Anyagi tulajdonságok meghatározása spektrálisan
|
|
- Aurél Balog
- 6 évvel ezelőtt
- Látták:
Átírás
1 Ágazati Á felkészítés a hazai EL projekttel összefüggő ő képzési é és K+F feladatokra" " 9. előadás Anyagi tulajdonságok meghatározása spektrálisan bontott interferometriával (SR) 1
2 Bevezetés A diszperzív anyagok rövid impulzusokra gyakorolt hatásainak rövid áttekintése után két, a gyakorlatban is előszeretettel alkalmazott, anyagi tulajdonságok megállapítására alkalmas mérési módszerrel ismerkedünk meg, részletesen kitérve a mért adatok kiértékelésének módszereire. Diszperzív elemek fényimpulzusokra gyakorolt hatása Spektrálisan bontott interferometria (spectrally resolved interferometry - SR) Az interferogram kiértékelése Spektrálisan és térben bontott interferometria (spectrally and spatially resolved interferometry)
3 Anyag lineáris hatása a fényimpulzusra Lézerimpulzus általános időbeli alakja E { ( )} i 0t ϕ ( t ) ( t) = Re ( t) e E ~ iφ( ) ( ) = S( ) e φ φ ( ) = n ( ) z / c ntenzitás Fázis Spektrum Spektrális fázis E() t φ d z E(z, t) = 1 i kz π E ~ e ( ) ( t kz ) d = 1 ~ i ( t n( ) z / c) = ( ) d π E e Harmadrendű diszperzió (TOD) 3 d 1 d φ 1 d φ = d 6 d 0 = = ( ) = φ( ) + ( ) + ( ) + ( ) Csoportkésés (GD) Csoportkésés-diszperzió (GDD) 0 0
4 Spektrálisan bontott interferometria Mozgatható tükör r ( ) Diszperzív elem Lézer t ( ) Bontóelem CCD ( ) = ( ) + ( ) + ( ) ( ) cos( Δφ( ) ) r t r t Akétkarbólérkező karból érkező nyalábok közti fáziskülönbség 4
5 Az interferogram kialakulása Δ l 1 l d ( ) = ( ) + ( ) + ( ) ( ) cos( Δφ( ) ) r t ( ) 1 ϕ = 1 l c r t ( ) = φ' ( ) ˆ φ ( ) ( ) φ ( ) + ( l d ) φ ' 0 + ϕ ( ) = ϕ ( ) ϕ ( ) φ 1 = c ( ) = ˆ φ( ) + φ '( ) + ( l l d ) Δφ 0 1 Δφ ( ) = ˆ φ( ) + τ 5 Karhosszak különbségéből és a diszperzív elem által okozott időbeli késleltetés együtteséből származóidő dimenziójú mennyiség c
6 nterferogram 800 nm központi hullámhosszú 10 fs-os fourier-limitált impulzus különböző karhosszak diszperzív elem nélkül Δφ ( ) = τ Δ π τ Δ Minél nagyobb a késleltetés, annál sűrűbb csíkrendszert kapunk
7 nterferogram különböző minőségű anyagok esetén 800 nm központi hullámhosszú 10 fs-os fourier-limitált impulzus GDD=000 fs TOD= fs 3
8 nterferogram kiértékelése nverz Fourier-transzformáció 800 nm-es 10 fs-os impulzusok ps-os késleltetéssel GDD = 500 TOD =
9 nterferogram kiértékelése F 1 ( ) = ( ) + ( ) + ( ) ( ) cos( Δφ( ) ) r t r t { ( ) } = F { ( ) } + F { ( ) } + F ( ) ( ) cos( Δφ( ) ) r t FT ( t ) = ( t ) + ( t ) + ( t τ ' ) + ( t + τ ' ) r t it int { } r it int t 9
10 nterferogram kiértékelése ( ) = ( ) + ( ) + ( ) ( ) cos( Δφ( ) ) r r ( ) ( ) t t r t, Lassan változó függvény, így a fouriertranszformáltjaik a t=0 körüli tartományban jelennek meg: r (t), t (t) ( ) ( ) cos ( Δ φ ( ) ) r t ( ) Gyorsan változó függvény, így az it ' és az int t τ ( t + ) int τ ' Fourier-transzfordmáltjai a τ ' = τ + τ ' időpontok környezetében található. A környezetében keletkező csúcs az eredeti függvényünk valós voltával magyarázható. dφ d 10
11 nterferogram kiértékelése Az időbeli képből kivágjuk az interferenciából származó részt és Fourier-transzformáljuk 11
12 nterferogram kiértékelése A komplex spektrumból előállított fázisra n-ed rendű polinomot illesztünk τ = A GDD = B TOD = 6C 1
13 nterferogram kiértékelése Azonos karhosszak esetén a diszperzív elem csoport törésmutatójának kiszámításához kövessük az alábbi gondolatmenetet lézerfény lézerfény d diszperzív elem L Szükséges idő: Szükséges idő: Δt = Δ t' = d c d c L + Ln c g τ = ' ( Δt Δt) τcc n g = 1+ τ L 13
