Kvantitatív módszerek
|
|
- Lídia Ballané
- 8 évvel ezelőtt
- Látták:
Átírás
1 Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék URL:
2 Mennyiségi problémák megoldása analitikus numerikus szimuláció játék Nem éles a határ! 2/30
3 Analitikus megoldás -x 2 +2x+3=0 5 4 x 1,2 = b ± b 2 2 4ac y a x 1 =3, x 2 = maxz = -x 2 +2x+3-2x+2 = 0 x=1, y=4-6 x 3/30
4 Az analitikus (probléma)megoldás lépései a feladat verbális (szöveges) megfogalmazása, a matematikai modell megalkotása, a matematikai modell transzformációja (ill. egyszerűsítése) megoldásra alkalmas formára, a megoldás egymás utáni lépéseinek (algoritmusának) rögzítése, a matematikai modell megoldását jelentő összefüggések meghatározása, (pl. (megoldó)képlet ) a megoldás ellenőrzése. 4/30
5 Numerikus megoldás -x 2 +2x+3=0 x 1 =3, x 2 =-1 táblázatkezelővel: célérték maxz = -x 2 +2x+3 x=1, y=4 táblázatkezelővel: szélsőértékérték y y x x 5/30
6 6/30
7 A numerikus megoldás lépései a feladat verbális (szöveges) megfogalmazása, a matematikai modell megalkotása, a matematikai modell átalakítása numerikus megoldásra alkalmas formára (diszkretizálás), a megoldás egymás utáni lépéseinek (algoritmusának) rögzítése, a blokkséma összeállítása, a számítási modell megoldását adó program megírása, és annak futtatása, a megoldás ellenőrzése. 7/30
8 Szimuláció Modellezés Működtetés Mi van ha? Mi lenne a legjobb? 8/30
9 Determinisztikus szimuláció Lehet numerikus módszernek is tekinteni 9/30
10 10/30
11 11/30
12 Sztochasztikus szimuláció Lehet numerikus módszernek is tekinteni Pl. integrálás Pl.: terület és térfogatszámítás (mák) 12/30
13 13/13
14 14/30
15 15/30
16 Modellezés Bemenetek (, paraméterek) Kimenetek Kapcsolat (függvény) Modell: leíró, fizikai, matematikai, vizuális, Szimuláció: a modell működtetése Játék: részvétel a modellben 16/30
17 A szimuláció lépései Probléma definiálása: A modellalkotás céljának megfogalmazása a várt eredmények figyelembevételével. A vizsgálandó rendszer meghatározása: A rendszer elemeinek, és a köztük levő kapcsolatok vizsgálata. A be-és kimenetek, az elemek jellemzőinek azonosítása, A modell elkészítése: Matematikai, illetve számítógépi modell kialakítása. A modell kalibrálása: Adatok gyűjtése és modellbe való beépítése (identifikáció), Verifikáció: A modell működésének vizsgálata, melynek célja annak ellenőrzése, hogy a számítógépi modell a matematikai modellnek megfelelően működik-e. Ez a vizsgálat az egész modellre, illetve annak részeire is elvégezhető. Validáció: Annak ellenőrzése, hogy a modell az elvárt tűréshatáron belül megfelelően leképezi-e a valós rendszert? Kisérletek: A szimulációs futtatások során keletkező adatok gyűjtése Kiértékelés: A futtatások során keletkezett adatok (statisztikai) értékelése, jellemzők/mutatószámok számítása, értelmezése, elemzések. 17/30
18 Dobókocka szimulációja 18/40
19 Dobókocka szimulációja 19/30
20 A generált véletlen számok 20/30
21 A modell verifikálása -dobókocka Pl. khi-négyzet módszer 21/30
22 A modell verifikálása -lottó (Vissza)kapjuk-e az eloszlást? 22/30
23 Lottó 23/30
24 A lottószámok tényleges eloszlása 24/13
25 Integrálás/területszámítás 25/30
26 26/30
27 27/30
28 Szimuláció CrystallBall-al 28/13
29 Lottó -Vissimben 29/13
30 A hagyományos (spreadsheet) elemzés Pontbecslés: az átlag az átlag félrevezető! Pl. átkelés egy átlagosan 1,5 méter mély folyón 30/30
31 A hagyományos (spreadsheet) elemzés Tartományok vizsgálata általában csak három pesszimista, közepes, optimista forgatókönyvek szerint, nem pedig a tényleges eloszlások alapján. 31/30
