Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz
|
|
- Mária Székely
- 6 évvel ezelőtt
- Látták:
Átírás
1 Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea ősz
2 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció
3 Folytonos Fourier Transzformáció
4 Folytonos Fourier Transzformáció Lineáris transzformáció a véges energiájú, folytonos függvények tere felett: F FT f f xexp j x dx Legfontosabb tulajdonságai: Konvolúció tétel: Fordított konvolúció: Parseval tétel: 1 1 exp f x FT F 2 F j x d f g FT F G f g x FT F G 2 1 x 2 2 E f x dx F d 2
5 Folytonos Fourier Transzformáció Valós jel spektruma: Páros, valós jel spektruma: Páratlan, valós jel spektruma: F Re Re Periodikus jel spektruma diszkrét: F 0, ha k 2 f kz Ekvivalens egy unitér transzformációval: Ez pl. maga után vonja a bijektivitást F F F F F Im Im F F j F j F
6 Folytonos Fourier Sorfejtés Lineáris transzformáció a periodikus folytonos függvények tere felett: T 2 1 cn f xexp j x 2 n T dx T ; T 2 f x cn exp j x 2 n T n Kapcsolat a folytonos FT-val: Mintavételezi a spektrumot: Periodikus jel diszkrét spektrum c 1 T F 2 n T Egyéb tulajdonságokat örökli a folytonos FT-től n n Z
7 Diszkrét idejű Fourier Transzformáció (DTFT) Adott egy mintavételezéssel előállt végtelen hosszú, abszolút összegezhető jel: f n Definíció: exp n 1 2 exp X f n j n x n X j n d Alapvető tulajdonságok: n Z, de R X2k kz X Egyéb tulajdonságait örökli a folytonos FT-től
8 Matematikai mintavételezés Folytonos FT és DTFT kapcsolata Végtelen impulzus fésű: Matematikai mintavételezés: folytonos jel elemenkénti szorzata az impulzus fésűvel. Időtartománybeli szorzás Spektrumok konvolúciója Impulzusfésű az időtartományban frekvenciatartományban
9 Mintavett jel spektruma Formálisan a mintavett jel spektruma: X s X k X k x k x x k x x : mintavételezések távolsága : folytonos idejű jel spektruma X X : mintavételezett jel spektruma s Nyquist mintavételi törvény: bwx 1 2 f ; f 1 x s s Ha nem tartjuk be alul mintavételezés: K X s X
10 Helyesen mintavételezés interpretációja
11 Alul mintavételezés interpretációja spektrum átlapolódása
12 Spektrum átlapolódása moire / aliasing Spektrum átlapolódása által generált jeltorzulás
13 Spektrum átlapolódása - aliasing Aliasing formálisan: 2 X s X k X k x Anti-aliasing filter mintavételezés előtti aluláteresztő szűrés: Pl. Bayer szűrős fényképezőgépeknél optikai szűrő Radiológiában az elkent PSF-ek miatt elhagyható
14 Mintavett jel rekonstrukciója Rekonstrukció (interpoláció): Cél: a mintavételezett jel értékének előállítása két mintavételezési pont között Ha sérült a mintavételezési törvény, akkor lehetetlen LTI rendszerrel: Ideális interpolációs kernel: H R x x h R S R K L 2 L 0 egyébként L fs 2 hr sinc x L
15 Interpoláció hibái Megfigyelt tartomány széle: Súlyfüggvény kilóg a megfigyelt tartományból H 2 esete: R 0 Lényegesen jelentősebb hibaforrás Mintavett jel rekonstrukciója: f s 2 X R H R X S H R X k k x X X, ha 2 R Példa rá a Nearest Neighbour interpoláció (ZOH) f s
16 Interpolációk összehasonlítása Átviteli/súlyfüggvényük analízisével: Nearest Neighbour Lineáris Köbös Spline Köbös B-Spline Átviteli függvény Súlyfüggvény
17 (Hibás) interpoláció vizualizációja
18 Integráló mintavételezés Érzékelők integrálják a foton fluxust: Érzékelőelemek homogén súlyfüggvénye: Adekvát az alábbi modell: 1. Megszűrjük a folytonos jelet az érzékelők súlyfüggvényével 2. Elvégezzük a matematikai mintavételezést X s k X P p x 2 j x Ha az érzékelőelemek súlyfüggvénye nem homogén, akkor nem modellezhető LTI rendszerrel
19 Integráló mintavételezés - példa Ideális, integráló mintavételezés esete: p x 1 x x 2 0 x 2 sinc 2 x x 2 P x x P X 10 8 X S
20 Diszkrét Fourier Transzformáció (DFT) Diszkretizált jelet N pontban ismerjük: N 1 N 1 k exp 2 exp X x n j n k N x n j n k n0 N 1 n0 k n0 1 exp 2 x n N X j kn N Kapcsolat a DTFT-vel: yn n 0,1,..., N 1 xn megfigyelési ekvivalens 0 egyébként DFT mintavételezi a megfigyelési ekvivalens DTFT spektrumát: Y X k k feletti ortogonális transzformáció, mi a mátrixa? C N