14 Kiértékelés összefoglalása Spektrális Az eddigiek feltételezték,! hogy a mintavételezés spektrográffal készített adatsorunk mintavételezése lineáris a nverz frekvenciatartományban. Fourier-transzformációval A spektrográfok azonban jó közelítéssel a átlépünk időtartományba hullámhosszban mintavételeznek egyenközűen Kivágjuk az információt tartalmazó részt Fourier-transzformációval Az inverz Fourier-transzformáció után, visszatérés amennyiben az gyors (FFT), nem a frekvencia-tartományba valóságos időtartományban kapjuk meg az adatokat Fázisadatok kinyerése Frekvenciaképben a egyenközüsítjük az komplex spektrumból adatokat lineáris interpoláció eljárás segítségével* *lineáris interpoláció adja a legjobb eredményt 14
15 Az időablak FFT esetén Az eljárás hullámhosszban lineáris mintavételezés esetén is alkalmazható. Fontos azonban tudni, hogy Az inverz Fourier-transzformáció során nem valódi időbeli képet kapunk τ Nagy -k esetén az intenzitás amplitúdók egyre szélesebbé válnak, ezért érdemes minden esetben megvizsgálni, hogy elegendően nagy ablakfüggvényt választottunk e ki a hasznos adatok kivágásához 15
16 Spektrálisan és térben bontott interferometria Lézer Dönthető ő tükör A tükör mozgatása az eddigiekhez képest nem előre-hátra történik, Diszperzív elem hanem a tükör nyalábbal l bezárt szögét változtatjuk CCD Bontóelem Diszperzív elem nélkül, azonos karhosszak esetén keletkező csíkrendszer 16
17 Spektrálisan és térben bontott interferometria y GDD>0 y TOD>0 λ λ 17
18 nterferenciakép kialakulása ϕ CSK c ( y, ) = γ ( y y ) ( y) Az y tengely mentén változó csoportkésés jelenik meg: ( y, ) dϕ = = γ d 0 ( y y ) A dőlésből fakadó fázis a frekvenciában lineáris, így nincs hatással a magasabb rendű fázistagokra y=y 0 -ban nyilvánvalóan nincs csoportkésés, vagyis vízszintes csíkot kapunk. Az y 0 -tól távolodva a csíkok egyre széttartóbbak lesznek 0 18
19 y Spektrálisan és térben bontott interferometria Különböző hosszúságú interferométer karok esetén y Azonos karhosszúságú interferométerekbe helyezett diszperzív elem a csoport törésmutató miatt késleltetést eredményez τ = 600fs λ τ = 600fs GDD = 0 GDD = 500 fs 19 λ
20 Kiértékelési eljárás A kialakuló interferenciakép ugyanúgy írható le, ahogy párhuzamos nyalábok esetén, azzal a különbséggel, l hogy az intenzitás i és a fázis is függ az y koordinátától ( y, ) = ( y, ) + ( y, ) + ( y, ) ( y, ) cos ( ϕ ( y, ) ) r ϕ( ϕ y, ) = φanyagi ( ) + γ ( y y ) t c A kialakuló interferogram y irányba lineárisan függ a körfrekvenciától Egy CCD kamerával készített interferogramon az egyes hullámhosszakra h vonatkozóan az y irányba egyenközű frekvenciaszerinti mintavételezés történik r 0 t Nem kell foglalkozni az egymástól kölünböző távolságban mintavételezett adatokból eredő problémákkal 0
21 Kiértékelési eljárás FFT FFT FFT FFT FFT FFT FFT FFT 1
22 Kiértékelés összefoglalása Spektrális A spektrográf által előállított kép a mintavételezés frekvencia függvényében nem egyenközű Az egyik tükör megdöntésével azonban a térbeli bontás eredményeként frekvenciában egyenközű adatokat kapunk nverz Fourier-transzformációval átlépünk valamilyen y tartományba Kinullázzuk a számunkra zavaró adatokat Az inverz Fourier-transzformációt követően nincs szükség semmilyen Fourier-transzformációval ió manipulációra, egyszerűen csak visszatérünk kinullázzuk a számunkra zavaró adatokat frekvencia-tartományba és a Fourier-transzformáció után kapott fázisfelületre a körfrekvencia mentén Fázisadatok kinyerése a illesztett polinommal megkapjuk a fázisfelületből keresett fázisderiváltakat
