Munkagödör méretezés Geo 5 programmal Tartalom 3 Alapadatok Geometria
RészletesebbenGróza Márton, Lévai Mátyás, Oroszváry László Pollák Csilla, Szabó Gyula BME Gép- és Terméktervezés Tanszék ANSYS a mesterképzésben: esettanulmányok
Gróza Márton, Lévai Mátyás, Oroszváry László Pollák Csilla, Szabó Gyula BME Gép- és Terméktervezés Tanszék ANSYS a mesterképzésben: esettanulmányok XIV. ANSYS Konferencia econ Felhasználói Találkozó 2015.
RészletesebbenCAD technikák Mérnöki módszerek gépészeti alkalmazása
Mérnöki módszerek gépészeti alkalmazása XI. előadás 2008. április 28. MI A FEM/FEA? Véges elemeken alapuló elemzési modellezés (FEM - Finite Element Modeling) és elemzés (FEA - Finite Element Analysis).
RészletesebbenXVII. econ Konferencia és ANSYS Felhasználói Találkozó
XVII. econ Konferencia és ANSYS Felhasználói Találkozó Hazay Máté, Bakos Bernadett, Bojtár Imre hazay.mate@epito.bme.hu PhD hallgató Budapesti Műszaki és Gazdaságtudományi Egyetem Tartószerkezetek Mechanikája
RészletesebbenRugalmasan ágyazott gerenda. Szép János
Rugalmasan ágyazott gerenda vizsgálata AXIS VM programmal Szép János 2013.10.14. LEMEZALAP TERVEZÉS 1. Bevezetés 2. Lemezalap tervezés 3. AXIS Program ismertetés 4. Példa LEMEZALAPOZÁS Alkalmazás módjai
RészletesebbenSzekrényes András. Delamináció nem szinguláris modellezése ortotróp kompozit lemezekben szemi-rétegmodell alkalmazásával
Szekrényes András Delamináció nem szinguláris modellezése ortotróp kompozit lemezekben szemi-rétegmodell alkalmazásával című MTA doktori értekezésének bírálata Az értekezés általános véleményezése: Az
RészletesebbenToronymerevítık mechanikai szempontból
Andó Mátyás: Toronymerevítık méretezése, 9 Gépész Tuning Kft. Toronymerevítık mechanikai szempontból Mint a neve is mutatja a toronymerevítık használatának célja az, hogy merevebbé tegye az autó karosszériáját
RészletesebbenLemez- és gerendaalapok méretezése
Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén
RészletesebbenA MODELLALKOTÁS ELVEI ÉS MÓDSZEREI
SZENT ISTVÁN EGYETEM GÖDÖLLŐ MECHANIKAI ÉS GÉPTANI INTÉZET A MODELLALKOTÁS ELVEI ÉS MÓDSZEREI Dr. M. Csizmadia Béla egyetemi tanár, az MMK Gépészeti Tagozatának elnöke Budapest 2013. október. 25. BPMK
RészletesebbenFRÖCCSÖNTÉS SZIMULÁCIÓ A SZERKEZETI ANALÍZIS SZOLGÁLATÁBAN
Moldex3D I2 FRÖCCSÖNTÉS SZIMULÁCIÓ A SZERKEZETI ANALÍZIS SZOLGÁLATÁBAN Készítette: Polyvás Péter peter.polyvas@econengineering.com econengineering Kft. www.econengineering.com 2010.04.28. Moldex3D Vezető
RészletesebbenKiválósági ösztöndíjjal támogatott kutatások az Építőmérnöki Karon c. előadóülés
Kiválósági ösztöndíjjal támogatott kutatások az Építőmérnöki Karon c. előadóülés Hazay Máté hazay.mate@epito.bme.hu PhD hallgató Budapesti Műszaki és Gazdaságtudományi Egyetem Tartószerkezetek Mechanikája
RészletesebbenProjektfeladatok 2014, tavaszi félév
Projektfeladatok 2014, tavaszi félév Gyakorlatok Félév menete: 1. gyakorlat: feladat kiválasztása 2-12. gyakorlat: konzultációs rendszeres beszámoló a munka aktuális állásáról (kötelező) 13-14. gyakorlat:
RészletesebbenVégeselem módszer 3. gyakorlat Furatos lemez (ÁSF feladat)
b SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 3. gyakorlat Furatos lemez (ÁSF feladat) Feladat: Saját síkjában terhelt furatos lemez f Adott: Geometriai méretek: a 1000 mm,
RészletesebbenHajlított tartó: feladat Beam 1D végeselemmel
Hajlított tartó: feladat Beam 1D végeselemmel A feladatlapon szereplő példa megoldása. A megoldáshoz 1 dimenziós hajlított gerendaelemeket ("beam") használunk. Verzió: 2018.10.15. (%i1) kill(all)$ Az adatok
RészletesebbenVégeselem módszer 6. gyakorlat U gerenda
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 6. gyakorlat U gerenda Feladat: U-gerenda modellezése lemezszerkezetként Adott Egy U180-as profilból készült gerenda az egyik végén
RészletesebbenANSYS indítása, majd válasszunk munkakönyvtárat és jobname-t. A munkakönyvtár legyen pl C:\Temp. Utility Menu -> File -> Change Directory...
