Dekonvolúció a mikroszkópiában. Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ
|
|
- Klára Mezei
- 7 évvel ezelőtt
- Látták:
Átírás
1 Dekonvolúció a mikroszkópiában Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ 2015
2 Fourier-Sorok Minden 2π szerint periodikus függvény előállítható f x ~ a (a k cos kx + b k sin kx ), k=1 ahol az a és b együtthatók: a k = 1 π 0 2π f x cos kx dx Joseph Fourier b k = 1 π 0 2π f x sin kx dx
3 Fourier sorok négyszögjel közelítése f x ~ 4 1 π n k=1,3,5, sin nπx L, ahol L a fél periódus f x ~ 4 π (sin π L x sin 3π L x sin 5π L x sin 7π L x + )
4
5 Fourier sorok négyszögjel közelítése 100x1 pixel kép
6 Fourier sorok négyszögjel közelítése X k = N 1 n=0 x n cos( 2πk n N + j sin 2πk n N ), n Z 100x1 pixel kép Komplex szám reprezentációja Diszkrét Fourier Transzformáció Magnitúdó kép (a complex vektor abszolult értéke: r) Diszkrét Fourier Transzformáció Fázis kép (a komplex vektor szöge: φ)
7 Fourier sorok négyszögjel közelítése Eredeti 50x50 pixel kép Fourier transzformált 50x50 pixel kép
8 Frekvencia kép jelentése Frekvencia kép 50x50 pixel Inverz Fourier Transzformáció 50x50 pixel IFFT
9 Frekvencia kép jelentése Frekvencia kép 50x50 pixel Inverz Fourier Transzformáció 50x50 pixel IFFT
10 Frekvencia kép jelentése Frekvencia kép 50x50 pixel Inverz Fourier Transzformáció 50x50 pixel IFFT
11 Frekvencia kép jelentése (Fázistolás) Frekvencia kép 50x50 pixel Inverz Fourier Transzformáció 50x50 pixel IFFT IFFT
12 Frekvencia kép jelentése Frekvencia kép 50x50 pixel Inverz Fourier Transzformáció 50x50 pixel λ IFFT k A k hossza a csíkozás frekvenciát adja meg, a szöge pedig az irányát (λ)
13 Magas Frekvenciák Fourier transzformáció Frekvencia kép (Magnitúdó) F f x = f(t)e 2πixt dt Alacsony Frekvenciák Eredeti kép Frekvencia kép (Fázis) F k, l = N 1 M 1 i=0 j=0 f(i, j)e i2π(ki N +lj M )
14 Fontos a Fázis információ is Frekvencia kép (Magnitúdó) Eredeti kép Inverz FT de nulla fázis mindenhol
15 Frekvencia kép jelentése Eredeti kép Frekvencia kép (Magnitúdó)
16 Frekvencia kép jelentése Eredeti kép Frekvencia kép (Magnitúdó)
17 Frekvencia kép jelentése Eredeti kép Magas frekvenciák kiszűrése(magnitúdó)
18 Optikai Fourier Transzformáció
19 Optikai Fourier Transzformáció
20 Optikai Képalkotás Pontátviteli Függvény
21 Optikai Képalkotás Pontátviteli Függvény Original structure Microscope image Ernst Abbe 1873 R(Airy) = 1.22λ/2NA(obj) R(Airy) = 1.22*510/2*1.4 = 222 nm
22 Optikai Képalkotás (Konvolúció) Eredeti Kép Átviteli Függvény (PSF) Konvolúció
23 Optikai Képalkotás Eredeti Kép Konvolúció: f g = + Diszkrét 2D Konvolúció: i= j= f t g x t dt f(m, n) g(m, n) = f i, j g(m i, n j) i= j= Átviteli Függvény (PSF) Konvolúció
24 Optikai Képalkotás (Dekonvolúció) Eredeti Kép Átviteli Függvény (PSF) Mikroszkópos kép = A konvolúció egy hasznos tulajdonsága: Dekonvolúció: F(f g) = F(f)F(g) F Mik. kép = F Eredeti. kep F(PSF) F Eredeti. kep = F Mik. kép F(PSF)
25 Optikai Képalkotás (Dekonvolúció) Eredeti Kép Átviteli Függvény (PSF) Mikroszkópos kép = A konvolúció egy hasznos tulajdonsága: Dekonvolúció: F(f g) = F(f)F(g) F Mik. kép = F Eredeti. kep F(PSF) F Eredeti. kep = F Mik. kép F(PSF)
26 Optikai Képalkotás (Dekonvolúció) FT Mikroszkópos kép FT (PSF) FT Eredeti Kép = Inverz FT