23 Szögdiszperzió mérése spektrálisan és térben bontott interferometriával A szögdiszperzió jelensége: E ( x, y,z, t) = E ( x, y,z) E ( t) sp t Abban az esetben, ha egy nyaláb különböző frekvenciájú komponensei különböző irányba terjednek, azaz az egyes frekvenciákhoz tartozó hullámszámvektorok iránya frekvenciafüggő, szögdiszperzióról beszélünk A spektrálisan és térben bontott interferometriának fontos alkalmazási területe a szögdiszperzió mérése
24 Szögdiszperzió matematikai meghatározása Kétféle szögdiszperziót különböztetünk meg egymástól Síkhullám esetén Gauss-nyalábok esetén λ+dλ λ λ+dλ λ Terjedési irány szerinti szögdiszperzió dθ γ T = dλ Fázisfront szerinti szögdiszperzió γ FF d θ * = dλ Terjedési irány szerinti szögdiszperzió dθ γ T = dλ Fázisfront szerinti szögdiszperzió ió γ FF d θ * = dλ
25 Szögdiszperzió és impulzusfront-dőlés A szögdiszperzió ió minden esetben impulzusfront-dőlést t és térbeli csörpöt öt is eredményez mpulzusfront-főlésről akkor beszélünk, amikor az impulzus haladási irányára merőlegesen csoportkésleltetés jelenik meg. A térbeli csörp a nyaláb spektrális tartamának térbeli anizotrópiáját jelenti. prizma transzmissziós rács
26 Szögdiszperzió mérése autokorrelátorral Mérés Mach-Zender interferométerrel pixel szám pixel szám pixel szám A szögdiszperzió meghatározásához különböző késleltetések l é k mellett több interferenciaképet kell felvenni. A két impulzusfront metszetének helye a kontrasztfüggvény ( max - min )( max + min ) maximumánál helyezkedik el. Minél nagyobb a szögdiszperzió értéke, annál lassabban tolódik a maximum a szélek felé. G. Pretzler, A. Kasper, K. J. Witte Angular chirp and tilted light pulses in CPA lasers Appl. Phys. B 70, 1-9 (000)
27 Szögdiszperzió mérése spektrálisan és térben bontott interferometriával Spektrográffal felbontva az interferométerből kilépő újraegyesített impulzust, a szögdiszperzió meghatározásához elegendő egyetlen lövés is. Az eljárás előnye a nagyobb pontosság mellett, hogy erősen fázismodulált impulzusok esetén is alkalmazható. l K. Varjú, A. P. Kovács, G. Kurdi, K. Osvay: High-precision measurement of angular dispersion in a CPA laser, Appl. Phys. B 74, S59-S63 (00)
X-FROG, GRENOUILLE. 11. előadás. Ágazati Á felkészítés a hazai ELI projekttel összefüggő ő képzési é és K+F feladatokra"
Ágazati Á felkészítés a hazai ELI tel összefüggő ő képzési é és K+F feladatokra" " 11. előadás X-FROG, GRENOUILLE 1 X-FROG, GRENOUILLE Az előző ő óá órán megismert tfrogt FROG-technikán alapuló ló eljárásokkal
RészletesebbenUltrarövid lézerimpulzusban jelenlevő terjedési irány és fázisfront szögdiszperzió mérése
Ultrarövid lézerimpulzusban jelenlevő terjedési irán és fázisfront szögdiszperzió mérése I. Elméleti összefoglaló Napjainkban ultrarövid, azaz femtoszekundumos nagságrendbe eső fénimpulzusokat előállító
RészletesebbenOptika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
RészletesebbenAz Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Részletesebben8. előadás Ultrarövid impulzusok mérése - autokorreláció
Ágazai Á felkészíés a hazai LI projekel összefüggő ő képzési é és KF feladaokra" " 8. előadás Ulrarövid impulzusok mérése - auokorreláció TÁMOP-4.1.1.C-1/1/KONV-1-5 projek 1 Bevezeés Jelen fejezeben áekinjük,
RészletesebbenDöntött prizma által okozott terjedési irány szögdiszperzió mérése leképező spektrográffal és Fabry-Perot interferométerrel
Döntött prizma által okozott terjedési irány szögdiszperzió mérése leképező spektrográffal és Fabry-Perot interferométerrel TDK dolgozat Készítette Andrásik Attila Fizikus MSc szakos hallgató Témavezetők
RészletesebbenNemlineáris és femtoszekundumos optika Szakmai záróbeszámoló OTKA K 47078
