Dekonvolúció a mikroszkópiában. Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Dekonvolúció a mikroszkópiában. Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ"

Átírás

1 Dekonvolúció a mikroszkópiában Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ 2015

2 Fourier-Sorok Minden 2π szerint periodikus függvény előállítható f x ~ a (a k cos kx + b k sin kx ), k=1 ahol az a és b együtthatók: a k = 1 π 0 2π f x cos kx dx Joseph Fourier b k = 1 π 0 2π f x sin kx dx

3 Fourier sorok négyszögjel közelítése f x ~ 4 1 π n k=1,3,5, sin nπx L, ahol L a fél periódus f x ~ 4 π (sin π L x sin 3π L x sin 5π L x sin 7π L x + )

4

5 Fourier sorok négyszögjel közelítése 100x1 pixel kép

6 Fourier sorok négyszögjel közelítése X k = N 1 n=0 x n cos( 2πk n N + j sin 2πk n N ), n Z 100x1 pixel kép Komplex szám reprezentációja Diszkrét Fourier Transzformáció Magnitúdó kép (a complex vektor abszolult értéke: r) Diszkrét Fourier Transzformáció Fázis kép (a komplex vektor szöge: φ)

7 Fourier sorok négyszögjel közelítése Eredeti 50x50 pixel kép Fourier transzformált 50x50 pixel kép

8 Frekvencia kép jelentése Frekvencia kép 50x50 pixel Inverz Fourier Transzformáció 50x50 pixel IFFT

9 Frekvencia kép jelentése Frekvencia kép 50x50 pixel Inverz Fourier Transzformáció 50x50 pixel IFFT

10 Frekvencia kép jelentése Frekvencia kép 50x50 pixel Inverz Fourier Transzformáció 50x50 pixel IFFT

11 Frekvencia kép jelentése (Fázistolás) Frekvencia kép 50x50 pixel Inverz Fourier Transzformáció 50x50 pixel IFFT IFFT

12 Frekvencia kép jelentése Frekvencia kép 50x50 pixel Inverz Fourier Transzformáció 50x50 pixel λ IFFT k A k hossza a csíkozás frekvenciát adja meg, a szöge pedig az irányát (λ)

13 Magas Frekvenciák Fourier transzformáció Frekvencia kép (Magnitúdó) F f x = f(t)e 2πixt dt Alacsony Frekvenciák Eredeti kép Frekvencia kép (Fázis) F k, l = N 1 M 1 i=0 j=0 f(i, j)e i2π(ki N +lj M )

14 Fontos a Fázis információ is Frekvencia kép (Magnitúdó) Eredeti kép Inverz FT de nulla fázis mindenhol

15 Frekvencia kép jelentése Eredeti kép Frekvencia kép (Magnitúdó)

16 Frekvencia kép jelentése Eredeti kép Frekvencia kép (Magnitúdó)

17 Frekvencia kép jelentése Eredeti kép Magas frekvenciák kiszűrése(magnitúdó)

18 Optikai Fourier Transzformáció

19 Optikai Fourier Transzformáció

20 Optikai Képalkotás Pontátviteli Függvény

21 Optikai Képalkotás Pontátviteli Függvény Original structure Microscope image Ernst Abbe 1873 R(Airy) = 1.22λ/2NA(obj) R(Airy) = 1.22*510/2*1.4 = 222 nm

22 Optikai Képalkotás (Konvolúció) Eredeti Kép Átviteli Függvény (PSF) Konvolúció

23 Optikai Képalkotás Eredeti Kép Konvolúció: f g = + Diszkrét 2D Konvolúció: i= j= f t g x t dt f(m, n) g(m, n) = f i, j g(m i, n j) i= j= Átviteli Függvény (PSF) Konvolúció

24 Optikai Képalkotás (Dekonvolúció) Eredeti Kép Átviteli Függvény (PSF) Mikroszkópos kép = A konvolúció egy hasznos tulajdonsága: Dekonvolúció: F(f g) = F(f)F(g) F Mik. kép = F Eredeti. kep F(PSF) F Eredeti. kep = F Mik. kép F(PSF)

25 Optikai Képalkotás (Dekonvolúció) Eredeti Kép Átviteli Függvény (PSF) Mikroszkópos kép = A konvolúció egy hasznos tulajdonsága: Dekonvolúció: F(f g) = F(f)F(g) F Mik. kép = F Eredeti. kep F(PSF) F Eredeti. kep = F Mik. kép F(PSF)