21 DFT pontszáma Megfigyelési ekvivalens DTFT spektrumát tetszőleges felbontással mintavételezhetjük: Ha M minta érdekel, akkor M-N db 0-val paddelünk A fizikai (folytonos) jel spektrumáról ezáltal nem tudunk meg többet! 2-Radix FFT
Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 7-8. ea ősz
Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 7-8. ea. 2015 ősz 7. előadás tartalma Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Frekvenciaszivárgás
Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 6-8. ea ősz
Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 6-8. ea. 2016 ősz 6. előadás tartalma Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Spektrumszivárgás
Jelfeldolgozás bevezető. Témalaboratórium
Jelfeldolgozás bevezető Témalaboratórium Tartalom Jelfeldolgozás alapjai Lineáris rendszerelmélet Fourier transzformációk és kapcsolataik Spektrális képek értelmezése Képfeldolgozás alapjai Néhány nevezetesebb
Digitális jelfeldolgozás
Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.
Képalkotó diagnosztikai eljárások:
Képalkotó diagnosztikai eljárások: Soroljon fel néhány orvosi képalkotáson alapuló diagnosztikai eljárást, mely o Transzmissziós o Indukciós o Emissziós elv alkalmazásán alapul. Mire szolgálnak az egyes
Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz
Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 6. Előadás tartalma Spektrumszivárgás Képfeldolgozás frekvencia tartományban: 2D Spektrum gépi ábrázolása Szűrések frekvenciatartományban
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY Dr. Soumelidis Alexandros 2018.10.25. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mintavételezés
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen
Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 6. ea ősz
Képalkotás modellezése, metrikái Orvosi képdiagnosztika 6. ea. 2015 ősz Jelölésjegyzék Rendszer válasza f gerjesztésre: Dirac-delta: x ; egységugrás: 0 idejű Dirac-delta gerjesztése a rendszer válasza:
Mérés és adatgyűjtés
Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek
Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!)
DSP processzorok: 1 2 3 HP zajgenerátor: 4 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! Fehérzajhoz a konstans érték kell - megoldás a digitális
Shift regiszter + XOR kapu: 2 n állapot
DSP processzorok: 1 2 HP zajgenerátor: 3 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! 4 Fehérzajhoz a konstans érték kell - megoldás a digitális
ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS
ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS Földtudományi mérnöki MSc mesterszak 2018/19 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy
Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék
Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006
Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem
Sapientia - Erdélyi Magyar Tudományegyetem 2007 Megnevezések Diszkrét Dirac jel Delta függvény Egységimpluzus függvény A diszkrét Dirac jel δ[n] = { 1, n = 0 0, n 0 d[n] { 1, n = n0 δ[n n 0 ] = 0, n n
Wavelet transzformáció
1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan
Mintavétel: szorzás az idő tartományban
1 Mintavételi törvény AD átalakítók + sávlimitált jel τ időközönként mintavétel Mintavétel: szorzás az idő tartományban 1/τ körfrekvenciánként ismétlődik - konvolúció a frekvenciatérben. 2 Nem fednek át:
Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 2017 ősz
Képalkotás modellezése, metrikái Orvosi képdiagnosztika 2017 ősz Jelölésjegyzék Rendszer válasza f gerjesztésre: Dirac-delta: x ; egységugrás: 0 idejű Dirac-delta gerjesztése a rendszer válasza: h x x
DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1
DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n
SZAKMAI ZÁRÓJELENTÉS. Optimális háromdimenziós rácson mintavételezett adatok interaktív térfogatvizualizációja