Nemlineáris és femtoszekundumos optika Szakmai záróbeszámoló OTKA K 47078 Az ultrarövid, 100 fs hosszú fényimpulzusokat előállító lézerek 90-es évek elején, a 10 fs és rövidebb impulzusú lézerek a 90-es
RészletesebbenINTERFEROMETRIKUS IMPULZUSMÉRÉS
SZEGEDI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR OPTIKAI ÉS KVANTUMELEKTRONIKAI TANSZÉK INTERFEROMETRIKUS IMPULZUSMÉRÉS TDK DOLGOZAT KÉSZÍTETTE: BALOGH RENÁTA III. CSILLAGÁSZ TÉMAVEZETŐ: DR. OSVAY KÁROLY
RészletesebbenPublication list. Refereed Journals
Publication list Refereed Journals 1. Z. Bor, K. Osvay, H. A. Hazim, A. Kovács, G. Szabó, B. Rácz, and O.E. Martinez: Adjustable prism compressor with constant transit time for synchronously pumped mode
RészletesebbenA LEVEGŐ NYOMÁSFÜGGŐ DISZPERZIÓJÁNAK
A LEVEGŐ NYOMÁSFÜGGŐ DISZPERZIÓJÁNAK MÉRÉSE 1 BAR 0.01 MBAR KÖZÖTT TDK-DOLGOZAT ÍRTA: BÖRZSÖNYI ÁDÁM V. FIZIKUS TÉMAVEZETŐ: DR. OSVAY KÁROLY EGYETEMI DOCENS SZEGEDI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR
RészletesebbenOptika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor
Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor Fresnel együtthatók A síkhullámfüggvény komplex alakja: ahol a komplex amplitudó: E E 0 exp i(ωt k r+φ) E 0 exp
RészletesebbenA femtoszekundumos lézerektől az attoszekundumos fizikáig
A femtoszekundumos lézerektől az attoszekundumos fizikáig Varjú Katalin, Dombi Péter Kapcsolódási pont: ultrarövid impulzusok: karakterizálás, alkalmazások egy attoszekundumos impulzus előállításához kell
RészletesebbenOptika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
RészletesebbenSpektrálisan és térben bontott interferometria. vizsgálata és alkalmazásai
Spektrálisan és térben bontott interferometria vizsgálata és alkalmazásai PhD-értekezés BÖRZSÖNYI ÁDÁM Témavezető: DR. OSVAY KÁROLY egyetemi docens Szegedi Tudományegyetem, Optikai és Kvantumelektronikai
RészletesebbenMIKROSZKÓP OBJEKTÍV DISZPERZIÓJÁNAK MÉRÉSE
MIKROSZKÓP OBJEKTÍV DISZPERZIÓJÁNAK MÉRÉSE TDK DOLGOZAT Készítette: MECSEKI D. KATALIN III. éves fizikus hallgató Témavezető: Dr. Kovács Attila adjunktus SZEGEDI TUDOMÁNYEGYETEM OPTIKAI ÉS KVANTUMELEKTRONIKAI
RészletesebbenWavelet transzformáció
1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan
RészletesebbenFourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz
Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos
RészletesebbenKutatóegyetemi Kiválósági Központ 1. Szuperlézer alprogram: lézerek fejlesztése, alkalmazásai felkészülés az ELI-re Dr. Varjú Katalin egyetemi docens
Kutatóegyetemi 1. Szuperlézer alprogram: lézerek fejlesztése, alkalmazásai felkészülés az ELI-re Dr. Varjú Katalin egyetemi docens Lézer = speciális fény koherens (fázisban) kicsi a divergenciája (irányított)
RészletesebbenA femtoszekundumos optika alapjai Elektronikus tananyag
A femtoszekundumos optika alapjai Elektronikus tananyag A femtoszekundumos optika alapjai: Elektronikus tananyag TÁMOP-4.1.2.A/1-11/1 MSc Tananyagfejlesztés Interdiszciplináris és komplex megközelítésű
RészletesebbenMatematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
RészletesebbenDekonvolúció a mikroszkópiában. Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ
Dekonvolúció a mikroszkópiában Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ 2015 Fourier-Sorok Minden 2π szerint periodikus függvény előállítható f x ~ a 0 2 + (a
RészletesebbenVivő-burkoló fázis csúszás mérése lineáris optikai módszerrel
Országos Tudományos Diákköri Dolgozat Vivő-burkoló fázis csúszás mérése lineáris optikai módszerrel Készítette Jójárt Péter, V. Fizikus Témavezető: Dr. Osvay Károly Szegedi Tudományegyetem Optikai és Kvantumelektronikai
RészletesebbenSpektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer
Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera
RészletesebbenUltrarövid lézerimpulzusok fázisának mérése és szabályozása
Ultrarövid lézerimpulzusok fázisának mérése és szabályozása PhD értekezés Írta: Görbe Mihály Témavezetők: Dr. Osvay Károly Dr. Kovács Attila Szegedi Tudományegyetem Fizika Doktori Iskola Optikai és Kvantumelektronikai
RészletesebbenVálasz Dr. Dzsotjan Gagik bírálatára
Válasz Dr. Dzsotjan Gagik bírálatára Szeretném megköszönni Dr. Dzsotjan Gagik professzor úrnak a dolgozatom gondos átolvasását, támogató és elismerő bírálói véleményét és elgondolkodtató kérdéseit. A feltett
RészletesebbenAbszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
RészletesebbenSpektrálisan és térben bontott interferometria vizsgálata és alkalmazásai
PHD-ÉRTEKEZÉS TÉZISEI Spektrálisan és térben bontott interferometria vizsgálata és alkalmazásai Szerző: BÖRZSÖNYI Ádám Témavezető: DR. OSVAY Károly egyetemi docens Fizikai Doktori Iskola Szegedi Tudományegyetem
RészletesebbenOptikai elemek fázistulajdonságainak interferometrikus vizsgálata
Optikai elemek fázistulajdonságainak interferometrikus vizsgálata PhD értekezés Írta: Kovács Attila Témavezető: dr. Bor Zsolt akadémikus Szegedi Tudományegyetem Optikai és Kvantumelektronikai Tanszék Szeged,
RészletesebbenFotonikus kristályszálak diszperziójának mérése spektrális interferometriával
Fotonikus kristályszálak diszperziójának mérése spektrális interferometriával TDK Dolgozat Készítette: Grósz Tímea Fizikus MSc szakos hallgató Témavezető: Dr. Kovács Attila Pál Adjunktus SZEGEDI TUDOMÁNYEGYETEM
Részletesebben9. Fényhullámhossz és diszperzió mérése jegyzőkönyv
9. Fényhullámhossz és diszperzió mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 008. 11. 1. Leadás dátuma: 008. 11. 19. 1 1. A mérési összeállítás A méréseket speciális szögmérő eszközzel
RészletesebbenFemtoszekundumos optikai mérések laboratóriumi mérési gyakorlat
TÁMOP-4.1.1.C-1/1/KONV-1-5 projekt Ágazati felkészítés a hazai ELI projekttel összefüggő képzési és K+F feladatokra" Femtoszekundumos optikai mérések laboratóriumi mérési gyakorlat Írta: Dr. Kovács Attila
RészletesebbenTDK DOLGOZAT. Vivő-burkoló fázis anomális viselkedése diszperzív közegben
TDK DOLGOZAT Vivő-burkoló fázis anomális viselkedése diszperzív közegben Készítette: Bedőházi Zsolt Témavezetők: Dr. Dombi Péter Csajbók Viktória Budapest 26 Tartalomjegyzék Tartalomjegyzék. Bevezetés,
RészletesebbenLegyen a rések távolsága d, az üveglemez vastagsága w! Az üveglemez behelyezése
6. Gyakorlat 38B-1 Kettős rést 600 nm hullámhosszúságú fénnyel világitunk meg és ezzel egy ernyőn interferenciát hozunk létre. Ezután igen vékony flintüvegből (n = 1,65) készült lemezt helyezünk csak az
Részletesebben[ ]dx 2 # [ 1 # h( z,t)
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban
RészletesebbenOPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA. Budapesti Műszaki és Gazdaságtudományi Egyetem Atomfizika Tanszék, dr. Erdei Gábor
OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA Budpesti Műszki és Gzdságtudományi Egyetem Atomfizik Tnszék, dr. Erdei Gáor Ágzti felkészítés hzi ELI projekttel összefüggő képzési és K+F feldtokr Young-féle
RészletesebbenFényhullámhossz és diszperzió mérése
Fényhullámhossz és diszperzió mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/09/011 Beadás ideje: 11/16/011 1 1. A mérés rövid leírása
RészletesebbenBiofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
RészletesebbenModern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Folyadékkristályok vizsgálata.