ANSYS indítása, majd válasszunk munkakönyvtárat és jobname-t. A munkakönyvtár legyen pl C:\Temp. Utility Menu -> File -> Change Directory... Utility Menu -> File -> Change Jobname... Utility Menu -> File
RészletesebbenEC4 számítási alapok,
Öszvérszerkezetek 2. előadás EC4 számítási alapok, beton berepedésének hatása, együttdolgozó szélesség, rövid idejű és tartós terhek, km. osztályozás, képlékeny km. ellenállás készítette: 2016.10.07. EC4
RészletesebbenElőadás /4 2015. február 25. (szerda) 9 50 B-2 terem. Nyomatékbíró kapcsolatok
Előadás /4 2015. február 25. (szerda) 9 50 B-2 terem Nyomatékbíró kapcsolatok előadó: Papp Ferenc Ph.D. Dr.habil egy. docens EN 1993-1-8 1. Bevezetés 2. A tervezés alapjai 3. Kapcsolatok (csavarozott,
RészletesebbenCölöpcsoport elmozdulásai és méretezése
18. számú mérnöki kézikönyv Frissítve: 2016. április Cölöpcsoport elmozdulásai és méretezése Program: Fájl: Cölöpcsoport Demo_manual_18.gsp A fejezet célja egy cölöpcsoport fejtömbjének elfordulásának,
RészletesebbenVégeselem módszer 5. gyakorlat
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 5. gyakorlat Feladat: szakító próbatest szilárdsági vizsgálata A szakító próbatest, lévén forgásszimmetrikus geometriával rendelkező
RészletesebbenAkusztikai tervezés a geometriai akusztika módszereivel
Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika
RészletesebbenVégeselem analízis 5. gyakorlat (kidolgozta: Bojtár Gergely egyetemi tanársegéd)
p 0 v =0 SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem analízis. gakorlat (kidolgozta: Bojtár Gergel egetemi tanársegéd) Feladat: Tengelszimmetrikus héj (hengeres tartál) Adott: A hengeres
RészletesebbenÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN
ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN Dr. Kovács Imre PhD. tanszékvezető főiskolai docens 1 Vizsgálataink szintjei Numerikus szimuláció lineáris,
RészletesebbenA beton kúszása és ernyedése
A beton kúszása és ernyedése A kúszás és ernyedés reológiai fogalmak. A reológia görög eredetű szó, és ebben az értelmezésben az anyagoknak az idő folyamán lejátszódó változásait vizsgáló műszaki tudományág
RészletesebbenGyakorlat 03 Keresztmetszetek II.
Gyakorlat 03 Keresztmetszetek II. 1. Feladat Keresztmetszetek osztályzása Végezzük el a keresztmetszet osztályzását tiszta nyomás és hajlítás esetére! Monoszimmetrikus, hegesztett I szelvény (GY02 1. példája)
RészletesebbenDEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás
DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II IV. Előadás Rácsos tartók szerkezeti formái, kialakítása, tönkremeneteli módjai. - Rácsos tartók jellemzói - Méretezési kérdések
RészletesebbenVégeselem módszer 4. gyakorlat Gát (SA feladat)
5000 10000 10000 15000 SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Feladat: sík alakváltozási feladat Végeselem módszer 4. gyakorlat Gát (SA feladat) Az 1. ábra egy folyó hosszú egyenes szakaszának
RészletesebbenÚjdonságok 2013 Budapest
Újdonságok 2013 Budapest Tartalom 1. Általános 3 2. Szerkesztés 7 3. Elemek 9 4. Terhek 10 5. Számítás 12 6. Eredmények 13 7. Méretezés 14 8. Dokumentáció 15 2. oldal 1. Általános A 64 bites változat lehetőséget
RészletesebbenFELADAT LEÍRÁSA MEGOLDÁS ANSYS-BAN. 1. eset (R=100) GEOMETRIA MEGADÁSA
FELADAT LEÍRÁSA Határozzuk meg meg az alábbi bevágott lemezek AB szakaszain az y-irányú feszültségek eloszlását. Vizsgáljuk meg miképpen változik a feszültséggyűjtő hatás a lekerekítési sugár csökkentésével!
