Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben
|
|
- Nóra Varga
- 5 évvel ezelőtt
- Látták:
Átírás
1 Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4
2 Bevezetés / Motiváció Optikai kvantum-memória: A fény kvantumállapotát tárolja valamilyen anyagban ( few/single photon pulse Reverzibilis kölcsönhatás fény és anyag között Ê(r, t Ψ(r, r 2,... Ê(r, t a fény kvantumállapota visszaállítható kvantum kommunikáció / információ, determinisztikus fotonforrás Egyik lehetséges megvalósítás: foton-visszhang Optikailag sűrű sokaság szükséges ami elnyeli a jelet. A közeg atomjainak koherens kontrollját kell megvalósítani. Ennek vannak nehézségei... Demeter Gábor (MTA Wigner RCP... 2 / 4
3 optikailag sűrű sokaság L>>λ Ideális eset: gyenge jel egyetlen foton megfelelő optikai sűrűség: αl 5 L λ ω = ω + e g ω homogén relaxáció elhanyagolható: Γ hom τ storage nagy sávszélesség: τ signal σ g( Demeter Gábor (MTA Wigner RCP... 3 / 4
4 Leírás: Maxwell-Bloch egyenletek: Atomok: z j, j, ρ (j optikai Bloch egy., reverzibilis dinamika t ρ eg = i 2 Ω(t, z je ikz j (2ρ ee i j ρ eg t ρ ee = i 2 [ Ω (t, z j e ikz j ρ eg c.c. ] Fény (jel, kontroll: ( z + c t Ω(z, t = i ρ j(t f =U j (t f, t i ρ j (t i U j (t f, t i α πg( e ikz P(z, t Ahol P a makroszkopikus polarizáció, a sokaság kollektív hatása a fényre: P(z, t = g( ρ eg d Demeter Gábor (MTA Wigner RCP... 4 / 4
5 Egy gyenge jel elnyelődik: utána: ( Uj free = e i j t Ω s (z, t = Ω s (, te α 2 z ρ eg exp( i j t Demeter Gábor (MTA Wigner RCP... 5 / 4
6 Egy gyenge jel elnyelődik: utána: ( Uj free = e i j t Ω s (z, t = Ω s (, te α 2 z ρ eg exp( i j t dephasing P = g( ρ eg d De ez itt még nem egy irreverzibilis folyamat! Az időfejlődés koherens! Demeter Gábor (MTA Wigner RCP... 5 / 4
7 Klasszikus foton visszhang... rövid π-impulzus hatása: U = ( i i ρ gg ρ ee ρ eg ρ eg fázisrendezés (coherence rephasing Π Demeter Gábor (MTA Wigner RCP... 6 / 4
8 Klasszikus foton visszhang... rövid π-impulzus hatása: U = ( i i ρ gg ρ ee ρ eg ρ eg fázisrendezés (coherence rephasing Π π impulzus.5 jel visszhang gerjesztett atomok! t t = t 2 t Inverzió a sokaságban! memóriának nem jó, zajos t t t 2 Demeter Gábor (MTA Wigner RCP... 6 / 4
9 ... és optikai memória Revival of silenced echo (ROSE.5 jel.5 kontroll lezer gerjesztett atomok kioltott.5visszhang visszhang.5 Kontrollimpulzusok irányával: pl.. után ρ eg e 3ikr 2. kontroll impulzus második fázisrendezés t t t t t 2 3 t 3 = t + 2t 2 2t Demeter Gábor (MTA Wigner RCP... 7 / 4
