Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata
|
|
- Erik Barta
- 6 évvel ezelőtt
- Látták:
Átírás
1 Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Reichardt, András 27. szeptember 2.
2 2 / 5 NDSM Komplex alak U C k = T (T ) ahol ω = 2π T, k módusindex. Időfüggvény előállítása Mérnöki valós alak u(t) = u(t) = U + N p= N u(t) e j k ωt dt () U C p e j pω t N Û p cos (p ω t + ϱ p ) (2) p= Áttérés a komplex alakról (könnyen számítható) a mérnöki valós alakra (hálózatelméletben használjuk) Û p = 2 U C p ϱ p = arc{u C p } (3) RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
3 2 / 5 Feladat kitűzése NDSM Feladat kitűzése 2 Sorfejtés és eredménye 3 Maximális rend hatása 4 Kitöltési tényező hatása 5 Átvitel vizsgálata RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
4 3 / 5 Feladat kitűzése NDSM Feladat Vizsgáljuk meg a szimmetrikusan elhelyezkedő, T szélességű impulzust, ha a jel periódusa T! Hogyan változik a sorfejtés együtthatóinak nagysága a T T arány (kitöltési tényező) függvényében! Figyeljük meg azt az esetet, ha a szimmetikusság "megtörik", az impulzust T -vel a pozitív irányba eltoljuk (t t T )? Határozzuk meg az adott hálózat esetén a kimeneti feszültség együtthatóit! Figyeljük meg az átviteli viselkedését a R C érték változása esetén (törésponti frekvenciát a hálózat paramétereivel változtatjuk)! RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
5 3 / 5 Sorfejtés és eredménye NDSM Feladat kitűzése 2 Sorfejtés és eredménye 3 Maximális rend hatása 4 Kitöltési tényező hatása 5 Átvitel vizsgálata RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
6 4 / 5 Sorfejtés és eredménye NDSM Jel egy periódusa leírható az alábbi módon { V, T/2 < t < T/2 u(t) = V, egyébként Kiszámítjuk a komplex együtthatókat, majd ebből számítjuk ki a mérnöki valós alakot. U C k T/2 = u(t)e j k ωt dt = T T/2 T = [ ] e j k ω t T/2 T dt = jkω T T/2 T/2 T/2 jkω = 2j sin jk2π e j k ωt dt = ( e jkω T/2 e jkω T/2) = ( kπ T ) = T T T sin ( ) kπ T T kπ T T (4) Az átalakításkor szándékosan sin x x alakot akartunk elérni. RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
7 5 / 5 Sorfejtés és eredménye NDSM Jel és spektrális összetevői Jel alakja visszatranszformálva Jel spektruma.2.5 Amplitudo.8 UKC..5 x(t) t arc UKC k Fazis k RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
8 6 / 5 Sorfejtés és eredménye NDSM Folytonos burkoló A folytonos burkolót az analitikus alakból kaptuk meg, ahol k-t folytonos változónak tekintettük. A későbbiekben tanultakhoz lesz majd kacsolható. RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
9 6 / 5 Maximális rend hatása NDSM Feladat kitűzése 2 Sorfejtés és eredménye 3 Maximális rend hatása 4 Kitöltési tényező hatása 5 Átvitel vizsgálata RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
10 7 / 5 Maximális rend hatása NDSM Sorfejtés maximális rendjének hatása Idotartományban Effektiv ertek hibaja.2 k=2 k= x(t) rel hiba sor pontos % hatar t n RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
11 8 / 5 Maximális rend hatása NDSM Effektív érték számítása Pontos U eff = T u(t) T 2 dt =... = T T T (V )2 = T Időtartománybeli jelből - sorfejtésből kiszámítjuk a jelet t időközökben Ezekből a mintákból lehet (közelítőleg) numerikusan számítani U eff,kb = N t (U p ) T 2 = t/t N Up 2 p= Sorfejtési együtthatókból - mérnöki valós alakból U eff = U 2 + N 2 p= Û 2 p p= RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