RészletesebbenVégeselem módszer 7. gyakorlat
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 7. gyakorlat (kidolgozta: Szüle Veronika egyetemi ts.) Feladat: harang sajátrezgéseinek meghatározása 500 100 500 1000 250 250 1.
RészletesebbenFOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.
RészletesebbenGázturbina égő szimulációja CFD segítségével
TEHETSÉGES HALLGATÓK AZ ENERGETIKÁBAN AZ ESZK ELŐADÁS-ESTJE Gázturbina égő szimulációja CFD segítségével Kurucz Boglárka Gépészmérnök MSc. hallgató kurucz.boglarka@eszk.org 2015. ÁPRILIS 23. Tartalom Bevezetés
RészletesebbenVégeselem módszer 3. gyakorlat Síkbeli törtvonlaú tartó
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 3. gyakorlat Síkbeli törtvonlaú tartó y f 5 kn/m 0,5 m F 4 kn 0,2 m x 1m Adott: 5 Anyag: E 2 10 MPa, 0,3, kn Terhelés: f 5 m F 4
RészletesebbenVasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet
Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban
RészletesebbenFöldstatikai feladatok megoldási módszerei
Földstatikai feladatok megoldási módszerei Földstatikai alapfeladatok Földnyomások számítása Általános állékonyság vizsgálata Alaptörés parciális terhelés alatt Süllyedésszámítások Komplex terhelési esetek
RészletesebbenFogorvosi anyagtan fizikai alapjai 6.
Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv
RészletesebbenMérnöki faszerkezetek korszerű statikai méretezése
Mérnöki faszerkezetek korszerű statikai méretezése okl. faip. mérnök - szerkezettervező Előadásvázlat Bevezetés, a statikai tervezés alapjai, eszközei Az EuroCode szabványok rendszere Bemutató számítás
RészletesebbenSíklapokból álló üvegoszlopok laboratóriumi. vizsgálata. Jakab András, doktorandusz. BME, Építőanyagok és Magasépítés Tanszék
Síklapokból álló üvegoszlopok laboratóriumi vizsgálata Előadó: Jakab András, doktorandusz BME, Építőanyagok és Magasépítés Tanszék Nehme Kinga, Nehme Salem Georges Szilikátipari Tudományos Egyesület Üvegipari
RészletesebbenAlumínium ötvözetek aszimmetrikus hengerlése
A Miskolci Egyetemen működő tudományos képzési műhelyek összehangolt minőségi fejlesztése TÁMOP-4.2.2/B-10/1-2010-0008 Tehetségeket gondozunk! Alumínium ötvözetek aszimmetrikus hengerlése 2011. November
RészletesebbenVizsgára felkészülést segítő kérdések Gépszerkezettan I. (AGS1) tárgyból
Vizsgára felkészülést segítő kérdések Gépszerkezettan I. (AGS1) tárgyból 1/1. Foglalja össze a VEM alapelvét, sajátosságait! - diszkretizáció, - a szerkezet kisebb méretű, szabályos elemekre bontása, -
RészletesebbenGyakorlat 04 Keresztmetszetek III.
Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)
RészletesebbenKvantitatív módszerek
Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék E-mail: kovacsz@gtk.uni-pannon.hu URL: http://almos/~kovacsz Mennyiségi problémák megoldása analitikus numerikus szimuláció
RészletesebbenVégeselem módszer 1. gyakorlat síkbeli rácsos tartó
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 1. gyakorlat síkbeli rácsos tartó y F 1 10 m A F2 F3 B x 6 5 m Adott: Anyag: 5 E 2 10 MPa, 0,3, Terhelés: F1 F2 20 kn Rúdátmérő:
RészletesebbenMECHANIKA I. rész: Szilárd testek mechanikája
Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre
RészletesebbenMÉSZÁROS JÓZSEFNÉ, NUMERIKUS MÓDSZEREK
MÉSZÁROS JÓZSEFNÉ, NUmERIKUS módszerek 9 FÜGGVÉNYKÖZELÍTÉSEK IX. SPLINE INTERPOLÁCIÓ 1. SPLINE FÜGGVÉNYEK A Lagrange interpolációnál említettük, hogy az ún. globális interpoláció helyett gyakran célszerű
RészletesebbenAz 1. gyakorlat anyaga. B x. Rácsos szerkezet definíciója: A rudak kapcsolódási pontjaiban (a csomópontokban) csuklók
SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR ALKALMAZOTT MECHANIKA TANSZÉK VÉGESELEM MÓDSZER Az 1. gyakorlat anyaga Feladat: síkbeli rácsos tartó F 1 A y F 2 6x5 m F3 10 m B x Adott: Anyag: E = 2,1 10
RészletesebbenVEM alapjai. ADINA használata. a BSc oktatásban. Baksa Attila. Miskolci Egyetem, Mechanikai Tanszék. Miskolc
Oktatási segédlet VEM alapjai ADINA használata a BSc oktatásban Baksa Attila Miskolci Egyetem, Mechanikai Tanszék Miskolc 2009 1. rész Bevezetés az ADINA használatába 1.1. Áttekintés ADINA Automatic
RészletesebbenMagasépítési öszvérfödémek numerikus szimuláció alapú méretezése
BME Hidak és Szerkezetek Tanszéke Magasépítési öszvérfödémek numerikus szimuláció alapú méretezése Seres Noémi DEVSOG Témavezetı: Dr. Dunai László Bevezetés Az elıadás témája öszvérfödémek együttdolgoztató
RészletesebbenTENGELY TERHELHETŐSÉGI VIZSGÁLATA
MISKOLCI EGYETEM GÉP- ÉS TERMÉKTERVEZÉSI TANSZÉK OKTATÁSI SEGÉDLET a GÉPSZERKEZETTAN - TERVEZÉS c. tantárgyhoz TENGELY TERHELHETŐSÉGI VIZSGÁLATA Összeállította: Dr. Szente József egyetemi docens Miskolc,
RészletesebbenGyakorló feladatok síkalakváltozás alkalmazására forgásszimmetrikus esetben térfogati terhelés nélkül és térfogati terheléssel.
Alkalmazások síkalakváltozásra: Gakorló feladatok síkalakváltozás alkalmazására forgásszimmetrikus esetben térfogati terhelés nélkül és térfogati terheléssel. SAF1. Az ábrán vázolt zárt vastagfal csövet
Részletesebben2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
RészletesebbenAZ M0 AUTÓPÁLYA ÉSZAKI DUNA-HÍD MEREVÍTŐTARTÓJÁNAK LOKÁLIS FESZÜLTSÉGSZÁMÍTÁSA
AZ M0 AUTÓPÁLYA ÉSZAKI DUNA-HÍD MEREVÍTŐTARTÓJÁNAK LOKÁLIS FESZÜLTSÉGSZÁMÍTÁSA Jakab Gábor * - Joó Attila László ** - Dunai László *** RÖVID KIVONAT Az M0 autópálya Északi Hídja független ellenőrzése során
RészletesebbenSzennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver
Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver 1. A numerikus szimulációról általában A szennyeződés-terjedési modellek numerikus megoldása A szennyeződés-terjedési modellek transzportegyenletei
RészletesebbenGEOTECHNIKAI TERVEZÉS II. LGM_SE012_2
GEOTECHNIKAI TERVEZÉS II. LGM_SE012_2 se.sze.hu Szilvágyi Zsolt szilvagyi@sze.hu TÉMAKÖRÖK 2 1. Geotechnikai VEM modellezés SzZs 2. Munkatérhatárolás modellezése szoftverekkel SzR ZH: munkatérhatárolás
RészletesebbenMARINKÓ ÁDÁM RJCTW8 TDK DOKUMENTÁCIÓ 2015
MARINKÓ ÁDÁM RJCTW8 TDK DOKUMENTÁCIÓ 2015 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék MARINKÓ ÁDÁM TDK DOLGOZAT 2015 Nyomástartó
RészletesebbenKorrodált acélszerkezetek vizsgálata
Korrodált acélszerkezetek vizsgálata 1. Szerkezeti példák és laboratóriumi alapkutatás Oszvald Katalin Témavezető : Dr. Dunai László Budapest, 2009.12.08. 1 Általános célkitűzések Korrózió miatt károsodott
RészletesebbenTartószerkezetek tervezése tűzhatásra - az Eurocode szerint
Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Dr. Horváth László egyetemi docens Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszék Tartalom Mire ad választ az Eurocode?