Modern Fizika Labor A mérés dátuma: 2005.11.16. A mérés száma és címe: 17. Folyadékkristályok vizsgálata Értékelés: A beadás dátuma: 2005.11.30. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során
RészletesebbenCsillagászati spektroszkópia dióhéjban. Konkoly Spektroszkópiai Nyári Iskola
Csillagászati spektroszkópia dióhéjban Spektroszkóp általános felépítése Bontóelem prizma (prism) törőszög dn/dλ diszperzió optikai rács (grating) transzmissziós - reflexiós - d osztásköz - 1/d (mm) rácsállandó
RészletesebbenSajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István
Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága
RészletesebbenAkusztikai tervezés a geometriai akusztika módszereivel
Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika
Részletesebben11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám
RészletesebbenOptikai mérési módszerek
Ágazati Á felkészítés a hazai ELI projekttel összefüggő ő képzési é és K+F feladatokra" " Optikai mérési módszerek Márton Zsuzsanna (1,,3,4,5,7) 3457) Tóth György (8,9,1,11,1) Pálfalvi László (6) TÁMOP-4.1.1.C-1/1/KONV-1-5
RészletesebbenFotonikus kristályszál diszperziós tulajdonságainak vizsgálata spektrális interferometriával
Szegedi Tudományegyetem TTIK Optikai és Kvantumelektronikai Tanszék DIPLOMAMUNKA Fotonikus kristályszál diszperziós tulajdonságainak vizsgálata spektrális interferometriával Készítette: Grósz Tímea Fizikus
RészletesebbenFényhullámhossz és diszperzió mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 9. MÉRÉS Fényhullámhossz és diszperzió mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 19. Szerda délelőtti csoport 1. A mérés célja
RészletesebbenHullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám
RészletesebbenA mintavételezéses mérések alapjai
A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel
RészletesebbenMikrostruktúrált optikai szálak diszperziójának vizsgálata spektrális interferometriával
Mikrostruktúrált optikai szálak diszperziójának vizsgálata spektrális interferometriával Ph.D. értekezés Szerző: Grósz Tímea Témavezető: Dr. Kovács Attila Pál adjunktus Fizika Doktori Iskola Optikai és
Részletesebben10. mérés. Fényelhajlási jelenségek vizsgála
Bán Marcell ETR atonosító BAMTACT.ELTE Beadási határidő 2012.10.15 (engedélyezett késés) 10. mérés Fényelhajlási jelenségek vizsgála Bevezetés: A mérések során a fény hullámhosszából adódó jelenségeket
RészletesebbenDigitális jelfeldolgozás
Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.
RészletesebbenRövid impulzusok vizsgálata autokorrelátorral
Rövid impulzusok vizsgálata autokorrelátorral Készítette: Lenk Sándor, Maák Pál 1. Mérés célja: Az autokorrelátor pozícionálásának, spektrométer és fénymérő rutinszerű használatának elsajátítása. Autokorrelátoros
RészletesebbenModern Fizika Labor. 17. Folyadékkristályok
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 11. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2011. okt. 23. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
RészletesebbenEllenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen
RészletesebbenMintavétel: szorzás az idő tartományban
1 Mintavételi törvény AD átalakítók + sávlimitált jel τ időközönként mintavétel Mintavétel: szorzás az idő tartományban 1/τ körfrekvenciánként ismétlődik - konvolúció a frekvenciatérben. 2 Nem fednek át:
RészletesebbenΨ - 1/v 2 2 Ψ/ t 2 = 0
ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;
RészletesebbenÚj technikák alkalmazása a fluoreszcens lézermikroszkópiában
DIPLOMAMUNKA Új technikák alkalmazása a fluoreszcens lézermikroszkópiában Szemes Dorottya Témavezető: Maák Pál Andor egyetemi docens BME, Fizikai Intézet Atomfizika Tanszék Budapesti Műszaki és Gazdaságtudományi
RészletesebbenEddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni.
Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni. Kezdjük a sort a menetidőgörbékről, illetve az NMO korrekcióról tanultakkal. A következő ábrán
RészletesebbenSZEGEDI TUDOMÁNYEGYETEM
SZEGEDI TUDOMÁNYEGYETEM Természettudományi és Informatikai Kar OPTIKAI ÉS KVANTUMELEKTRONIKAI TANSZÉK DIPLOMAMUNKA ULTRARÖVID LÉZERIMPULZUSOK VIVŐ-BURKOLÓ FÁZISÁNAK VÁLTOZÁSAI MULTIPASSZOS TITÁN- ZAFÍR
RészletesebbenA gyakorlat célja a fehér és a színes zaj bemutatása.
A gyakorlat célja a fehér és a színes zaj bemutatása. 1.@. FFT begyakorlása n = [:9]; % Harminc minta x = cos(*pi*n/1); % 1 mintát veszünk periodusonként N1 = 64; % Három módon számoljuk az FFT-t N = 18;
RészletesebbenOptikai szálak kromatikus diszperziójának meghatározása a közeli infravörös tartományban
SZEGEDI TUDOMÁNYEGYETEM Természettudományi Kar Optikai és Kvantumelektronikai Tanszék Fizikus MSc. DIPLOMAMUNKA Optikai szálak kromatikus diszperziójának meghatározása a közeli infravörös tartományban
RészletesebbenAz előadás tartalma. Debrecen 110 év hosszúságú csapadékadatainak vizsgálata Ilyés Csaba Turai Endre Szűcs Péter Ciklusok felkutatása
Miskolci Egyetem Környezetgazdálkodási Intézet Geofizikai és Térinformatikai Intézet MTA-ME Műszaki Földtudományi Kutatócsoport Debrecen 110 év hosszúságú csapadékadatainak vizsgálata Ilyés Csaba Turai
RészletesebbenHullámoptika II.Két fénysugár interferenciája
Hullámoptika II. Két fénysugár interferenciája 2007. november 9. Vázlat 1 Bevezet 2 Áttekintés Két rés esetének elemzése 3 Hullámfront-osztáson alapuló interferométerek Amplitúdó-osztáson alapuló interferométerek
RészletesebbenELTE II. Fizikus 2005/2006 I. félév KISÉRLETI FIZIKA Optika 8. (X. 5)
N j=1 d ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 8. (X. 5) Interferencia II. Többsugaras interferencia Diffrakciós rács, elhajlás rácson Hullámfront osztás d sinα α A e = A j e i(π/λo)
RészletesebbenKéprekonstrukció 3. előadás
Képrekonstrukció 3. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Computed Tomography (CT) Elv: Röntgen-sugarak áthatolása 3D objektum 3D térfogati kép Mérések
RészletesebbenDiszkréten mintavételezett függvények
Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott
RészletesebbenÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY Dr. Soumelidis Alexandros 2018.10.25. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mintavételezés
RészletesebbenUltrarövid lézerimpulzusok fázisának mérése és szabályozása. PhD értekezés tézisei. Görbe Mihály
Ultrarövid lézerimpulzusok fázisának mérése és szabályozása PhD értekezés tézisei Görbe Mihály Témavezetık: Dr. Osvay Károly egyetemi docens Dr. Kovács Attila egyetemi adjunktus Szegedi Tudományegyetem
RészletesebbenRENDSZERTECHNIKA 8. GYAKORLAT
RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.
Részletesebben1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
RészletesebbenSZEGEDI TUDOMÁNYEGYETEM
SZEGEDI TUDOMÁNYEGYETEM Természettudományi Kar Optikai és Kvantumelektronikai Tanszék fizikus szak DIPLOMAMUNKA SPEKTRÁLISAN BONTOTT INTERFERENCIÁN ALAPULÓ ELJÁRÁS KIDOLGOZÁSA EXTRÉM KICSINY DISZPERZIÓ
RészletesebbenA +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
RészletesebbenMatematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
RészletesebbenJelfeldolgozás bevezető. Témalaboratórium
Jelfeldolgozás bevezető Témalaboratórium Tartalom Jelfeldolgozás alapjai Lineáris rendszerelmélet Fourier transzformációk és kapcsolataik Spektrális képek értelmezése Képfeldolgozás alapjai Néhány nevezetesebb
RészletesebbenKoherens fény (miért is különleges a lézernyaláb?)
Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon, különböző fázissal fotonokat. Pl: Termikus sugárzó Koherens fény Atomok
RészletesebbenMatematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
RészletesebbenSzámítógépes gyakorlat MATLAB, Control System Toolbox
Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges
RészletesebbenKondenzált anyagok fizikája 1. zárthelyi dolgozat
Név: Neptun-kód: Kondenzált anyagok fizikája 1. zárthelyi dolgozat 2015. november 5. 16 00 18 00 Fontosabb tudnivalók Ne felejtse el beírni a nevét és a Neptun-kódját a fenti üres mezőkbe. Minden feladat
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
RészletesebbenA hang mint mechanikai hullám
A hang mint mechanikai hullám I. Célkitűzés Hullámok alapvető jellemzőinek megismerése. A hanghullám fizikai tulajdonságai és a hangérzet közötti összefüggések bemutatása. Fourier-transzformáció alapjainak
RészletesebbenUltrarövid impulzusok erősítése következő generációs titán-zafír lézerrendszerekben
Ultrarövid impulzusok erősítése következő generációs titán-zafír lézerrendszerekben Ph.D. értekezés SZERZŐ: Nagymihály Roland Sándor TÉMAVEZETŐ Dr. Börzsönyi Ádám tudományos munkatárs Szegedi Tudományegyetem,
RészletesebbenOrvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
RészletesebbenKamarás Katalin. Minden optikai spektroszkópiai mérés lényege fényintenzitás meghatározása a frekvencia
Bevezetés Fourier-transzformációs infravörös spektroszkópia Kamarás Katalin MTA Szilárdtestfizikai Kutató Intézet Minden optikai spektroszkópiai mérés lényege fényintenzitás meghatározása a frekvencia
RészletesebbenAdatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus
RészletesebbenKoherens fény (miért is különleges a lézernyaláb?)
Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon sugároznak ki elektromágneses hullámokat Pl: Termikus sugárzó Koherens
RészletesebbenMilyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez
1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet
RészletesebbenGyakorló feladatok Fizikai optikából
Kedves Hallgató! Gyakorló feladatok Fizikai optikából 2008. január 10. Ebben a dokumentumban olyan elméleti kérdéseket és számolós feladatokat talá, melyekhez hasonlókat fogok a vizsga írásbeli részén
RészletesebbenKvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel
Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel Vibók Ágnes ELI-ALPS, ELI-HU Non-Prot Ltd. University of Debrecen Department of Theoretical Physics, Áttekintés 1 Kónikus keresztez
RészletesebbenFoton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben
Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció
RészletesebbenMérés és adatgyűjtés
Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek
RészletesebbenA gravitációs hullámok miért mutathatók ki lézer-interferométerrel?
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
RészletesebbenVálasz Dr. Richter Péter bírálatára
Válasz Dr. Richter Péter bírálatára Szeretném megköszönni Dr. Richter Péter professzor úrnak a dolgozatom gondos átolvasását, támogató és elismerő bírálói véleményét és elgondolkodtató kérdéseit. A feltett
RészletesebbenÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK Dr. Soumelidis Alexandros 2018.10.18. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérések
RészletesebbenOptikai mérési módszerek
Ágazati Á felkészítés a hazai ELI projekttel összefüggő ő képzési é és K+F feladatokra" " Optikai mérési módszerek Márton Zsuzsanna (1,2,3,4,5,7) 23457) Tóth György (8,9,10,11,12) Pálfalvi l László (6)
RészletesebbenA hullámoptika alapjai
KÁLMÁN P-TÓTH A: Hullámoptika/ 53 A hullámoptika alapjai Számos kísérlet mutatja, hogy a fény hullámként viselkedik Ez elsősorban abból derül ki, hogy a fény interferenciát és elhajlási jelenségeket mutat
RészletesebbenOptika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető
Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal
RészletesebbenMechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.
Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben
RészletesebbenInfobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció
RészletesebbenSzélsőérték feladatok megoldása
Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =
RészletesebbenElektromágneses hullámok - Interferencia
Bevezetés a modern fizika fejezeteibe 2. (d) Elektromágneses hullámok - Interferencia Utolsó módosítás: 2012 október 18. 1 Interferencia (1) Mi történik két elektromágneses hullám találkozásakor? Az elektromágneses
Részletesebben