27 Dekonvolúció Mi a probléma? - Nullával osztás ott, ahol a F(PSF) nulla - Zaj. Poisson eloszlású foton emisszió, detektor zajok. - PSF mérése nagyon nehéz. A PSF jelentősen függhet az XY de főleg a Z mélységtől (különösen nagy törésmutatókülönbségnél) A minta maga hatással van a PSF-re
28 Dekonvolúció Konvolúció a PSF-el Eredeti kép Dekonvolúció a PSF-hez adott zajjal
29 Dekonvolúciós stratégiák 2D dekonvolúció (csak egy képsíkunk van) 2D Legközelebbi szomszédok figyelembe vétele Wiener szűrő, teljes 3D zajkezeléssel Iteratív közelítés, kényszerek megadása (S>0) Vak (blind) dekonvolúció, a PSF nem ismert
30 Dekonvolúciós stratégiák Iteratív közelítés
31 Dekonvolúciós stratégiák A PSF nem ismert, vak dekonvolúció
32 Dekonvolúciós stratégiák Eredeti kép Nearest Neighbor Wiener Szűrő Gold s method Blind
33 Dekonvolúciós szoftverek DeconvolutionLab egy ImageJ plugin 2D és 3D mikroszkópos képek dekonvolúciójára ismert PSF-el. DeconvolutionJ Regularized Wiener Filter 2 és 3D adatra Autoquant 2D és 3D mikroszkópos képek dekonvolúciójára ismert PSF-el és Vak dekonvolúció is SVI Huygens 2D és 3D mikroszkópos képek dekonvolúciójára ismert PSF-el és Vak dekonvolúció is
34 Kép készítés dekonvolúcióhoz Megfelelő XY és Z irányú mintavételezés Telített (saturated) pixelek, voxelek kerülése Törésmutató kiegyenlítése, ha lehet Fakulás (Bleaching) kerülése Megvilágítás egyenletessége Mechanikai stabilitás (rezgésmentes asztal)
35 Mintavételezés dekonvolúcióhoz (Em. 500nm) SVI Huygens manual
36 Telített (saturated) pixelek, voxelek kerülése
37 Kép és mikroszkóp jellemzők
38 Dekonvolóciós paraméterek
39 Példák Konfokál 3 csatorna, 80nm/pixel 150nm Z lépés (15), n=1.31, 100x, NA1.47 Dekonvolvált Konfokál, Blind, Huygens Professional Dudok Barna, MTA KOKI, Piros:CB1 receptor, Kék:Biocitin, Zöld:Neuroligin
40 Példák Konfokál 3 csatorna, 80nm/pixel 150nm Z lépés (15), n=1.31, 100x, NA1.47 Dekonvolvált Konfokál, Blind, Huygens Professional Dudok Barna, MTA KOKI, Piros:CB1 receptor, Kék:Biocitin, Zöld:Neuroligin
41 Példák Konfokál 3 csatorna, 80nm/pixel 150nm Z lépés (15), n=1.31, 100x, NA1.47 Dekonvolvált Konfokál, Blind, Huygens Professional Dudok Barna, MTA KOKI, Piros:CB1 receptor, Kék:Biocitin, Zöld:Neuroligin
42 Példák Konfokál 3 csatorna, 80nm/pixel 150nm Z lépés (15), n=1.31, 100x, NA1.47 Dekonvolvált Konfokál, Blind, Huygens Professional Dudok Barna, MTA KOKI, Piros:CB1 receptor, Kék:Biocitin, Zöld:Neuroligin
43 Példák Konfokál 2 csatorna, 80nm/pixel 150nm Z lépés (15), n=1.31, 100x, NA1.47 Dekonvolvált Konfokál, Blind, Huygens Professional
44 Példák Konfokál 2 csatorna, 80nm/pixel 150nm Z lépés (15), n=1.31, 100x, NA1.47 Dekonvolvált Konfokál, Blind, Huygens Professional
45 Példák Konfokál 2 csatorna, 80nm/pixel 150nm Z lépés (15), n=1.31, 100x, NA1.47 Dekonvolvált Konfokál, Blind, Huygens Professional
46 Barna László, MTA KOKI, GFAP festés. Piros: eredeti, Zöld: dekonvolvált
47
48 Összefoglalás A dekonvolúció egy matematikai eljárás az eredeti jel helyreállítására, melyet a mérőrendszer átvitele és a zaj torzít. Növeli a kép felbontását, főleg Z irányban Növeli a kép kontrasztját Csökkenti a zajt
Fourier transzformáció
a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos
RészletesebbenFourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz
Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos
RészletesebbenFehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!)