32 A hagyományos (spreadsheet) elemzés Időigényes a különböző változók különböző esetei kombinációinak vizsgálata különösen, ha ezek véletlen változók. ( Mi van ha? elemzés.) Költségek Alacsony Közepes Magas Értékesítés Alacsony Közepes Magas 32/30
33 Szimuláció Szimuláció: a valóság utánzása (elemzési céllal). Deteminisztikusszimuláció: Adott bemenetekre egyértelműen meghatározott kimenetet állít elő. Monte Carlo szimuláció: A valóságban előforduló véletlen jelenségek jellemzőinek értékeit véletlenszámokelőállításával utánozza. Nem a jövőt mutatja meg, hanem egy lehetséges jövőt (állapotot). A kísérleteket sokszor megismételve vonható le következtetés a várható állapotokról és azok valószínűségeiről. 33/30
34 Gyakori alkalmazási területek Projektek Befektetések Termelés Készletek Műszaki területek, pl. megbízhatóság, áramkörök működése, tűrésekkel kapcsolatos érzékenységvizsgálat Általában: kockázatelemzés 34/30
35 A szimuláció kritikája 1) absztrakt, nem valóságos világot ábrázol. A szimulációs eredményeknek nincs köze a valós világhoz, mivel a szimuláció, a matematikai modellezéshez hasonlóan túl stilizált és túl absztrakt, nem arról a világról beszél, melyben élünk. Az ágens alapú modellek az emberi viselkedés túlzottan leegyszerûsítettképét használják, melyek figyelmen kívül hagyják az emberi lény bonyolult természetét. 2) semmi újat nem nyújt, csak azt, ami a feltevésekbõlkövetkezik (Macy2001: unwrapping). A matematikai modellekhez hasonlóan a szimuláció nem tud semmi újat mondani, hiszen az adott feltételezéseket beépítve a számítógép semmi mást nem tesz, mint végrehajtja a programot. 3) nem lehet az eredményeket általánosítani (ellentétben az analitikus eredményekkel). A matematikai modellekkel szemben a szimulációk numerikusak, így nem tudnak általánosan érvényes megállapításokhoz vezetni. 35/40
Logisztikai szimulációs módszerek
Üzemszervezés Logisztikai szimulációs módszerek Dr. Juhász János Integrált, rugalmas gyártórendszerek tervezésénél használatos szimulációs módszerek A sztochasztikus külső-belső tényezőknek kitett folyamatok
Mérés és modellezés 1
Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell
ÁRAMKÖRÖK SZIMULÁCIÓJA
ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg
Méréselmélet MI BSc 1
Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
A MODELLALKOTÁS ELVEI ÉS MÓDSZEREI
SZENT ISTVÁN EGYETEM GÖDÖLLŐ MECHANIKAI ÉS GÉPTANI INTÉZET A MODELLALKOTÁS ELVEI ÉS MÓDSZEREI Dr. M. Csizmadia Béla egyetemi tanár, az MMK Gépészeti Tagozatának elnöke Budapest 2013. október. 25. BPMK
Balogh János gépészmérnök, műszaki menedzser MSc., vezető programkoordinációs szakértő 1
Építési projektek ütemtervi bizonytalanságainak, kockázatainak figyelembe vétele a pénzügyi tervezésnél Balogh János gépészmérnök, műszaki menedzser MSc., vezető programkoordinációs szakértő, MVM Paks
Szimulációs módszerek alkalmazása az üzleti döntéstámogatásban
Szimulációs módszerek alkalmazása az üzleti döntéstámogatásban Dr. Benedek Gábor Thesys Labs Kft. Pocsarovszky Károly Thesys Labs Kft. 2011.04.14. www.thesys-group.com Mit tekint(s)ünk szimulációnak? DES
TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés
TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre
Forgalmi modellezés BMEKOKUM209
BME Közlekedésüzemi és Közlekedésgazdasági Tanszék Forgalmi modellezés BMEKOKUM209 Szimulációs modellezés Dr. Juhász János A forgalmi modellezés célja A közlekedési igények bővülése és a motorizáció növekedése