26 Optikai Képalkotás (Dekonvolúció) FT Mikroszkópos kép FT (PSF) FT Eredeti Kép = Inverz FT

27 Dekonvolúció Mi a probléma? - Nullával osztás ott, ahol a F(PSF) nulla - Zaj. Poisson eloszlású foton emisszió, detektor zajok. - PSF mérése nagyon nehéz. A PSF jelentősen függhet az XY de főleg a Z mélységtől (különösen nagy törésmutatókülönbségnél) A minta maga hatással van a PSF-re

28 Dekonvolúció Konvolúció a PSF-el Eredeti kép Dekonvolúció a PSF-hez adott zajjal

29 Dekonvolúciós stratégiák 2D dekonvolúció (csak egy képsíkunk van) 2D Legközelebbi szomszédok figyelembe vétele Wiener szűrő, teljes 3D zajkezeléssel Iteratív közelítés, kényszerek megadása (S>0) Vak (blind) dekonvolúció, a PSF nem ismert

30 Dekonvolúciós stratégiák Iteratív közelítés

31 Dekonvolúciós stratégiák A PSF nem ismert, vak dekonvolúció

32 Dekonvolúciós stratégiák Eredeti kép Nearest Neighbor Wiener Szűrő Gold s method Blind

33 Dekonvolúciós szoftverek DeconvolutionLab egy ImageJ plugin 2D és 3D mikroszkópos képek dekonvolúciójára ismert PSF-el. DeconvolutionJ Regularized Wiener Filter 2 és 3D adatra Autoquant 2D és 3D mikroszkópos képek dekonvolúciójára ismert PSF-el és Vak dekonvolúció is SVI Huygens 2D és 3D mikroszkópos képek dekonvolúciójára ismert PSF-el és Vak dekonvolúció is

34 Kép készítés dekonvolúcióhoz Megfelelő XY és Z irányú mintavételezés Telített (saturated) pixelek, voxelek kerülése Törésmutató kiegyenlítése, ha lehet Fakulás (Bleaching) kerülése Megvilágítás egyenletessége Mechanikai stabilitás (rezgésmentes asztal)

35 Mintavételezés dekonvolúcióhoz (Em. 500nm) SVI Huygens manual

36 Telített (saturated) pixelek, voxelek kerülése

37 Kép és mikroszkóp jellemzők

38 Dekonvolóciós paraméterek

39 Példák Konfokál 3 csatorna, 80nm/pixel 150nm Z lépés (15), n=1.31, 100x, NA1.47 Dekonvolvált Konfokál, Blind, Huygens Professional Dudok Barna, MTA KOKI, Piros:CB1 receptor, Kék:Biocitin, Zöld:Neuroligin

40 Példák Konfokál 3 csatorna, 80nm/pixel 150nm Z lépés (15), n=1.31, 100x, NA1.47 Dekonvolvált Konfokál, Blind, Huygens Professional Dudok Barna, MTA KOKI, Piros:CB1 receptor, Kék:Biocitin, Zöld:Neuroligin

41 Példák Konfokál 3 csatorna, 80nm/pixel 150nm Z lépés (15), n=1.31, 100x, NA1.47 Dekonvolvált Konfokál, Blind, Huygens Professional Dudok Barna, MTA KOKI, Piros:CB1 receptor, Kék:Biocitin, Zöld:Neuroligin

42 Példák Konfokál 3 csatorna, 80nm/pixel 150nm Z lépés (15), n=1.31, 100x, NA1.47 Dekonvolvált Konfokál, Blind, Huygens Professional Dudok Barna, MTA KOKI, Piros:CB1 receptor, Kék:Biocitin, Zöld:Neuroligin

43 Példák Konfokál 2 csatorna, 80nm/pixel 150nm Z lépés (15), n=1.31, 100x, NA1.47 Dekonvolvált Konfokál, Blind, Huygens Professional

44 Példák Konfokál 2 csatorna, 80nm/pixel 150nm Z lépés (15), n=1.31, 100x, NA1.47 Dekonvolvált Konfokál, Blind, Huygens Professional

45 Példák Konfokál 2 csatorna, 80nm/pixel 150nm Z lépés (15), n=1.31, 100x, NA1.47 Dekonvolvált Konfokál, Blind, Huygens Professional

46 Barna László, MTA KOKI, GFAP festés. Piros: eredeti, Zöld: dekonvolvált

47

48 Összefoglalás A dekonvolúció egy matematikai eljárás az eredeti jel helyreállítására, melyet a mérőrendszer átvitele és a zaj torzít. Növeli a kép felbontását, főleg Z irányban Növeli a kép kontrasztját Csökkenti a zajt

Fourier transzformáció

Fourier transzformáció a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos

Részletesebben

Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!)

Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!) DSP processzorok: 1 2 3 HP zajgenerátor: 4 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! Fehérzajhoz a konstans érték kell - megoldás a digitális

Részletesebben

Shift regiszter + XOR kapu: 2 n állapot

Shift regiszter + XOR kapu: 2 n állapot DSP processzorok: 1 2 HP zajgenerátor: 3 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! 4 Fehérzajhoz a konstans érték kell - megoldás a digitális

Részletesebben

Wavelet transzformáció

Wavelet transzformáció 1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan

Részletesebben

DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG:

DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG: DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG: kisszandi@mailbox.unideb.hu ImageJ (Fiji) Nyílt forrás kódú, java alapú képelemző szoftver https://fiji.sc/ Számos képformátumhoz megfelelő

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek

Részletesebben

Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 6. ea ősz

Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 6. ea ősz Képalkotás modellezése, metrikái Orvosi képdiagnosztika 6. ea. 2015 ősz Jelölésjegyzék Rendszer válasza f gerjesztésre: Dirac-delta: x ; egységugrás: 0 idejű Dirac-delta gerjesztése a rendszer válasza:

Részletesebben

Képrekonstrukció 3. előadás

Képrekonstrukció 3. előadás Képrekonstrukció 3. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Computed Tomography (CT) Elv: Röntgen-sugarak áthatolása 3D objektum 3D térfogati kép Mérések

Részletesebben

Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 2017 ősz

Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 2017 ősz Képalkotás modellezése, metrikái Orvosi képdiagnosztika 2017 ősz Jelölésjegyzék Rendszer válasza f gerjesztésre: Dirac-delta: x ; egységugrás: 0 idejű Dirac-delta gerjesztése a rendszer válasza: h x x

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.

Részletesebben

Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata

Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Reichardt, András 27. szeptember 2. 2 / 5 NDSM Komplex alak U C k = T (T ) ahol ω = 2π T, k módusindex. Időfüggvény előállítása

Részletesebben

RENDSZERTECHNIKA 8. GYAKORLAT

RENDSZERTECHNIKA 8. GYAKORLAT RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.

Részletesebben

Mátrix-exponens, Laplace transzformáció

Mátrix-exponens, Laplace transzformáció 2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények

Részletesebben

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága

Részletesebben

Rövid ismertető. Modern mikroszkópiai módszerek. A mikroszkóp. A mikroszkóp. Az optikai mikroszkópia áttekintése

Rövid ismertető. Modern mikroszkópiai módszerek. A mikroszkóp. A mikroszkóp. Az optikai mikroszkópia áttekintése Rövid ismertető Modern mikroszkópiai módszerek Nyitrai Miklós 2010. március 16. A mikroszkópok csoportosítása Alapok, ismeretek A működési elvek Speciális módszerek A mikroszkópia története ld. Pdf. Minél

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 7-8. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 7-8. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 7-8. ea. 2015 ősz 7. előadás tartalma Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Frekvenciaszivárgás

Részletesebben

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax) III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Átviteli függvények Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. október 13. Digitális

Részletesebben

Fény- és fluoreszcens mikroszkópia. A mikroszkóp felépítése Brightfield mikroszkópia

Fény- és fluoreszcens mikroszkópia. A mikroszkóp felépítése Brightfield mikroszkópia Fény- és fluoreszcens mikroszkópia A mikroszkóp felépítése Brightfield mikroszkópia Történeti áttekintés 1595. Jensen (Hollandia): első összetett mikroszkóp (2 lencse, állítható távolság) 1625. Giovanni

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 6. Előadás tartalma Spektrumszivárgás Képfeldolgozás frekvencia tartományban: 2D Spektrum gépi ábrázolása Szűrések frekvenciatartományban

Részletesebben

Jelfeldolgozás bevezető. Témalaboratórium

Jelfeldolgozás bevezető. Témalaboratórium Jelfeldolgozás bevezető Témalaboratórium Tartalom Jelfeldolgozás alapjai Lineáris rendszerelmélet Fourier transzformációk és kapcsolataik Spektrális képek értelmezése Képfeldolgozás alapjai Néhány nevezetesebb

Részletesebben

FI rendszerek periodikus állandósult állapota (JR1 ismétlés)