12 8 / 5 Kitöltési tényező hatása NDSM Feladat kitűzése 2 Sorfejtés és eredménye 3 Maximális rend hatása 4 Kitöltési tényező hatása 5 Átvitel vizsgálata RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
13 9 / 5 Kitöltési tényező hatása NDSM Kitöltési tényező hatása, T/T = /2 és T/T = /9.2.8 DT/T=/2 DT/T=/9 UKC x(t) om.2 UKC t om Hasonlítsuk össze az időtartománybeli és a frekvenciatartománybeli alakokat a különböző kitöltési tényezők esetére! RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
14 9 / 5 Átvitel vizsgálata NDSM Feladat kitűzése 2 Sorfejtés és eredménye 3 Maximális rend hatása 4 Kitöltési tényező hatása 5 Átvitel vizsgálata RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
15 / 5 Átvitel vizsgálata NDSM A vizsgált hálózat esetében az átviteli karakterisztika U = U s R Z C 2R + R ZC =... = U /2RC s jω + 3 2RC A hálózati paraméterek változtatásával az átviteli tartomány is változik..4 Amplitudo.3 H om Fazis arc H om RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
16 / 5 Átvitel vizsgálata NDSM Azonos hálózat - T/T = /2 és T T = /7 gerjesztés.2 k=2, /RC = 7.2 k=2, /RC = 7 gerjesztes valasz y(t), u(t) piros jel - gerjesztés, zöld jel - válasz t Figyeljük meg a válasz és a gerjesztés jelalakját! Milyen következtetések vonhatóak le a hálózat hatásával kapcsolatosan? RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
17 2 / 5 Átvitel vizsgálata NDSM Hol helyezkednek el a sorfejtett módusok? U.5..5 gerjesztes valasz nem változott meg a válasz spektrumának alakja (lényegesen) a hálózat aluláteresztő volta miatt a kisebb jelentőségű felharmonikusok kerültek elnyomásra omega RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
18 3 / 5 Átvitel vizsgálata NDSM zöld pontok jelzik az átviteli karakterisztikában a gerjesztés által kiválasztott frekvenciákat nem egyenletes eloszlás vízszintesen, mert az ábra x-tengelye logaritmikus H(jw) UKC pontok. RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
19 4 / 5 Átvitel vizsgálata NDSM R C változása - törésponti frekvencia változtatása.2 n= ;om= n= 5;om= n= 8;om= n=2;om= RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
20 5 / 5 Átvitel vizsgálata NDSM matlab-file-ok A projektben érintett matlab file-ok. Ezek segítségével készültek az ábrák. Helyenként bele kell nyúlni a kódba, hogy a parmétereket megváltoztassuk impi.m / Alap sorfejtés és spektrumának rajzolása impi2.m / Maximális sorfejtési rend hatásának vizsgálata impi2.m / Kitöltési tényező változtatásának hatása impi2yt.m / Választ kiszámítva a spektrumok és időfüggvények ábrázolása impit32yt.m / Hálózati paraméter változtatásának hatása, összetett ábrát állítja elő RA (NDSM) Fourier. [Négyszögjel sorfejtése, átviteli vizsgálata] 27. szeptember 2.
Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék
Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006
FI rendszerek periodikus állandósult állapota (JR1 ismétlés)
FI rendszerek periodikus állandósult állapota (JR ismétlés) Dr. Horváth Péter, BME HV 6. szeptember.. feladat Az ábrán látható ún. Maxwell-Wienhídkapcsolás segítségével egy veszteséges tekercs L x induktivitása
RC tag mérési jegyz könyv
RC tag mérési jegyz könyv Mérést végezte: Csutak Balázs, Farkas Viktória Mérés helye és ideje: ITK 320. terem, 2016.03.09 A mérés célja: Az ELVIS próbapanel és az ELVIS m szerek használatának elsajátítása,
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen
RENDSZERTECHNIKA 8. GYAKORLAT
RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.
Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata
Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások
1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban
1. témakör A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban A hírközlés célja, általános modellje Üzenet: Hír: Jel: Zaj: Továbbításra szánt adathalmaz
π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ]
Pulzus Amplitúdó Moduláció (PAM) A Pulzus Amplitúdó Modulációról abban az esetben beszélünk, amikor egy impulzus sorozatot használunk vivőhullámnak és ezen a vivőhullámon valósítjuk meg az amplitúdómodulációt
Diszkrét idej rendszerek analízise szinuszos/periodikus állandósult állapotban
Diszkrét idej rendszerek analízise szinuszos/eriodikus állandósult állaotban Dr. Horváth Péter, BME HVT 6. november 4.. feladat Adjuk meg az alábbi jelfolyamhálózattal rerezentált rendszer átviteli karakterisztikáját
Mintavételezés és FI rendszerek DI szimulációja
Mintavételezés és FI rendszerek DI szimulációja Dr. Horváth Péter, BME HVT 5. december.. feladat Adott az alábbi FI jel: x f (t) = cos(3t) + cos(4t), ([ω] =krad/s). Legalább mekkorára kell választani a
Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN
Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe
Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
Digitális szűrők - (BMEVIMIM278) Házi Feladat
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rszerek Tanszék Digitális szűrők - (BMEVIMIM278) FIR-szűrő tervezése ablakozással Házi Feladat Név: Szőke Kálmán Benjamin Neptun:
Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv
Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv Lódi Péter(D1WBA1) 2015 Március 18. Bevezetés: Mérés helye: PPKE-ITK 3. emeleti 321-es Mérőlabor Mérés ideje: 2015.03.25. 13:15-16:00 Mérés
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata A legalapvetőbb áramkörök ellenállásokat, kondenzátorokat és indukciós tekercseket tartalmazó áramkörök. A fenti elemekből álló hálózatok
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata 2017.09.18. A legalapvetőbb áramkörök ellenállásokat, kondenzátorokat és indukciós tekercseket tartalmazó áramkörök. A fenti elemekből
Villamosságtan szigorlati tételek
Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok
Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító)
Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) 1. A D/A átalakító erısítési hibája és beállása Mérje meg a D/A átalakító erısítési hibáját! A hibát százalékban adja
Digitális jelfeldolgozás
Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.
Számítógépes gyakorlat MATLAB, Control System Toolbox
Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY Dr. Soumelidis Alexandros 2018.10.25. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mintavételezés
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata 2017.03.02. A legalapvetőbb áramkörök ellenállásokat, kondenzátorokat és indukciós tekercseket tartalmazó áramkörök. A fenti elemekből
Kiegészítés a Párbeszédes Informatikai Rendszerek tantárgyhoz
Kiegészítés a Párbeszédes Informatikai Rendszerek tantárgyhoz Fazekas István 2011 R1 Tartalomjegyzék 1. Hangtani alapok...5 1.1 Periodikus jelek...5 1.1.1 Időben periodikus jelek...5 1.1.2 Térben periodikus
DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1
DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két
Adatok: R B1 = 100 kω R B2 = 47 kω. R 2 = 33 kω. R E = 1,5 kω. R t = 3 kω. h 22E = 50 MΩ -1
1. feladat R B1 = 100 kω R B2 = 47 kω R C = 3 kω R E = 1,5 kω R t = 4 kω A tranzisztor paraméterei: h 21E = 180 h 22E = 30 MΩ -1 a) Számítsa ki a tranzisztor kollektor áramát, ha U CE = 6,5V, a tápfeszültség
A gyakorlat célja a fehér és a színes zaj bemutatása.