Darabárus raktárak készletezési folyamatainak vizsgálata szimulációs eljárás segítségével
Bóna Krisztián: Darabárus raktárak készletezési folyamatainak vizsgálata szimulációs eljárás segítségével 1. Bevezető Napjaink kedvelt módszerei közé tartoznak a számítógépes operációkutatási módszerek,
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Mérés és modellezés Méréstechnika VM, GM, MM 1
Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Dinamikus modellek felállítása mérnöki alapelvek segítségével
IgyR - 3/1 p. 1/20 Integrált Gyártórendszerek - MSc Dinamikus modellek felállítása mérnöki alapelvek segítségével Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék IgyR - 3/1 p. 2/20
Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján
Az Országos kompetenciamérés (OKM) tartalmi kerete a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján Az OKM tartalmi keret Célja: definiálja azokat a tényezőket és szempontrendszereket, amelyek
XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában
XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus A véletlen nyomában Mi is az a véletlen? 1111111111, 1010101010, 1100010111 valószínűsége egyaránt 1/1024 Melyiket
REGIONÁLIS KLÍMAMODELLEZÉS AZ OMSZ-NÁL. Magyar Tudományos Akadémia szeptember 15. 1
Regionális klímamodellezés az Országos Meteorológiai Szolgálatnál HORÁNYI ANDRÁS (horanyi.a@met.hu) Csima Gabriella, Szabó Péter, Szépszó Gabriella Országos Meteorológiai Szolgálat Numerikus Modellező
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Sportberuházások pénzügyi és közgazdasági érzékenységvizsgálata kockázatok egy sportlétesítmény életében
Sportberuházások pénzügyi és közgazdasági érzékenységvizsgálata kockázatok egy sportlétesítmény életében Vörös Tünde Széchenyi István Egyetem Nyerges Mihály Emlékkonferencia 2017.01.26. Probléma felvetés
Modellezés és szimuláció. Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék
Modellezés és szimuláció Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék Kvantitatív forradalmak a földtudományban - geográfiában 1960- as évek eleje: statisztika 1970- as évek eleje:
Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver
Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver 1. A numerikus szimulációról általában A szennyeződés-terjedési modellek numerikus megoldása A szennyeződés-terjedési modellek transzportegyenletei
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási
Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak
Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak Dr. Koltai Tamás egyetemi tanár Menedzsment és Vállalatgazdaságtan Tanszék Tematika Kvantitatív eszközök használata Esettanulmányok
Projektfeladatok 2014, tavaszi félév
Projektfeladatok 2014, tavaszi félév Gyakorlatok Félév menete: 1. gyakorlat: feladat kiválasztása 2-12. gyakorlat: konzultációs rendszeres beszámoló a munka aktuális állásáról (kötelező) 13-14. gyakorlat:
Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak
Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak Dr. Koltai Tamás egyetemi tanár Menedzsment és Vállalatgazdaságtan Tanszék Tematika Kvantitatív eszközök használata Esettanulmányok
Valószínűségi modellellenőrzés Markov döntési folyamatokkal
Valószínűségi modellellenőrzés Markov döntési folyamatokkal Hajdu Ákos Szoftver verifikáció és validáció 2015.12.09. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek
( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket!