FI rendszerek periodikus állandósult állapota (JR1 ismétlés) FI rendszerek periodikus állandósult állapota (JR ismétlés) Dr. Horváth Péter, BME HV 6. szeptember.. feladat Az ábrán látható ún. Maxwell-Wienhídkapcsolás segítségével egy veszteséges tekercs L x induktivitása

Részletesebben

7. Előadás tartalma. Lineáris szűrők: Inverz probléma dekonvolúció: Klasszikus szűrők súly és átviteli függvénye Gibbs jelenség

7. Előadás tartalma. Lineáris szűrők: Inverz probléma dekonvolúció: Klasszikus szűrők súly és átviteli függvénye Gibbs jelenség 7. Előadás tartalma Lineáris szűrők: Klasszikus szűrők súly és átviteli üggvénye Gibbs jelenség Inverz probléma dekonvolúció: Inverz probléma ormális elírása Dekonvolúció nehézsége Közismert algoritmusok:

Részletesebben

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n

Részletesebben

A médiatechnológia alapjai

A médiatechnológia alapjai A médiatechnológia alapjai Úgy döntöttem, hogy a Szirányi oktatta előadások számonkérhetőnek tűnő lényegét kiemelem, az alapján, amit a ZH-ról mondott: rövid kérdések. A rész és az egész: összefüggések

Részletesebben

Fourier sorok február 19.

Fourier sorok február 19. Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK Dr. Soumelidis Alexandros 2018.10.18. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérések

Részletesebben

Fény- és fluoreszcens mikroszkópia. Optikai szeletelés

Fény- és fluoreszcens mikroszkópia. Optikai szeletelés Fény- és fluoreszcens mikroszkópia Optikai szeletelés Widefield mikroszkópia Z Focal plane Z Focal plane Widefield mikroszkópia vs optikai szeletelés http://zeiss-campus.magnet.fsu.edu/tutorials/opticalsectioning/confocalwidefield/index.html

Részletesebben

7. Moduláció átviteli függvény mérése

7. Moduláció átviteli függvény mérése 7. Moduláció átviteli függvény mérése Bevezető A leképezőrendszerek képminőségét több ok miatt is fontos számszerűen jellemeznünk. Az egyik az, hogy a képminőség ezáltal válik specifikálhatóvá, magyarán

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY Dr. Soumelidis Alexandros 2018.10.25. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mintavételezés

Részletesebben

Gépészeti rendszertechnika (NGB_KV002_1)

Gépészeti rendszertechnika (NGB_KV002_1) Gépészeti rendszertechnika (NGB_KV002_1) 6. Óra Kőrös Péter Közúti és Vasúti Járművek Tanszék Tanszéki mérnök (IS201 vagy a tanszéken) E-mail: korosp@ga.sze.hu Web: http://www.sze.hu/~korosp http://www.sze.hu/~korosp/gepeszeti_rendszertechnika/

Részletesebben

4. Szűrés frekvenciatérben

4. Szűrés frekvenciatérben 4. Szűrés frekvenciatérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) Unitér transzformációk Az unitér transzformációk olyan lineáris,

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 6-8. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 6-8. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 6-8. ea. 2016 ősz 6. előadás tartalma Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Spektrumszivárgás

Részletesebben

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41 Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét

Részletesebben

Anyagi tulajdonságok meghatározása spektrálisan

Anyagi tulajdonságok meghatározása spektrálisan Ágazati Á felkészítés a hazai EL projekttel összefüggő ő képzési é és K+F feladatokra" " 9. előadás Anyagi tulajdonságok meghatározása spektrálisan bontott interferometriával (SR) 1 Bevezetés A diszperzív

Részletesebben

Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem

Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem Sapientia - Erdélyi Magyar Tudományegyetem 2007 Megnevezések Diszkrét Dirac jel Delta függvény Egységimpluzus függvény A diszkrét Dirac jel δ[n] = { 1, n = 0 0, n 0 d[n] { 1, n = n0 δ[n n 0 ] = 0, n n

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

Mintavétel: szorzás az idő tartományban

Mintavétel: szorzás az idő tartományban 1 Mintavételi törvény AD átalakítók + sávlimitált jel τ időközönként mintavétel Mintavétel: szorzás az idő tartományban 1/τ körfrekvenciánként ismétlődik - konvolúció a frekvenciatérben. 2 Nem fednek át:

Részletesebben

Informatika Rendszerek Alapjai

Informatika Rendszerek Alapjai Informatika Rendszerek Alapjai Dr. Kutor László Alapfogalmak Információ-feldolgozó paradigmák Analóg és digitális rendszerek jellemzői Jelek típusai Átalakítás rendszerek között http://uni-obuda.hu/users/kutor/

Részletesebben

illetve, mivel előjelét a elnyeli, a szinuszból pedig kiemelhető: = " 3. = + " 2 = " 2 % &' + +

illetve, mivel előjelét a elnyeli, a szinuszból pedig kiemelhető: =  3. = +  2 =  2 % &' + + DFT 1. oldal A Fourier-sorfejtés szerint minden periodikus jel egyértelműen felírható különböző amplitúdójú és fázisú szinusz és koszinusz jelek összegeként: = + + 1. ahol az együtthatók, szintén a definíció

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

A gyakorlat célja a fehér és a színes zaj bemutatása.

A gyakorlat célja a fehér és a színes zaj bemutatása. A gyakorlat célja a fehér és a színes zaj bemutatása. 1.@. FFT begyakorlása n = [:9]; % Harminc minta x = cos(*pi*n/1); % 1 mintát veszünk periodusonként N1 = 64; % Három módon számoljuk az FFT-t N = 18;

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Számítógépes gyakorlat MATLAB, Control System Toolbox

Számítógépes gyakorlat MATLAB, Control System Toolbox Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges

Részletesebben

1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban

1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban 1. témakör A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban A hírközlés célja, általános modellje Üzenet: Hír: Jel: Zaj: Továbbításra szánt adathalmaz

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény;   Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;

Részletesebben

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez 1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Jelanalízis. Neuronális aktivitás

Jelanalízis. Neuronális aktivitás Jelanalízis Neuronális aktivitás 2/10 a bioelektromos jelek lényegében két kategóriába esnek: gyors jelek (spike aktivitás) és lassú jelek (EEG, mezőpotenciál, stb.) a jelanalízis alapvetően különbözik

Részletesebben

Kommunikációs hálózatok 2

Kommunikációs hálózatok 2 Kommunikációs hálózatok 2 A fizikai rétegről Németh Krisztián BME TMIT 2017. márc. 27. Hajnalka névnap Színházi világnap A whisk(e)y világnapja :)* *Skót, kanadai, japán: whisky, ír, amerikai: whiskey

Részletesebben

π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ]

π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ] Pulzus Amplitúdó Moduláció (PAM) A Pulzus Amplitúdó Modulációról abban az esetben beszélünk, amikor egy impulzus sorozatot használunk vivőhullámnak és ezen a vivőhullámon valósítjuk meg az amplitúdómodulációt

Részletesebben

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3

Részletesebben

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék,   Wettl Ferenc (BME) Utolsó el adás / 20 Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális

Részletesebben

Diszkrét idej rendszerek analízise szinuszos/periodikus állandósult állapotban

Diszkrét idej rendszerek analízise szinuszos/periodikus állandósult állapotban Diszkrét idej rendszerek analízise szinuszos/eriodikus állandósult állaotban Dr. Horváth Péter, BME HVT 6. november 4.. feladat Adjuk meg az alábbi jelfolyamhálózattal rerezentált rendszer átviteli karakterisztikáját

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális

Részletesebben

Digitális képek szegmentálása. 5. Textúra. Kató Zoltán.

Digitális képek szegmentálása. 5. Textúra. Kató Zoltán. Digitális képek szegmentálása 5. Textúra Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Textúra fogalma Sklansky: Egy képen egy területnek állandó textúrája van ha a lokális statisztikák vagy

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu

Részletesebben

Idő-frekvencia transzformációk waveletek

Idő-frekvencia transzformációk waveletek Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 2015. április 23. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos

Részletesebben

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert

Részletesebben

Jelfeldolgozás. Gyakorlat: A tantermi gyakorlatokon való részvétel kötelező! Kollokvium: csak gyakorlati jeggyel!