10 ... és optikai memória Revival of silenced echo (ROSE.5 jel.5 kontroll lezer gerjesztett atomok kioltott.5visszhang visszhang.5 Kontrollimpulzusok irányával: pl.. után ρ eg e 3ikr 2. kontroll impulzus második fázisrendezés t t t t t 2 3 t 3 = t + 2t 2 2t Hybrid photon echo statikus ter kontroll lezer jel visszhang t t t t t 2 3 inhomogén tér fázistolása megakadályozza a fázisrendezést kompenzálni kell - ellentétes fázistolás Demeter Gábor (MTA Wigner RCP... 7 / 4
11 Koherens kontroll optikailag sűrű közegben Feladat: a sokaság egy δω s αl tartományában kétszer invertálni az atomokat (koherens kontroll. Pl. π-impulzus: monokromatikus lézerimpulzus, A = Ω(t dt, = ( ( U C cos A/2 i sin A/2 = ha A = π U C i = i sin A/2 cos A/2 i Demeter Gábor (MTA Wigner RCP... 8 / 4
12 Koherens kontroll optikailag sűrű közegben Feladat: a sokaság egy δω s αl tartományában kétszer invertálni az atomokat (koherens kontroll. Pl. π-impulzus: monokromatikus lézerimpulzus, A = Ω(t dt, = ( ( U C cos A/2 i sin A/2 = ha A = π U C i = i sin A/2 cos A/2 i de inhomogén sokaság + terjedés: ( U C qe iβ pe = iγ pe iγ qe iβ ahol P err = q 2, és q(z,, stb. Második fázisrendezés: ( U C = U C2 U C Qe iβ Pe = iγ Pe iγ Qe iβ és legyen Q =, β, z β Demeter Gábor (MTA Wigner RCP... 8 / 4
13 π-impulzusok terjedése:.8 αz= αz= αz=2 αz= abs(p abs(q 2 3 Ω.6.4 /Ω /Ω t αz αz Akkor működik jól, ha Ω τs nagy intenzitás kell Területi tétel: z A(z = α 2 sin A(z azaz A = π instabil mo. energiaelnyelés/kibocsátás torzul az impulzus Demeter Gábor (MTA Wigner RCP... 9 / 4
14 Kompozit impulzusok (NMR-ből Egy kontrollimpulzus 2N + db elemi π impulzus szekvenciája Az elemi impulzusok egyformák csak a relatív fázisuk változik ( ( U C qe iβ pe = iγ q = j e iβ j p j e iγ j +iϕ j p j e iγ j iϕ j q j e iβ j pe iγ qe iβ Anagramma reláció: ϕ j = ϕ 2N+2 j Demeter Gábor (MTA Wigner RCP... / 4
15 Kompozit impulzusok (NMR-ből Egy kontrollimpulzus 2N + db elemi π impulzus szekvenciája Az elemi impulzusok egyformák csak a relatív fázisuk változik ( ( U C qe iβ pe = iγ q = j e iβ j p j e iγ j +iϕ j p j e iγ j iϕ j q j e iβ j pe iγ qe iβ Anagramma reláció: ϕ j = ϕ 2N+2 j Hibakompenzálás: Adott [ϕ 2N+, ϕ 2N,..., ϕ 2, ϕ ] szekvencia különböző hibákat kompenzálhat. Pl. amplitúdó hibájának kompenzálása: A = ( + επ q = + ε q ε + 2 εq ε 2 / Ha N =, [ϕ j ] = [, 2π/3, ] q ε 3 azaz P err = O(ε 6 Hasonlóképpen az elhangolás hibájának kompenzálása, vagy több paraméteré együtt. Demeter Gábor (MTA Wigner RCP... / 4
16 Terjedés miatti torzulásra adaptálva: az elemi π impulzusok nem egyformák Ω j = [ + ( j ε]ω N = : [, 3, ]π ε, = N = 2 : [, 3 5, 4 5, 3 5, ]π ε, 2 ε, 3 ε, 4 ε = N = 2 : [, 6, 3, 6, ]π ε,, 2 ε, 2, ε = Demeter Gábor (MTA Wigner RCP... / 4
17 Terjedés miatti torzulásra adaptálva: az elemi π impulzusok nem egyformák Ω j = [ + ( j ε]ω N = : [, 3, ]π ε, = N = 2 : [, 3 5, 4 5, 3 5, ]π ε, 2 ε, 3 ε, 4 ε = N = 2 : [, 6, 3, 6, ]π ε,, 2 ε, 2, ε =.25 abs(q 2 = 3.25 abs(q 2 = /Ω /Ω αz αz Demeter Gábor (MTA Wigner RCP... / 4