1. Név:......................... Egy szabályos pénzérmét feldobunk, ha az els½o FEJ az i-edik dobásra jön, akkor a játékos nyereménye ( 1) i i forint. Vizsgálja szimulációval a játékot, különböz½o induló
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
Informatika tanterv nyelvi előkészítő osztály heti 2 óra
Informatika tanterv nyelvi előkészítő osztály heti Számítógép feladata és felépítése Az informatikai eszközök használata Operációs rendszer Bemeneti egységek Kijelző egységek Háttértárak Feldolgozás végző
A pedagógiai kutatás metodológiai alapjai. Dr. Nyéki Lajos 2015
A pedagógiai kutatás metodológiai alapjai Dr. Nyéki Lajos 2015 A pedagógiai kutatás jellemző sajátosságai A pedagógiai kutatás célja a személyiség fejlődése, fejlesztése során érvényesülő törvényszerűségek,
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken
Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.
Loss Distribution Approach
Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói
Átlag (standard hiba)
Képességpont A képességpont valószínűségi modellel számított érték, amely a tanuló teszten elért eredményét egy mesterséges, a matematikai eszköztudást, illetve szövegértési képességet jelképező skálára
Matematikai modellezés
Matematikai modellezés Bevezető A diasorozat a Döntési modellek című könyvhöz készült. Készítette: Dr. Ábrahám István Döntési folyamatok matematikai modellezése Az emberi tevékenységben meghatározó szerepe
Hat Szigma Zöldöves Tanfolyam Tematikája
Hat Szigma Zöldöves Tanfolyam Tematikája Megjegyzések: A tanfolyamon haszáljuk: - Minitab statisztikai (demo) és - Companion by Minitab projektek menedzselésére szolgáló (demo) szoftvert, átadunk: - egy
Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével
Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése
Függvények ábrázolása
Függvények ábrázolása Matematikai függvényeket analitikusan nem tudunk a matlabban megadni (tudunk, de ilyet még nem tanulunk). Ahhoz, hogy egy függvényt ábrázoljuk, hasonlóan kell eljárni, mint a házi
Diplomamunkám felépítése
Üregek távolhatása gránitos kőzetkörnyezetben Tóth Szilvia Konzulensek: Dr. Török Ákos, BME Építőanyagok és Mérnökgeológia Tanszék Poromb Péter, Mott MacDonald Magyarország Kft. Diplomamunkám felépítése
8.3. AZ ASIC TESZTELÉSE
8.3. AZ ASIC ELÉSE Az eddigiekben a terv helyességének vizsgálatára szimulációkat javasoltunk. A VLSI eszközök (közöttük az ASIC) tesztelése egy sokrétűbb feladat. Az ASIC modellezése és a terv vizsgálata
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
13. modul: MÁSODFOKÚ FÜGGVÉNYEK
MATEMATIK A 9. évfolyam 13. modul: MÁSODFOKÚ FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 13. modul: MÁSODFOKÚ FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály
Hidraulikus hálózatok robusztusságának növelése
Dr. Dulovics Dezső Junior Szimpózium 2018. Hidraulikus hálózatok robusztusságának növelése Előadó: Huzsvár Tamás MSc. Képzés, II. évfolyam Témavezető: Wéber Richárd, Dr. Hős Csaba www.hds.bme.hu Az előadás
Gépészeti rendszertechnika (NGB_KV002_1)
Gépészeti rendszertechnika (NGB_KV002_1) 3. Óra Kőrös Péter Közúti és Vasúti Járművek Tanszék Tanszéki mérnök (IS201 vagy a tanszéken) E-mail: korosp@ga.sze.hu Web: http://www.sze.hu/~korosp http://www.sze.hu/~korosp/gepeszeti_rendszertechnika/
MILYEN FELADATOKNÁL HASZNÁLHATÓ?