A gyakorlat célja a fehér és a színes zaj bemutatása. 1.@. FFT begyakorlása n = [:9]; % Harminc minta x = cos(*pi*n/1); % 1 mintát veszünk periodusonként N1 = 64; % Három módon számoljuk az FFT-t N = 18;
Elektromechanika. 6. mérés. Teljesítményelektronika
Elektromechanika 6. mérés Teljesítményelektronika 1. Rajzolja fel az ideális és a valódi dióda feszültségáram jelleggörbéjét! Valódi dióda karakterisztikája: Ideális dióda karakterisztikája (3-as jelű
Jelek és rendszerek - 4.előadás
Jelek és rendszerek - 4.előadás Rendszervizsgálat a komplex frekvenciatartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet
Mérés és adatgyűjtés
Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek
Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Mátrix-exponens, Laplace transzformáció
2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények
Kompenzációs kör vizsgálata. LabVIEW 7.1 4. előadás
Kompenzációs kör vizsgálata LabVIEW 7.1 4. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-4/1 Mágneses hiszterézis mérése előírt kimeneti jel mellett DAQ Rn Un etalon ellenállás etalon ellenállás
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról
Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról A mérés helyszíne: A mérés időpontja: A mérést végezték: A mérést vezető oktató neve: A jegyzőkönyvet tartalmazó
Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén
Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert
RC tag Amplitúdó és Fáziskarakterisztikájának felvétele
RC tag Amplitúdó és Fáziskarakterisztikájának felvétele Mérésadatgyűjtés és Jelfeldolgozás 12. ELŐADÁS Schiffer Ádám Egyetemi adjunktus Közérdekű 2008.05.09. PTE PMMK MIT 2 Közérdekű PÓTMÉRÉS: Akinek elmaradása
Feszültségérzékelők a méréstechnikában
5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika
ELLENŐRZŐ KÉRDÉSEK. Váltakozóáramú hálózatok
ELLENŐRZŐ KÉRDÉSEK Váltakozóáramú hálózatok Háromfázisú hálózatok Miért használunk többfázisú hálózatot? Mutassa meg a háromfázisú rendszer fontosabb jellemzőit és előnyeit az egyfázisú rendszerrel szemben!
CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN*
A Miskolci Egyetem Közleménye A sorozat, Bányászat, 66. kötet, (2004) p. 103-108 CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN* Dr.h.c.mult. Dr. Kovács Ferenc az
Inga. Szőke Kálmán Benjamin SZKRADT.ELTE május 18. A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt.
Inga Szőke Kálmán Benjamin SZKRADT.ELTE 2012. május 18. 1. Bevezetés A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt. A program forráskódját a labor honlapjáról lehetett elérni, és
A csavarvonal axonometrikus képéről
A avarvonal axonometrikus képéről Miután egyre jobban megy a Graph ingyenes függvény - ábrázoló szoftver használata, kipróbáltuk, hogy tudunk - e vele avarvonalat ábrázolni, axonometrikusan. A válasz:
ÁRAMKÖRÖK SZIMULÁCIÓJA
ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg
Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:
3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
Jelek és rendszerek - 7.előadás
Jelek és rendszerek - 7.előadás A Laplace-transzformáció és alkalmazása Mérnök informatika BSc Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2009. május 22. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KLTRÁLIS
Dekonvolúció a mikroszkópiában. Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ
Dekonvolúció a mikroszkópiában Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ 2015 Fourier-Sorok Minden 2π szerint periodikus függvény előállítható f x ~ a 0 2 + (a
AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
ATOMATKA ÉS ELEKTONKA SMEETEK KÖZÉPSZNTŰ ÍÁSBEL VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ A MNTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40. Egy A=,5 mm keresztmetszetű alumínium (ρ= 0,08 Ω mm /m)
Jelgenerálás virtuális eszközökkel. LabVIEW 7.1
Jelgenerálás virtuális eszközökkel (mágneses hiszterézis mérése) LabVIEW 7.1 3. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-3/1 Folytonos idejű jelek diszkrét idejű mérése A mintavételezési
EGYENÁRAMÚ TÁPEGYSÉGEK
dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan
A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra
A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni.
Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni. Kezdjük a sort a menetidőgörbékről, illetve az NMO korrekcióról tanultakkal. A következő ábrán
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
Jelgenerátorok ELEKTRONIKA_2
Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.
2. gyakorlat Mintavételezés, kvantálás
2. gyakorlat Mintavételezés, kvantálás x(t) x[k]= =x(k T) Q x[k] ^ D/A x(t) ~ ampl. FOLYTONOS idı FOLYTONOS ANALÓG DISZKRÉT MINTAVÉTELEZETT DISZKRÉT KVANTÁLT DIGITÁLIS Jelek visszaállítása egyenköző mintáinak
Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató
ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:
Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?
1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen
4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)
4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.