18 Frekvenciamodulált kontrollimpulzusok - adiabatikus átmenet AP : U = 2xAP : U = ( ( e iλ e iλ+ e i(λ+ +Λ 2 e i(λ+ 2 +Λ koherencia : ρ eg = U U 22 ρ eg e i(λ+ 2 Λ+ +Λ Λ 2 ahol Λ ± = λ ± (tdt Ha a két impulzus egyforma, van fázisrendezés! Terjedés? Demeter Gábor (MTA Wigner RCP... 2 / 4
19 Frekvenciamodulált kontrollimpulzusok - adiabatikus átmenet AP : U = 2xAP : U = ( ( e iλ e iλ+ e i(λ+ +Λ 2 e i(λ+ 2 +Λ koherencia : ρ eg = U U 22 ρ eg e i(λ+ 2 Λ+ +Λ Λ 2 ahol Λ ± = λ ± (tdt Ha a két impulzus egyforma, van fázisrendezés! Terjedés? Az. impulzus elnyelődik, a 2. erősödik: 5 5 αz= Ω αz=2 Ω 2 αz=4 αz= t t t t 2 Demeter Gábor (MTA Wigner RCP... 2 / 4
20 2.5 st pulse, abs(p st pulse, abs(q 2.7 Első impulzus: /Ω /Ω e 4 e 3 e αz αz Demeter Gábor (MTA Wigner RCP... 3 / 4
21 2.5 st pulse, abs(p st pulse, abs(q 2.7 Első impulzus: /Ω /Ω e 4 e 3 e 2 2 impulzus együttes hatása: /Ω αz pulses: Q αz /Ω αz pulses: arg(q/π αz Demeter Gábor (MTA Wigner RCP... 3 / 4
22 Összefoglalás A foton-visszhang jelenség segítségével inhomogén atomi sokaságban optikai kvantum-memóriát lehet létrehozni. Ennek érdekében a sokaság atomjainak precíz koherens kontrollját kell megvalósítani. Az optikailag sűrű közegben terjedő kontrollimpulzusok torzulnak, ezt figyelembe kell venni. Frekvenciamodulált impulzusok illetve kompozit impulzusok is használhatóak a kontroll megvalósítására. Demeter Gábor (MTA Wigner RCP... 4 / 4
23 Összefoglalás A foton-visszhang jelenség segítségével inhomogén atomi sokaságban optikai kvantum-memóriát lehet létrehozni. Ennek érdekében a sokaság atomjainak precíz koherens kontrollját kell megvalósítani. Az optikailag sűrű közegben terjedő kontrollimpulzusok torzulnak, ezt figyelembe kell venni. Frekvenciamodulált impulzusok illetve kompozit impulzusok is használhatóak a kontroll megvalósítására. Köszönöm a figyelmet! Demeter Gábor (MTA Wigner RCP... 4 / 4
A femtoszekundumos lézerektől az attoszekundumos fizikáig
A femtoszekundumos lézerektől az attoszekundumos fizikáig Varjú Katalin, Dombi Péter Kapcsolódási pont: ultrarövid impulzusok: karakterizálás, alkalmazások egy attoszekundumos impulzus előállításához kell
Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Az optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
Fluktuáló terű transzverz Ising-lánc dinamikája
2016. szeptember 8. Phys. Rev. B 93, 134305 Modell H(t) = 1 2 L 1 σi x σi+1 x h(t) 2 i=1 h(t)-fluktuáló mágneses tér. Hogyan terjednek jelek a zajos rendszerben? L σi z, i=1 Zajok típusai 1 fehér zaj 2
RENDSZERTECHNIKA 8. GYAKORLAT
RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.
Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata
Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása
Inhomogén párkeltés extrém erős terekben
Inhomogén párkeltés extrém erős terekben Berényi Dániel 1, Varró Sándor 1, Vladimir Skokov 2, Lévai Péter 1 1, MTA Wigner FK, Budapest 2, RIKEN/BNL, Upton, USA Fizikus Vándorgyűlés 2016. Augusztus 25.
Evans-Searles fluktuációs tétel
Az idő folyásának iránya Evans-Searles fluktuációs tétel Osváth Szabolcs Semmelweis Egyetem a folyamatok iránya a termodinamikai második főtétele alapján Nincs olyan folyamat, amelynek egyetlen eredménye,
Ψ - 1/v 2 2 Ψ/ t 2 = 0
ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;
Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
Erős terek leírása a Wigner-formalizmussal
Erős terek leírása a Wigner-formalizmussal Berényi Dániel 1, Varró Sándor 1, Vladimir Skokov 2, Lévai Péter 1 1, MTA Wigner FK, Budapest 2, RIKEN/BNL, Upton, USA Wigner 115 2017. November 15. Budapest
AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.
AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus
Reciprocitás - kvantumos és hullámjelenségek egy szimmetriája
Reciprocitás - kvantumos és hullámjelenségek egy szimmetriája Fülöp Tamás + Deák László MTA Wigner FK RMI MTA Wigner FK RMI, Budapest, 2012.06.22 Mi a reciprocitás? A fénysugár útja megfordítható G. Stokes,
Kvantum összefonódás és erősen korrelált rendszerek
Kvantum összefonódás és erősen korrelált rendszerek MaFiHe TDK és Szakdolgozat Hét Szalay Szilárd MTA Wigner Fizikai Kutatóközpont, Szilárdtest Fizikai és Optikai Intézet, Erősen Korrelált Rendszerek Lendület
Elektromágneses sugárzás
0-0 Elektromágneses sugárzás Maxwell-egyenletek források (töltések és áramok) hiányában rot H = 1 D c t rot E = 1 B c t div D = 0 div B = 0 valamint D=D( E) és B=B( H) anyagi összefüggések. Létezik nem-triviális
Van-e a vákuumnak energiája? A Casimir effektus és azon túl
Van-e a vákuumnak energiája? és azon túl MTA-ELTE Elméleti Fizikai Kutatócsoport Bolyai Kollégium, 2007. október 3. Van-e a vákuumnak energiája? és azon túl Vázlat 1 2 3 4 5 Van-e a vákuumnak energiája?
Az elméleti mechanika alapjai
Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.
Koherens lézerspektroszkópia adalékolt optikai egykristályokban
Koherens lézerspektroszkópia adalékolt optikai egykristályokban Kis Zsolt MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33 2015. június 8. Hogyan nyerjünk információt egyes
-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.
1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus
Legyen a rések távolsága d, az üveglemez vastagsága w! Az üveglemez behelyezése
6. Gyakorlat 38B-1 Kettős rést 600 nm hullámhosszúságú fénnyel világitunk meg és ezzel egy ernyőn interferenciát hozunk létre. Ezután igen vékony flintüvegből (n = 1,65) készült lemezt helyezünk csak az
Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel
Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel Vibók Ágnes ELI-ALPS, ELI-HU Non-Prot Ltd. University of Debrecen Department of Theoretical Physics, Áttekintés 1 Kónikus keresztez
Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (
FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.
u u IR n n = 2 3 t 0 <t T
IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε
Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.
izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás
OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA. Budapesti Műszaki és Gazdaságtudományi Egyetem Atomfizika Tanszék, dr. Erdei Gábor
OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA Budpesti Műszki és Gzdságtudományi Egyetem Atomfizik Tnszék, dr. Erdei Gáor Ágzti felkészítés hzi ELI projekttel összefüggő képzési és K+F feldtokr Young-féle
X-FROG, GRENOUILLE. 11. előadás. Ágazati Á felkészítés a hazai ELI projekttel összefüggő ő képzési é és K+F feladatokra"
Ágazati Á felkészítés a hazai ELI tel összefüggő ő képzési é és K+F feladatokra" " 11. előadás X-FROG, GRENOUILLE 1 X-FROG, GRENOUILLE Az előző ő óá órán megismert tfrogt FROG-technikán alapuló ló eljárásokkal
Elektromágneses hullámegyenlet
Elektromágneses hullámegyenlet Valódi töltésektől és vezetési áramoktól mentes szigetelőkre felírva az első két egyenletet: Az anyagegyenletek továbbá: Ezekből levezethetők a homogén hullámegyenletek a
Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor
Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor Fresnel együtthatók A síkhullámfüggvény komplex alakja: ahol a komplex amplitudó: E E 0 exp i(ωt k r+φ) E 0 exp
Kevert állapoti anholonómiák vizsgálata
Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom
Termoelektromos hűtőelemek vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 4. MÉRÉS Termoelektromos hűtőelemek vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 30. Szerda délelőtti csoport 1. A mérés célja
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
Sötét állapotok szerepe fénnyel indukált koherens kontroll folyamatokban
Sötét állapotok szerepe fénnyel indukált koherens kontroll folyamatokban Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Szilárdtestfizikai és Optikai Kutatóintézet H- Budapest, Konkoly-Thege
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
Koherens fény (miért is különleges a lézernyaláb?)
Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon sugároznak ki elektromágneses hullámokat Pl: Termikus sugárzó Koherens
Kvantumos jelenségek lézertérben
Kvantumos jelenségek lézertérben Atomfizika Benedict Mihály SZTE Elméleti Fizikai Tanszék Az előadást támogatta a TÁMOP-4.2.1/B-09/1/KONV-2010-0005 sz. Kutatóegyetemi Kiválósági Központ létrehozása a Szegedi
Egyesített funkcionális renormálási csoport egyenlet
Egyesített funkcionális renormálási csoport egyenlet Nándori István MTA-DE Részecskefizikai Kutatócsoport, MTA-Atomki, Debrecen Magyar Fizikus Vándorgyűles, Debrecen, 2013 Kvantumtérelmélet Részecskefizika
0.1. Lineáris rendszer definíciója
Részlet Török János, Orosz László, Unger Tamás, Elméleti Fizika jegyzetéből.. Lineáris rendszer definíciója be linearis rendszer ki be bei ki i ki + ki be λki + be 2 2 λ. ábra. Lineáris rendszer. Mielőtt
Nanoelektronikai eszközök III.
Nanoelektronikai eszközök III. Dr. Berta Miklós bertam@sze.hu 2017. november 23. 1 / 10 Kvantumkaszkád lézer Tekintsünk egy olyan, sok vékony rétegbõl kialakított rendszert, amelyre ha külsõ feszültséget
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD
A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása
Optika gyakorlat 3. Sugáregyenlet, fényterjedés parabolikus szálban, polarizáció, Jones-vektor. Hamilton-elv. Sugáregyenlet. (Euler-Lagrange egyenlet)
Optika gyakorlat 3. Sugáregyenlet, fényterjeés parabolikus szálban, polarizáció, Jones-vektor Hamilton-elv t2 t2 δ Lq k, q k, t) t δ T V ) t 0 t 1 t 1 t L L 0 q k q k Euler-Lagrange egyenlet) De mi az
Spektroszkópia III. Szabó Gábor egyetemi tanár, SZTE Optikai Tanszék
Spektroszkópia III. Szabó Gábor egyetemi tanár, SZTE Optikai Tanszék Detektorok Értékmérők: 1. Spektrális érzékenység R( λ) Detektorok Értékmérők: érzékenység R( λ) 1. Spektrális érzékenység 2. Abszolút
Bevezetés a részecske fizikába
Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:
Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.