SZIMULÁCIÓ FOGALMA: Olyan módszer, amely alkalmas a folyamatok valósághű modellezésére, és vele értékelhetőek a folyamat- és rendszer-állapotváltozások. A folyamat leutánzása, modellezése. Állapotváltozások
Gyalogos elütések szimulációs vizsgálata
Gyalogos elütések szimulációs vizsgálata A Virtual Crash program validációja Dr. Melegh Gábor BME Gépjárművek tanszék Budapest, Magyarország Vida Gábor BME Gépjárművek tanszék Budapest, Magyarország Ing.
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
KÖSZÖNTJÜK HALLGATÓINKAT!
2010. november 10. KÖSZÖNTJÜK HALLGATÓINKAT! Önök Dr. Horváth Zoltán Módszerek, amelyek megváltoztatják a világot A számítógépes szimuláció és optimalizáció jelentősége c. előadását hallhatják! 1 Módszerek,
Gépi tanulás és Mintafelismerés
Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
Kognitív játékok, feladatsorok és kompetenciamérések eredményeinek kapcsolatai
Pilot kutatás 2016 Kognitív játékok, feladatsorok és kompetenciamérések eredményeinek kapcsolatai Faragó Boglárka Kovács Kristóf Sarkadi-Nagy Szilvia 2016. június 14. Az előadás céljai A Kognitos Kft.
Gépészeti rendszertechnika (NGB_KV002_1)
Gépészeti rendszertechnika (NGB_KV002_1) 2. Óra Kőrös Péter Közúti és Vasúti Járművek Tanszék Tanszéki mérnök (IS201 vagy a tanszéken) E-mail: korosp@ga.sze.hu Web: http://www.sze.hu/~korosp http://www.sze.hu/~korosp/gepeszeti_rendszertechnika/
Szoftverminőségbiztosítás
NGB_IN003_1 SZE 2014-15/2 (13) Szoftverminőségbiztosítás Szoftverminőség és formális módszerek Formális módszerek Formális módszer formalizált módszer(tan) Formális eljárások alkalmazása a fejlesztésben
Informatika a valós világban: a számítógépek és környezetünk kapcsolódási lehetőségei
Informatika a valós világban: a számítógépek és környezetünk kapcsolódási lehetőségei Dr. Gingl Zoltán SZTE, Kísérleti Fizikai Tanszék Szeged, 2000 Február e-mail : gingl@physx.u-szeged.hu 1 Az ember kapcsolata
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS Dr. Soumelidis Alexandros 2018.10.04. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérés-feldolgozás
Kutatói pályára felkészítő akadémiai ismeretek modul
Kutatói pályára felkészítő akadémiai ismeretek modul Környezetgazdálkodás Modellezés, mint módszer bemutatása KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖK MSC Modellek csoportosítása I. 11. lecke Rendszertípusok
Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban
Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban Szépszó Gabriella Országos Meteorológiai Szolgálat, szepszo.g@met.hu RCMTéR hatásvizsgálói konzultációs workshop 2015. június 23.
Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata
Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Reichardt, András 27. szeptember 2. 2 / 5 NDSM Komplex alak U C k = T (T ) ahol ω = 2π T, k módusindex. Időfüggvény előállítása
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
3/29/12. Biomatematika 2. előadás. Biostatisztika = Biometria = Orvosi statisztika. Néhány egyszerű definíció:
Biostatisztika = Biometria = Orvosi statisztika Biomatematika 2. előadás Néhány egyszerű definíció: A statisztika olyan tudomány, amely a tömegjelenségekkel kapcsolatos tapasztalati törvényeket megfigyelések
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Adaptív menetrendezés ADP algoritmus alkalmazásával
Adaptív menetrendezés ADP algoritmus alkalmazásával Alcím III. Mechwart András Ifjúsági Találkozó Mátraháza, 2013. szeptember 10. Divényi Dániel Villamos Energetika Tanszék Villamos Művek és Környezet
Az új mértékadó árvízszintek meghatározásának módszertani összegzése
Az új mértékadó árvízszintek meghatározásának módszertani összegzése Szabó János A. HYDROInform Mottó: "The purpose of computation is insight, not numbers" A számítás célja a betekintés, nem számok Richard
10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK
MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul
ALGEBRAI KIFEJEZÉSEK, EGYENLETEK
ALGEBRAI KIFEJEZÉSEK, EGYENLETEK AZ ALGEBRAI KIFEJEZÉS FOGALMÁNAK KIALAKÍTÁSA (7-9. OSZTÁLY) Racionális algebrai kifejezés (betűs kifejezés): betűket és számokat a négy alapművelet véges sokszori alkalmazásával
13. Kockázatos Körkapcsolás
PMI Budapest, Magyar Tagozat 13. Kockázatos Körkapcsolás 2010. május 19. Tervezett program Előadások Előadó 13:00 Köszöntő és bevezető Szalay Imre, PMP PMI elnök 13:10 A PMI PMBOK kockázatmenedzsment megközelítése
Hő- és füstelvezetés, elmélet-gyakorlat
Hő- és füstelvezetés, elmélet-gyakorlat Mérnöki módszerek alkalmazásának lehetőségei Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu
LEGJOBB BECSLÉS Módszerek, egyszerűsítések
LEGJOBB BECSLÉS Módszerek, egyszerűsítések Tusnády Paula 2010. Június 24. 1 Tartalom Értékelési folyamat lépései Módszerek Arányosság elve Élet ági egyszerűsítések Nem-élet ági egyszerűsítések 2 Értékelési
Mi legyen az informatika tantárgyban?
Mi legyen az informatika tantárgyban? oktatás fő területei: digitális írástudás; számítástudomány; információs technológiák. Digitális írástudás szövegszerkesztés, adat vizualizáció, prezentáció, zeneszerkesztés,
Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba
I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30
Modellellenőrzés a vasút automatikai rendszerek fejlesztésében. XIX. Közlekedésfejlesztési és beruházási konferencia Bükfürdő
Modellellenőrzés a vasút automatikai rendszerek fejlesztésében XIX. Közlekedésfejlesztési és beruházási konferencia Bükfürdő 2018.04.25-27. Tartalom 1. Formális módszerek state of the art 2. Esettanulmány
OKM ISKOLAI EREDMÉNYEK
OKM ISKOLAI EREDMÉNYEK Statisztikai alapfogalmak Item Statisztikai alapfogalmak Átlag Leggyakrabban: számtani átlag Egyetlen számadat jól jellemzi az eredményeket Óvatosan: elfed Statisztikai alapfogalmak
8. Előadás: Szimuláció, I.
8. Előadás: Szimuláció, I. Wayne L. Winston: Operációkutatás, módszerek és alkalmazások, Aula Kiadó, Budapest, 2003 könyvének 21. fejezete alapján. A szimulációt komplex rendszerek elemzésére, tanulmányozására
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen
A jövő éghajlatának kutatása
Múzeumok Éjszakája 2018.06.23. A jövő éghajlatának kutatása Zsebeházi Gabriella Klímamodellező Csoport Hogyan lehet előrejelezni a következő évtizedek csapadékváltozását, miközben a következő heti is bizonytalan?