Nagyfrekvenciás rendszerek elektronikája házi feladat
Nagyfrekvenciás rendszerek elektronikája házi feladat Az elkészítendő kis adatsebességű, rövidhullámú, BPSK adóvevő felépítése a következő: Számítsa ki a vevő földelt bázisú kis zajú hangolt kollektorkörös
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
VILLAMOS FORGÓGÉPEK. Forgó mozgás létesítése
SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU VILLAMOS FORGÓGÉPEK Forgó mozgás létesítése Marcsa Dániel Villamos gépek és energetika 203/204 - őszi szemeszter Elektromechanikai átalakítás Villamos rendszer
Wavelet transzformáció
1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan
5. témakör. Szögmodulációk: Fázis és frekvenciamoduláció FM modulátorok, demodulátorok
5. témakör Szögmodulációk: Fázis és frekvenciamoduláció FM modulátorok, demodulátorok Szögmoduláció Általánosan felírva a vivőfrekvenciás jelet (AM-nél megismert módon): Amennyiben a vivő pillanatnyi amplitúdója
RC tag Amplitúdó és Fáziskarakterisztikájának felvétele
RC tag Amplitúdó és Fáziskarakterisztikájának felvétele Mérésadatgyűjtés és Jelfeldolgozás 11. ELŐADÁS Schiffer Ádám Egyetemi adjunktus Közérdekű PÓTMÉRÉS: Akinek elmaradása van, egy mérést pótolhat a
Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz
Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos
10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
101 ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel történik A feldolgozás előtt az analóg jeleket digitalizálni kell Rendszerint az
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI KAR HÍRADÁSTECHNIKA INTÉZET
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI KAR HÍRADÁSTECHNIKA INTÉZET Infokommunikációs Hálózatok laboratóriumi mérési útmutató HW3 mérés Splitter átviteli karakterisztikájának fölvétele különböző mérési módszerekkel
Passzív és aktív aluláteresztő szűrők
7. Laboratóriumi gyakorlat Passzív és aktív aluláteresztő szűrők. A gyakorlat célja: A Micro-Cap és Filterlab programok segítségével tanulmányozzuk a passzív és aktív aluláteresztő szűrők elépítését, jelátvitelét.
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK Dr. Soumelidis Alexandros 2018.10.18. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérések
Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK
Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Z UNIVERSITAS-GYŐR Kht. Győr, 25 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR TÁVKÖZLÉSI TANSZÉK Egyetemi jegyzet Írta:
milyen mennyiségeket jelölnek a Bode diagram tengelyei? csoportosítsa a determinisztikus jeleket!
A 2011-es ZH kérdései emlékezetből, majd közösen kidolgozva. Lehet benne rossz, de elég sokan szerkesztettük egyszerre, szóval feltehetően a nagyja helyes. milyen mennyiségeket jelölnek a Bode diagram
Kommunikációs hálózatok 2
Kommunikációs hálózatok 2 A fizikai rétegről Németh Krisztián BME TMIT 2017. márc. 27. Hajnalka névnap Színházi világnap A whisk(e)y világnapja :)* *Skót, kanadai, japán: whisky, ír, amerikai: whiskey
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR. Mikroelektronikai és Technológiai Intézet. Aktív Szűrők. Analóg és Hírközlési Áramkörök
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR Mikroelektronikai és Technológiai Intézet Analóg és Hírközlési Áramkörök Laboratóriumi Gyakorlatok Készítette: Joó Gábor és Pintér Tamás OE-MTI 2011 1.Szűrők
Digitális jelfeldolgozás
Digitális jelfeldolgozás Átviteli függvények Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. október 13. Digitális
Szinkronizmusból való kiesés elleni védelmi funkció
Budapest, 2011. december Szinkronizmusból való kiesés elleni védelmi funkció Szinkronizmusból való kiesés elleni védelmi funkciót főleg szinkron generátorokhoz alkalmaznak. Ha a generátor kiesik a szinkronizmusból,
ÁLTALÁNOS SZENZORINTERFACE KÉSZÍTÉSE HANGKÁRTYÁHOZ
ÁLTALÁNOS SZENZORINTERFACE KÉSZÍTÉSE HANGKÁRTYÁHOZ SIMONEK PÉTER KONZULENS: DR. OROSZ GYÖRGY MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK 2017. MÁJUS 10. CÉLKITŰZÉS Tesztpanel készítése műveleti erősítős
Z v 1 (t)v 2 (t τ)dt. R 12 (τ) = 1 R 12 (τ) = lim T T. ill. periódikus jelekre:
1 Korrelációs fügvények Hasonlóság mértéke a két függvény szorzatának integrálja Időbeli változások esetén lehet vizsgálni a hasonlóságot a τ relatív időkülönbség szerint: Keresztkorrelációs függvény:
1. ábra a függvénygenerátorok általános blokkvázlata
A függvénygenerátorok nemszinuszos jelekből állítanak elő kváziszinuszos jelet. Nemszinuszos jel lehet pl. a négyszögjel, a háromszögjel és a fűrészjel is. Ilyen típusú jeleket az úgynevezett relaxációs
Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)
Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás
4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!
Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális
A Matlab Home címkéje alatt a File szekcióban található a New gomb. Erre klikkelve a felugró lehetőségek közül válasszuk a Script lehetőséget.
1. Hozzon létre egy tetszőleges nevű mappát. Az elhelyezésekor vegye figyelembe, hogy az elkövetkező feladatokban a Matlab a létrehozott mappát használni fogja. A létrehozott mappát adja hozzá a Matlab
Numerikus módszerek. 9. előadás
Numerikus módszerek 9. előadás Differenciálegyenletek integrálási módszerei x k dx k dt = f x,t; k k ' k, k '=1,2,... M FELADAT: meghatározni x k t n x k, n egyenletes időlépés??? t n =t 0 n JELÖLÉS: f
Történeti Áttekintés
Történeti Áttekintés Történeti Áttekintés Értesülés, Információ Érzékelő Ítéletalkotó Értesülés, Információ Anyag, Energia BE Jelformáló Módosító Termelőeszköz Folyamat Rendelkezés Beavatkozás Anyag,
Mechatronika alapjai órai jegyzet
- 1969-ben alakult ki a szó - Rendszerek és folyamatok, rendszertechnika - Automatika, szabályozás - számítástechnika Cd olvasó: Dia Mechatronika alapjai órai jegyzet Minden mechatronikai rendszer alapstruktúrája
FODOR GYÖRGY JELEK ÉS RENDSZEREK
FODOR GYÖRGY JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, 2006 Előszó A valóságos fizikai, kémiai, műszaki, gazdasági folyamatokat modellek segítségével írjuk le. A modellalkotás során leegyszerűsítjük
Fourier transzformáció
Fourier transzformáció A szeizmikus hullámok tanulmányozása során igen nagy jelentősége van a hullámok frekvencia tartalmának. Ezt használjuk a hullámok alakjának mintavételezésekor, lineáris szűrések
4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!
Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg
Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.
El. II. 5. mérés. SZIMMETRIKUS ERŐSÍTŐK MÉRÉSE. A mérés célja : Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. A mérésre való felkészülés során tanulmányozza
1. Jelgenerálás, megjelenítés, jelfeldolgozás alapfunkciói
1. Jelgenerálás, megjelenítés, jelfeldolgozás alapfunkciói FELADAT Készítsen egy olyan tömböt, amelynek az elemeit egy START gomb megnyomásakor feltölt a program 1 periódusnyi szinuszosan változó értékekkel.
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek emelt szint 08 ÉETTSÉGI VIZSG 00. október 8. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ NEMZETI EŐFOÁS MINISZTÉIUM Egyszerű, rövid feladatok
DR. KOVÁCS ERNŐ MŰVELETI ERŐSÍTŐK MÉRÉSE
M I S K O L C I E G Y E T E M GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR ELEKTROTECHNIKAI-ÉS ELEKTRONIKAI INTÉZET DR. KOVÁCS ERNŐ MŰVELETI ERŐSÍTŐK MÉRÉSE MECHATRONIKAI MÉRNÖKI BSc alapszak hallgatóinak MÉRÉSI
Rendszervizsgálat frekvencia tartományban
DR. GYURCSEK ISTVÁN Rendszervizsgálat frekvencia tartományban Bode-diagramok Forrás és irodalom: http://lpsa.swarthmore.edu/bode/bode.html 1 2016.11.11.. Miről lesz szó? Bode-diagram alapfüggvények Elsőfokú
Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 007. május 5. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTRÁLIS MINISZTÉRIM Teszt jellegű
Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja
Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)