és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán
SZTE Elméleti Fizikai Tanszék. Dr. Czirják Attila tud. munkatárs, c. egyetemi docens. egyetemi docens. Elméleti Fizika Szeminárium, december 17.
Időfüggő kvantumos szórási folyamatok Szabó Lóránt Zsolt SZTE Elméleti Fizikai Tanszék Témavezetők: Dr. Czirják Attila tud. munkatárs, c. egyetemi docens Dr. Földi Péter egyetemi docens Elméleti Fizika
Sinkovicz Péter, Szirmai Gergely október 30
Hatszögrácson kialakuló spin-folyadék fázis véges hőmérsékletű leírása Sinkovicz Péter, Szirmai Gergely MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet 2012 október 30 Áttekintés
XVIII. A FÉNY INTERFERENCIÁJA
XVIII. A FÉNY INTERFERENCIÁJA Bevezetés A fény terjedését egyenes vonal mentén képzelve fény- sugarakról szoktunk beszélni. A fénysugár egy hasznos és szemléletes fogalom. A fény terjedését sugárként elképzelve,
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
Abszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369
arxiv:1604.01717 [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Motiváció FRG módszer bemutatása Kölcsönható Fermi-gáz
Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel
Gyakorlat anyag Veszely February 13, 2012 1 Koaxiális kábel d b a Figure 1: Koaxiális kábel A 1 ábrán látható koaxiális kábel adatai: a = 7,2 mm, b = 4a = 8,28 mm, d = 0,6 mm, ε r = 3,5; 10 4 tanδ = 80,
FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK
FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz
r tr r r t s t s② t t ① t r ② tr s r
r tr r r t s t s② t t ① t r ② tr s r r ás③ r s r r r á s r ② s ss rt t s s tt r t r t r P s ② Pá③ á ② Pét r t rs t② t② r t ② s s ás t r s ② st s t t r t t r s t s t t t t s s s str t r r t r t ① r t r
Kvantum termodinamika
Kvantum termodinamika Diósi Lajos MTA Wigner FK Budapest 2014. febr. 4. Diósi Lajos (MTA Wigner FKBudapest) Kvantum termodinamika 2014. febr. 4. 1 / 12 1 Miért van 1 qubitnek termodinamikája? 2 QuOszcillátor/Qubit:
Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele.
BEVEZETÉS TÁRGY CÍME: FIZIKAI KÉMIA Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele. Ebben az eladásban: a fizika alkalmazása a kémia tárgykörébe es fogalmak magyarázatára.
BKT fázisátalakulás és a funkcionális renormálási csoport módszer
BKT fázisátalakulás és a funkcionális renormálási csoport módszer Nándori István MTA-DE Részecskefizikai Kutatócsoport, Debreceni Egyetem MTA-Atomki, Debrecen Wigner FK zilárdtestfizikai és Optikai Intézet,
Konstruktív dekoherencia kvantumrendszerekben
Doktori disszertáció Pécsi Tudományegyetem Természettudományi Kar Fizika Doktori Iskola Kárpáti Attila Konstruktív dekoherencia kvantumrendszerekben témavezető: Dr. Ádám Péter a fizika tudomány kandidátusa
AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN. várfalvi.
AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN várfalvi. IDÉZZÜK FEL A STACIONER HŐVEZETÉST q áll. t x áll. q λ t x t λ áll x. λ < λ t áll. t λ áll x. x HŐMÉRSÉKLETELOSZLÁS INSTACIONER ESETBEN Hőáram, hőmérsékleteloszlás
Koherens fény (miért is különleges a lézernyaláb?)
Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon, különböző fázissal fotonokat. Pl: Termikus sugárzó Koherens fény Atomok
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Alkalmazott spektroszkópia Serra Bendegúz és Bányai István
Alkalmazott spektroszkópia 2014 Serra Bendegúz és Bányai István A mágnesség A mágneses erő: F p1 p2 r p1 p2 C ( F C ) C áll 2 2 r r r A mágneses (dipólus) momentum: m p l ( m p l ) Ahol p a póluserősség
1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!
. Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x
Szilárdság (folyáshatár) növelési eljárások
Képlékeny alakítás Szilárdság (folyáshatár) növelési eljárások Szemcseméret csökkentés Hőkezelés Ötvözés allotróp átalakulással rendelkező ötvözetek kiválásos nemesítés diszperziós keményítés interstíciós
differenciálegyenletek
Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
alapvető tulajdonságai
A z a to m m a g o k alapvető tulajdonságai Mérhető mennyiségek Az atommagok mérete, tömege, töltése, spinje, mágneses momentuma, elektromos kvadrupól momentuma Az atommag töltés- és nukleon-eloszlása
Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje
Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....
Az előadás tartalma. Debrecen 110 év hosszúságú csapadékadatainak vizsgálata Ilyés Csaba Turai Endre Szűcs Péter Ciklusok felkutatása
Miskolci Egyetem Környezetgazdálkodási Intézet Geofizikai és Térinformatikai Intézet MTA-ME Műszaki Földtudományi Kutatócsoport Debrecen 110 év hosszúságú csapadékadatainak vizsgálata Ilyés Csaba Turai
Optika fejezet felosztása
Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:
1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek
7 Elsőrendű lineáris differenciálegyenlet-rendszerek Legyen n N, I R intervallum és A: I M n n (R), B: I R n folytonos függvények, és tekintsük az { y (x) = A(x)y(x) + B(x) y(ξ) = η kezdeti érték problémát,
Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata
Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások
László István, Fizika A2 (Budapest, 2013) Előadás
László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben
Anyagi tulajdonságok meghatározása spektrálisan
Ágazati Á felkészítés a hazai EL projekttel összefüggő ő képzési é és K+F feladatokra" " 9. előadás Anyagi tulajdonságok meghatározása spektrálisan bontott interferometriával (SR) 1 Bevezetés A diszperzív
Egzotikus elektromágneses jelenségek alacsony hőmérsékleten Mihály György BME Fizikai Intézet Hall effektus Edwin Hall és az összenyomhatatlan elektromosság Kvantum Hall effektus Mágneses áram anomális
Fizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
Optikai mérési módszerek
Ágazati Á felkészítés a hazai ELI projekttel összefüggő ő képzési é és K+F feladatokra" " Optikai mérési módszerek Márton Zsuzsanna (1,,3,4,5,7) 3457) Tóth György (8,9,1,11,1) Pálfalvi László (6) TÁMOP-4.1.1.C-1/1/KONV-1-5
Idegen atomok hatása a grafén vezet képességére
hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség
Dinamika. p = mυ = F t vagy. = t
Dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség. Klasszikus
Kvantumos információ megosztásának és feldolgozásának fizikai alapjai
Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33
Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
1D multipulzus NMR kísérletek
D multipulzus NMR kísérletek Rohonczy János ELTE, Szervetlen Kémia Tanszék Modern szerkezetkutatási módszerek elıadás 202. . Protonlecsatolt heteronukleáris mérések Elv 3 C mag detektálása alatt a protoncsatornán
ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü
Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é
:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő
Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű
Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü
ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü
ú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü
Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó
É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű
Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü
A lézer alapjairól (az iskolában)
A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o
Atomi rendszerek koherens manipulációja frekvenciamodulált lézerimpulzusokkal
Atomi rendszerek koherens manipulációja frekvenciamodulált lézerimpulzusokkal G.P. Djotyan KFKI - észecske-és Magfizikai Kutatóintézet, Budapest, H-55, Pf 49 e-mail: djotjan@rmki.kfki.hu. Bevezetés Az
4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)
4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.
az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai
az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai jelentése? a kvantummechanikában ih m» a hullámfüggvény