A XXI. SZÁZADRA BECSÜLT KLIMATIKUS TENDENCIÁK VÁRHATÓ HATÁSA A LEFOLYÁS SZÉLSŐSÉGEIRE A FELSŐ-TISZA VÍZGYŰJTŐJÉN
44. Meteorológiai Tudományos Napok Budapest, 2018. november 22 23. A XXI. SZÁZADRA BECSÜLT KLIMATIKUS TENDENCIÁK VÁRHATÓ HATÁSA A LEFOLYÁS SZÉLSŐSÉGEIRE A FELSŐ-TISZA VÍZGYŰJTŐJÉN Kis Anna 1,2, Pongrácz
11. modul: LINEÁRIS FÜGGVÉNYEK
MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
Alkalmazott matematikus mesterszak MINTATANTERV
Alkalmazott matematikus mesterszak MINTATANTERV Tartalom A MESTERSZAK SZERKEZETE... 1 A KÉPZÉSI PROGRAM ÁTTEKINTŐ SÉMÁJA... 1 NAPPALI TAGOZAT... 2 ESTI TAGOZAT... 6 0BA mesterszak szerkezete Alapozó ismeretek
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG
OpenCL alapú eszközök verifikációja és validációja a gyakorlatban
OpenCL alapú eszközök verifikációja és validációja a gyakorlatban Fekete Tamás 2015. December 3. Szoftver verifikáció és validáció tantárgy Áttekintés Miért és mennyire fontos a megfelelő validáció és
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Rendszermodellezés: házi feladat bemutatás
Rendszermodellezés: házi feladat bemutatás Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
permittivitás: tan : ), továbbá a külső gerjesztő mágneses tér erőssége.
PROJEKT-ELŐREHALADÁS 2. 2012. 12.02. 2013. 05. 31. 1. Modellkészítés. A használt számítógépes program a Computer Simulation Technology (CST) programcsalád Microwave Studio nevű eszköze. Ebben az alap geometriai
A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere
A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere Kaposvári Egyetem, Informatika Tanszék I. Kaposvári Gazdaságtudományi Konferencia
Különböző hagyományos és nem-hagyományos eljárások kombinálása: miért és hogyan? április 16.
Különböző hagyományos és nem-hagyományos eljárások kombinálása: miért és hogyan? 2008. április 16. Életből vett problémák, projektek Dunai Vasmű: acélkonverter modellezése Orvosi röntgenkép-kiértékelés
Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:
A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,
Ensemble előrejelzések: elméleti és gyakorlati háttér HÁGEL Edit Országos Meteorológiai Szolgálat Numerikus Modellező és Éghajlat-dinamikai Osztály 34
Ensemble előrejelzések: elméleti és gyakorlati háttér HÁGEL Edit Országos Meteorológiai Szolgálat Numerikus Modellező és Éghajlat-dinamikai Osztály 34. Meteorológiai Tudományos Napok Az előadás vázlata
AliROOT szimulációk GPU alapokon
AliROOT szimulációk GPU alapokon Nagy Máté Ferenc & Barnaföldi Gergely Gábor Wigner FK ALICE Bp csoport OTKA: PD73596 és NK77816 TARTALOM 1. Az ALICE csoport és a GRID hálózat 2. Szimulációk és az AliROOT
GÉPIPARI MÉRNÖKASSZISZTENS 55 810 01 0010 55 05
GÉPIPARI MÉRNÖKASSZISZTENS 55 810 01 0010 55 05 FEOR 3117 Gépésztechnikus VIZSGÁZTATÁSI KÖVETELMÉNYEK A szakmai vizsgára bocsátás feltételei: A képzési programban előírt gyakorlat teljesítéséről szóló
Válság és előrejelzés
Válság és előrejelzés Magyar Statisztikai Társaság 2009. október 15. Dr. Gáspár Tamás Tudományos főmunkatárs ECOSTAT 1998. augusztus A globális kapitalizmus válsága 2000. szeptember Nem omlott össze a
Biológiai rendszerek modellellenőrzése bayesi megközelítésben
Biológiai rendszerek modellellenőrzése bayesi megközelítésben Gál Tamás Zoltán Szoftver verifikáció és validáció kiselőadás, 2013. ősz Forrás: Sumit K. Jha et al.: A Bayesian Approach to Model Checking
Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével
Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program