Jelfeldolgozás. Gyakorlat: A tantermi gyakorlatokon való részvétel kötelező! Kollokvium: csak gyakorlati jeggyel! 1 Jelfeldolgozás Jegyzet: http://itl7.elte.hu : Elektronika jegyzet (Csákány A., ELTE TTK 119) Jelek feldolgozása (Bagoly Zs. Csákány A.) angol nyelv DSP (PDF) jegyzet Gyakorlat: A tantermi gyakorlatokon

Részletesebben

Jelek és rendszerek - 12.előadás

Jelek és rendszerek - 12.előadás Jelek és rendszerek - 12.előadás A Z-transzformáció és alkalmazása Mérnök informatika BSc Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék

Részletesebben

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

Digitális szűrők - (BMEVIMIM278) Házi Feladat

Digitális szűrők - (BMEVIMIM278) Házi Feladat Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rszerek Tanszék Digitális szűrők - (BMEVIMIM278) FIR-szűrő tervezése ablakozással Házi Feladat Név: Szőke Kálmán Benjamin Neptun:

Részletesebben

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20. Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom

Részletesebben

Jelek és rendszerek - 4.előadás

Jelek és rendszerek - 4.előadás Jelek és rendszerek - 4.előadás Rendszervizsgálat a komplex frekvenciatartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Az elektromágneses sugárzás kölcsönhatása az anyaggal

Az elektromágneses sugárzás kölcsönhatása az anyaggal Az elektromágneses sugárzás kölcsönhatása az anyaggal Radiometriai alapfogalmak Kisugárzott felületi teljesítmény Besugárzott felületi teljesítmény A fény kölcsönhatása az anyaggal 1. M ΔP W ΔA m 2 E be

Részletesebben

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03 Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István

Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István Szent István Egyetem Fizika és folyamatirányítási Tanszék rezgések egydimenziós hullám hangok fizikája Dr. Seres István Harmonikus rezgőmozgás ( sin(ct) ) ( c cos(ct) ) c sin(ct) ( cos(ct) ) ( c sin(ct)

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

11. Orthogonal Frequency Division Multiplexing ( OFDM)

11. Orthogonal Frequency Division Multiplexing ( OFDM) 11. Orthogonal Frequency Division Multiplexing ( OFDM) Az OFDM (Orthogonal Frequency Division Multiplexing ) az egyik legszélesebb körben alkalmazott eljárás. Ez az eljárás az alapja a leggyakrabban alkalmazott

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

A mintavételezéses mérések alapjai

A mintavételezéses mérések alapjai A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel

Részletesebben

Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008

Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008 Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi

Részletesebben

ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS

ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS Földtudományi mérnöki MSc mesterszak 2018/19 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy

Részletesebben

Dankházi Z., Kalácska Sz., Baris A., Varga G., Ratter K., Radi Zs.*, Havancsák K.

Dankházi Z., Kalácska Sz., Baris A., Varga G., Ratter K., Radi Zs.*, Havancsák K. Dankházi Z., Kalácska Sz., Baris A., Varga G., Ratter K., Radi Zs.*, Havancsák K. ELTE, TTK KKMC, 1117 Budapest, Pázmány Péter sétány 1/A. * Technoorg Linda Kft., 1044 Budapest, Ipari Park utca 10. Műszer:

Részletesebben

OPTIKA. Fotometria. Dr. Seres István

OPTIKA. Fotometria. Dr. Seres István OPTIKA Dr. Seres István Segédmennyiségek: Síkszög: ívhossz/sugár Kör középponti szöge: 2 (radián) Térszög: terület/sugár a négyzeten sr A 2 r (szteradián = sr) i r Gömb középponti térszöge: 4 (szteradián)

Részletesebben

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta) 4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv

Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv Lódi Péter(D1WBA1) 2015 Március 18. Bevezetés: Mérés helye: PPKE-ITK 3. emeleti 321-es Mérőlabor Mérés ideje: 2015.03.25. 13:15-16:00 Mérés

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Képalkotó diagnosztikai eljárások:

Képalkotó diagnosztikai eljárások: Képalkotó diagnosztikai eljárások: Soroljon fel néhány orvosi képalkotáson alapuló diagnosztikai eljárást, mely o Transzmissziós o Indukciós o Emissziós elv alkalmazásán alapul. Mire szolgálnak az egyes

Részletesebben

International GTE Conference MANUFACTURING 2012. 14-16 November, 2012 Budapest, Hungary. Ákos György*, Bogár István**, Bánki Zsolt*, Báthor Miklós*,

International GTE Conference MANUFACTURING 2012. 14-16 November, 2012 Budapest, Hungary. Ákos György*, Bogár István**, Bánki Zsolt*, Báthor Miklós*, International GTE Conference MANUFACTURING 2012 14-16 November, 2012 Budapest, Hungary MÉRŐGÉP FEJLESZTÉSE HENGERES MUNKADARABOK MÉRETELLENŐRZÉSÉRE Ákos György*, Bogár István**, Bánki Zsolt*, Báthor Miklós*,

Részletesebben