DSP processzorok: 1 2 3 HP zajgenerátor: 4 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! Fehérzajhoz a konstans érték kell - megoldás a digitális
RészletesebbenShift regiszter + XOR kapu: 2 n állapot
DSP processzorok: 1 2 HP zajgenerátor: 3 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! 4 Fehérzajhoz a konstans érték kell - megoldás a digitális
RészletesebbenWavelet transzformáció
1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan
RészletesebbenDIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG:
DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG: kisszandi@mailbox.unideb.hu ImageJ (Fiji) Nyílt forrás kódú, java alapú képelemző szoftver https://fiji.sc/ Számos képformátumhoz megfelelő
RészletesebbenÖsszeállította: dr. Leitold Adrien egyetemi docens
Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b
RészletesebbenMérés és adatgyűjtés
Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek
RészletesebbenKépalkotás modellezése, metrikái. Orvosi képdiagnosztika 6. ea ősz
Képalkotás modellezése, metrikái Orvosi képdiagnosztika 6. ea. 2015 ősz Jelölésjegyzék Rendszer válasza f gerjesztésre: Dirac-delta: x ; egységugrás: 0 idejű Dirac-delta gerjesztése a rendszer válasza:
RészletesebbenKéprekonstrukció 3. előadás
Képrekonstrukció 3. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Computed Tomography (CT) Elv: Röntgen-sugarak áthatolása 3D objektum 3D térfogati kép Mérések
RészletesebbenKépalkotás modellezése, metrikái. Orvosi képdiagnosztika 2017 ősz
Képalkotás modellezése, metrikái Orvosi képdiagnosztika 2017 ősz Jelölésjegyzék Rendszer válasza f gerjesztésre: Dirac-delta: x ; egységugrás: 0 idejű Dirac-delta gerjesztése a rendszer válasza: h x x
RészletesebbenDigitális jelfeldolgozás
Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.
RészletesebbenFourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata
Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Reichardt, András 27. szeptember 2. 2 / 5 NDSM Komplex alak U C k = T (T ) ahol ω = 2π T, k módusindex. Időfüggvény előállítása
RészletesebbenRENDSZERTECHNIKA 8. GYAKORLAT
RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.
RészletesebbenMátrix-exponens, Laplace transzformáció
2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények
RészletesebbenSajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István
Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága
RészletesebbenRövid ismertető. Modern mikroszkópiai módszerek. A mikroszkóp. A mikroszkóp. Az optikai mikroszkópia áttekintése
Rövid ismertető Modern mikroszkópiai módszerek Nyitrai Miklós 2010. március 16. A mikroszkópok csoportosítása Alapok, ismeretek A működési elvek Speciális módszerek A mikroszkópia története ld. Pdf. Minél
RészletesebbenOptika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
RészletesebbenFourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 7-8. ea ősz
Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 7-8. ea. 2015 ősz 7. előadás tartalma Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Frekvenciaszivárgás
Részletesebbeny = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)
III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp
RészletesebbenDigitális jelfeldolgozás
Digitális jelfeldolgozás Átviteli függvények Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. október 13. Digitális
RészletesebbenFény- és fluoreszcens mikroszkópia. A mikroszkóp felépítése Brightfield mikroszkópia
Fény- és fluoreszcens mikroszkópia A mikroszkóp felépítése Brightfield mikroszkópia Történeti áttekintés 1595. Jensen (Hollandia): első összetett mikroszkóp (2 lencse, állítható távolság) 1625. Giovanni
RészletesebbenFourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz
Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 6. Előadás tartalma Spektrumszivárgás Képfeldolgozás frekvencia tartományban: 2D Spektrum gépi ábrázolása Szűrések frekvenciatartományban
RészletesebbenJelfeldolgozás bevezető. Témalaboratórium
Jelfeldolgozás bevezető Témalaboratórium Tartalom Jelfeldolgozás alapjai Lineáris rendszerelmélet Fourier transzformációk és kapcsolataik Spektrális képek értelmezése Képfeldolgozás alapjai Néhány nevezetesebb
RészletesebbenFI rendszerek periodikus állandósult állapota (JR1 ismétlés)