RészletesebbenMikrocölöp alapozás ellenőrzése
36. számú mérnöki kézikönyv Frissítve: 2017. június Mikrocölöp alapozás ellenőrzése Program: Fájl: Cölöpcsoport Demo_manual_en_36.gsp Ennek a mérnöki kézikönyvnek a célja, egy mikrocölöp alapozás ellenőrzésének
RészletesebbenFELADAT LEÍRÁSA. A váz egyszerűsített geometria modelljét az alábbi ábra szemlélteti.
FELADAT LEÍRÁSA Határozzuk meg az alábbi szorító vázában keletkező feszültségeloszlást, ha a csavaros szorítással biztosított szorító erő nagysága 1500 N. A váz anyaga alumínium, rugalmassági modulusza
RészletesebbenÖsszeállította Horváth László egyetemi tanár
Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011
RészletesebbenFöldstatikai feladatok megoldási módszerei
Földstatikai feladatok megoldási módszerei A véges elemes analízis (Finite Element Method) alapjai Folytonos közeg (kontinuum) mechanikai állapotának leírása Egy pont mechanikai állapotjellemzıi és egyenletek
RészletesebbenRugalmas, szálerősítésű, rétegelt, vékony kompozit forgáshéjak érzékenységi vizsgálata és alakoptimalizálása
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI KAR Rugalmas, szálerősítésű, rétegelt, vékony kompozit forgáshéjak érzékenységi vizsgálata és alakoptimalizálása Ph.D. ÉRTEKEZÉS TÉZISEI Készítette: Csonka Béla okleveles
RészletesebbenCölöpalapozások - bemutató
12. számú mérnöki kézikönyv Frissítve: 2016. április Cölöpalapozások - bemutató Ennek a mérnöki kézikönyvnek célja, hogy bemutassa a GEO 5 cölöpalapozás számításra használható programjainak gyakorlati
RészletesebbenEbben a fejezetben egy szögtámfal tervezését, és annak teljes számítását mutatjuk be.
2. számú mérnöki kézikönyv Frissítve: 2016. Február Szögtámfal tervezése Program: Szögtámfal File: Demo_manual_02.guz Feladat: Ebben a fejezetben egy szögtámfal tervezését, és annak teljes számítását mutatjuk
RészletesebbenMODELLEZÉS ÉS SZIMULÁCIÓ (A LINEÁRIS RUGALMASSÁGTAN ÉS A VÉGESELEM-MÓDSZER)
MODELLEZÉS ÉS SZIMULÁCIÓ (A LINEÁRIS RUGALMASSÁGTAN ÉS A VÉGESELEM-MÓDSZER) MODELLEZÉS ÉS SZIMULÁCIÓ (A LINEÁRIS RUGALMASSÁGTAN ÉS A VÉGESELEM-MÓDSZER) Szerzők: Dr. Mankovits Tamás Huri Dávid Lektor: Dr.
RészletesebbenCAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés
CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés Farkas Zsolt Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1/ 14 Tartalom -Sajátosság alapú tervezés:
RészletesebbenEbben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését és elfordulását.
10. számú mérnöki kézikönyv Frissítve: 2016. Február Síkalap süllyedése Program: Fájl: Síkalap Demo_manual_10.gpa Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését
RészletesebbenDigitális képek feldolgozása Előfeldolgozás Radiometriai korrekció Geometriai korrekció Képjavítás Szűrők Sávok közötti műveletek Képosztályozás Utófe
Távérzékelés Digitális felvételek előfeldolgozása (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési
RészletesebbenPélda: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2013. szeptember 23. Javítva: 2013.10.09.
Részletesebben