FI rendszerek periodikus állandósult állapota (JR ismétlés) Dr. Horváth Péter, BME HV 6. szeptember.. feladat Az ábrán látható ún. Maxwell-Wienhídkapcsolás segítségével egy veszteséges tekercs L x induktivitása
Részletesebben7. Előadás tartalma. Lineáris szűrők: Inverz probléma dekonvolúció: Klasszikus szűrők súly és átviteli függvénye Gibbs jelenség
7. Előadás tartalma Lineáris szűrők: Klasszikus szűrők súly és átviteli üggvénye Gibbs jelenség Inverz probléma dekonvolúció: Inverz probléma ormális elírása Dekonvolúció nehézsége Közismert algoritmusok:
RészletesebbenDINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1
DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n
RészletesebbenA médiatechnológia alapjai
A médiatechnológia alapjai Úgy döntöttem, hogy a Szirányi oktatta előadások számonkérhetőnek tűnő lényegét kiemelem, az alapján, amit a ZH-ról mondott: rövid kérdések. A rész és az egész: összefüggések
RészletesebbenFourier sorok február 19.
Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható
RészletesebbenÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK Dr. Soumelidis Alexandros 2018.10.18. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérések
RészletesebbenFény- és fluoreszcens mikroszkópia. Optikai szeletelés
Fény- és fluoreszcens mikroszkópia Optikai szeletelés Widefield mikroszkópia Z Focal plane Z Focal plane Widefield mikroszkópia vs optikai szeletelés http://zeiss-campus.magnet.fsu.edu/tutorials/opticalsectioning/confocalwidefield/index.html
Részletesebben7. Moduláció átviteli függvény mérése
7. Moduláció átviteli függvény mérése Bevezető A leképezőrendszerek képminőségét több ok miatt is fontos számszerűen jellemeznünk. Az egyik az, hogy a képminőség ezáltal válik specifikálhatóvá, magyarán
RészletesebbenÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY Dr. Soumelidis Alexandros 2018.10.25. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mintavételezés
RészletesebbenGépészeti rendszertechnika (NGB_KV002_1)
Gépészeti rendszertechnika (NGB_KV002_1) 6. Óra Kőrös Péter Közúti és Vasúti Járművek Tanszék Tanszéki mérnök (IS201 vagy a tanszéken) E-mail: korosp@ga.sze.hu Web: http://www.sze.hu/~korosp http://www.sze.hu/~korosp/gepeszeti_rendszertechnika/
Részletesebben4. Szűrés frekvenciatérben
4. Szűrés frekvenciatérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) Unitér transzformációk Az unitér transzformációk olyan lineáris,
RészletesebbenFourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 6-8. ea ősz
Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 6-8. ea. 2016 ősz 6. előadás tartalma Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Spektrumszivárgás
RészletesebbenOrtogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41
Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét
RészletesebbenAnyagi tulajdonságok meghatározása spektrálisan
Ágazati Á felkészítés a hazai EL projekttel összefüggő ő képzési é és K+F feladatokra" " 9. előadás Anyagi tulajdonságok meghatározása spektrálisan bontott interferometriával (SR) 1 Bevezetés A diszperzív
RészletesebbenJelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem
Sapientia - Erdélyi Magyar Tudományegyetem 2007 Megnevezések Diszkrét Dirac jel Delta függvény Egységimpluzus függvény A diszkrét Dirac jel δ[n] = { 1, n = 0 0, n 0 d[n] { 1, n = n0 δ[n n 0 ] = 0, n n
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
RészletesebbenAbszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
RészletesebbenMintavétel: szorzás az idő tartományban
1 Mintavételi törvény AD átalakítók + sávlimitált jel τ időközönként mintavétel Mintavétel: szorzás az idő tartományban 1/τ körfrekvenciánként ismétlődik - konvolúció a frekvenciatérben. 2 Nem fednek át:
RészletesebbenInformatika Rendszerek Alapjai
Informatika Rendszerek Alapjai Dr. Kutor László Alapfogalmak Információ-feldolgozó paradigmák Analóg és digitális rendszerek jellemzői Jelek típusai Átalakítás rendszerek között http://uni-obuda.hu/users/kutor/
Részletesebbenilletve, mivel előjelét a elnyeli, a szinuszból pedig kiemelhető: = " 3. = + " 2 = " 2 % &' + +
DFT 1. oldal A Fourier-sorfejtés szerint minden periodikus jel egyértelműen felírható különböző amplitúdójú és fázisú szinusz és koszinusz jelek összegeként: = + + 1. ahol az együtthatók, szintén a definíció
RészletesebbenMechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
RészletesebbenA gyakorlat célja a fehér és a színes zaj bemutatása.
A gyakorlat célja a fehér és a színes zaj bemutatása. 1.@. FFT begyakorlása n = [:9]; % Harminc minta x = cos(*pi*n/1); % 1 mintát veszünk periodusonként N1 = 64; % Három módon számoljuk az FFT-t N = 18;
RészletesebbenAbszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
RészletesebbenSzámítógépes gyakorlat MATLAB, Control System Toolbox
Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges
Részletesebben1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban
1. témakör A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban A hírközlés célja, általános modellje Üzenet: Hír: Jel: Zaj: Továbbításra szánt adathalmaz
RészletesebbenStatisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
RészletesebbenMilyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez
1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet
RészletesebbenMegoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
RészletesebbenFourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.
ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés
RészletesebbenJelanalízis. Neuronális aktivitás
Jelanalízis Neuronális aktivitás 2/10 a bioelektromos jelek lényegében két kategóriába esnek: gyors jelek (spike aktivitás) és lassú jelek (EEG, mezőpotenciál, stb.) a jelanalízis alapvetően különbözik
RészletesebbenKommunikációs hálózatok 2
Kommunikációs hálózatok 2 A fizikai rétegről Németh Krisztián BME TMIT 2017. márc. 27. Hajnalka névnap Színházi világnap A whisk(e)y világnapja :)* *Skót, kanadai, japán: whisky, ír, amerikai: whiskey
Részletesebbenπ π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ]
Pulzus Amplitúdó Moduláció (PAM) A Pulzus Amplitúdó Modulációról abban az esetben beszélünk, amikor egy impulzus sorozatot használunk vivőhullámnak és ezen a vivőhullámon valósítjuk meg az amplitúdómodulációt
RészletesebbenVIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
RészletesebbenUtolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20
Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális
RészletesebbenDiszkrét idej rendszerek analízise szinuszos/periodikus állandósult állapotban
Diszkrét idej rendszerek analízise szinuszos/eriodikus állandósult állaotban Dr. Horváth Péter, BME HVT 6. november 4.. feladat Adjuk meg az alábbi jelfolyamhálózattal rerezentált rendszer átviteli karakterisztikáját
RészletesebbenLin.Alg.Zh.1 feladatok
LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális
RészletesebbenDigitális képek szegmentálása. 5. Textúra. Kató Zoltán.
Digitális képek szegmentálása 5. Textúra Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Textúra fogalma Sklansky: Egy képen egy területnek állandó textúrája van ha a lokális statisztikák vagy
RészletesebbenPTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben
RészletesebbenBiofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
RészletesebbenIdő-frekvencia transzformációk waveletek
Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 2015. április 23. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos
RészletesebbenGibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén
Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert
RészletesebbenJelfeldolgozás. Gyakorlat: A tantermi gyakorlatokon való részvétel kötelező! Kollokvium: csak gyakorlati jeggyel!
1 Jelfeldolgozás Jegyzet: http://itl7.elte.hu : Elektronika jegyzet (Csákány A., ELTE TTK 119) Jelek feldolgozása (Bagoly Zs. Csákány A.) angol nyelv DSP (PDF) jegyzet Gyakorlat: A tantermi gyakorlatokon
RészletesebbenJelek és rendszerek - 12.előadás
Jelek és rendszerek - 12.előadás A Z-transzformáció és alkalmazása Mérnök informatika BSc Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék
RészletesebbenEllenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen
RészletesebbenNéhány fontosabb folytonosidejű jel
Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1
RészletesebbenDigitális szűrők - (BMEVIMIM278) Házi Feladat
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rszerek Tanszék Digitális szűrők - (BMEVIMIM278) FIR-szűrő tervezése ablakozással Házi Feladat Név: Szőke Kálmán Benjamin Neptun:
RészletesebbenPontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.
Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom
RészletesebbenJelek és rendszerek - 4.előadás
Jelek és rendszerek - 4.előadás Rendszervizsgálat a komplex frekvenciatartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet
RészletesebbenKomplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18
Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök
RészletesebbenJelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék
Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006
RészletesebbenRezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
RészletesebbenGazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
RészletesebbenOrvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
RészletesebbenAz elektromágneses sugárzás kölcsönhatása az anyaggal
Az elektromágneses sugárzás kölcsönhatása az anyaggal Radiometriai alapfogalmak Kisugárzott felületi teljesítmény Besugárzott felületi teljesítmény A fény kölcsönhatása az anyaggal 1. M ΔP W ΔA m 2 E be
RészletesebbenJelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03
Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő
RészletesebbenLineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
RészletesebbenRezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
RészletesebbenSzent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István
Szent István Egyetem Fizika és folyamatirányítási Tanszék rezgések egydimenziós hullám hangok fizikája Dr. Seres István Harmonikus rezgőmozgás ( sin(ct) ) ( c cos(ct) ) c sin(ct) ( cos(ct) ) ( c sin(ct)
RészletesebbenMátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
RészletesebbenMatematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Részletesebben3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
Részletesebben11. Orthogonal Frequency Division Multiplexing ( OFDM)
11. Orthogonal Frequency Division Multiplexing ( OFDM) Az OFDM (Orthogonal Frequency Division Multiplexing ) az egyik legszélesebb körben alkalmazott eljárás. Ez az eljárás az alapja a leggyakrabban alkalmazott
RészletesebbenAz elméleti mechanika alapjai
Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.
RészletesebbenA mintavételezéses mérések alapjai
A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel
RészletesebbenKépfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008
Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi
RészletesebbenADAT- ÉS INFORMÁCIÓFELDOLGOZÁS
ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS Földtudományi mérnöki MSc mesterszak 2018/19 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy
RészletesebbenDankházi Z., Kalácska Sz., Baris A., Varga G., Ratter K., Radi Zs.*, Havancsák K.
Dankházi Z., Kalácska Sz., Baris A., Varga G., Ratter K., Radi Zs.*, Havancsák K. ELTE, TTK KKMC, 1117 Budapest, Pázmány Péter sétány 1/A. * Technoorg Linda Kft., 1044 Budapest, Ipari Park utca 10. Műszer:
RészletesebbenOPTIKA. Fotometria. Dr. Seres István
OPTIKA Dr. Seres István Segédmennyiségek: Síkszög: ívhossz/sugár Kör középponti szöge: 2 (radián) Térszög: terület/sugár a négyzeten sr A 2 r (szteradián = sr) i r Gömb középponti térszöge: 4 (szteradián)
Részletesebben4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)
4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
RészletesebbenBevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv
Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv Lódi Péter(D1WBA1) 2015 Március 18. Bevezetés: Mérés helye: PPKE-ITK 3. emeleti 321-es Mérőlabor Mérés ideje: 2015.03.25. 13:15-16:00 Mérés
RészletesebbenAz egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
RészletesebbenKépalkotó diagnosztikai eljárások:
Képalkotó diagnosztikai eljárások: Soroljon fel néhány orvosi képalkotáson alapuló diagnosztikai eljárást, mely o Transzmissziós o Indukciós o Emissziós elv alkalmazásán alapul. Mire szolgálnak az egyes
RészletesebbenInternational GTE Conference MANUFACTURING 2012. 14-16 November, 2012 Budapest, Hungary. Ákos György*, Bogár István**, Bánki Zsolt*, Báthor Miklós*,
International GTE Conference MANUFACTURING 2012 14-16 November, 2012 Budapest, Hungary MÉRŐGÉP FEJLESZTÉSE HENGERES MUNKADARABOK MÉRETELLENŐRZÉSÉRE Ákos György*, Bogár István**, Bánki Zsolt*, Báthor Miklós*,
Részletesebben