SZAKMAI ZÁRÓJELENTÉS Optimális háromdimenziós rácson mintavételezett adatok interaktív térfogatvizualizációja (OTKA F-68945) A modern 3D képalkotó eljárások (CT, MRI, PET) a tomográfiás rekonstrukciót
Villamosságtan szigorlati tételek
Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok
Dekonvolúció a mikroszkópiában. Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ
Dekonvolúció a mikroszkópiában Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ 2015 Fourier-Sorok Minden 2π szerint periodikus függvény előállítható f x ~ a 0 2 + (a
MECHATRONIKA Mechatronika alapképzési szak (BSc) záróvizsga kérdései. (Javítás dátuma: )
MECHATRONIKA 2010 Mechatronika alapképzési szak (BSc) záróvizsga kérdései (Javítás dátuma: 2016.12.20.) A FELKÉSZÜLÉS TÉMAKÖREI A számozott vizsgakérdések a rendezett felkészülés érdekében vastag betűkkel
Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03
Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő
Hangtechnika. Médiatechnológus asszisztens
Vázlat 3. Előadás - alapjai Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék Ismétlés Vázlat I.rész: Ismétlés II.rész: A digitális Jelfeldolgozás
4. Szűrés frekvenciatérben
4. Szűrés frekvenciatérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) Unitér transzformációk Az unitér transzformációk olyan lineáris,
Digitális Fourier-analizátorok (DFT - FFT)
6 Digitális Fourier-analizátoro (DFT - FFT) Eze az analizátoro digitális műödésűe és a Fourier-transzformálás elvén alapulna. A digitális Fourier analizátoro a folytonos időfüggvény mintavételezett jeleit
Híradástechikai jelfeldolgozás
Híradástehikai jeleldolgozás. előadás Sebességkonverziós jeleldolgozás 05. 04. 3. 05. április 3. Budapest Dr. Gaál Józse BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu Sebességkonverziós
Néhány fontosabb folytonosidejű jel
Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1
Fourier transzformáció
a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos
Képalkotó diagnosztikai eljárások:
Képalkotó diagnosztikai eljárások: Soroljon fel néhány orvosi képalkotáson alapuló diagnosztikai eljárást, mely o Transzmissziós o Indukciós o Emissziós alkalmazásán alapul. Mire szolgálnak az egyes diagnosztikai
Mátrix-exponens, Laplace transzformáció
2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények
Elektronikus műszerek Spektrum analizátorok
1 Spektrumanalizátorok 1. Alapogalmak Az energia jellegű ill. teljesítmény jellegű spektrumokat tehát a teljesítmény-, az energiasűrűség-, a teljesítménysűrűség- és a kereszt-teljesítménysűrűség-spektrumot,
Orvosi Fizika és Statisztika
Orvosi Fizika és Statisztika Szegedi Tudományegyetem Általános Orvostudományi Kar Természettudományi és Informatikai Kar Orvosi Fizikai és Orvosi Informatikai Intézet www.szote.u-szeged.hu/dmi Orvosi fizika
Fourier transzformáció
Fourier transzformáció A szeizmikus hullámok tanulmányozása során igen nagy jelentősége van a hullámok frekvencia tartalmának. Ezt használjuk a hullámok alakjának mintavételezésekor, lineáris szűrések
π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ]
Pulzus Amplitúdó Moduláció (PAM) A Pulzus Amplitúdó Modulációról abban az esetben beszélünk, amikor egy impulzus sorozatot használunk vivőhullámnak és ezen a vivőhullámon valósítjuk meg az amplitúdómodulációt
Akusztikus mérőműszerek
Akusztikus mérőműszerek Hangszintmérő: méri a frekvencia súlyozott, és nyomásátlagolt hangnyomás szintet (hangszintet). Felépítése Mikrofon + Erősítő Frekvencia Szint tartomány Időátlagolás Kijelzés Előerősítő
Híradástechikai jelfeldolgozás
Híradástechikai jelfeldolgozás 1. előadás 2015. február 13. 2015. február 13. Budapest Dr. Gaál József BME Hálózati Redszerek és SzolgáltatásokTaszék gaal@hit.bme.hu Bemutatkozás Dr Gaál József doces BME
1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban
1. témakör A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban A hírközlés célja, általános modellje Üzenet: Hír: Jel: Zaj: Továbbításra szánt adathalmaz
6. témakör. Mintavételezés elve Digitális jelfeldolgozás (DSP) alapjai
6. témakör Mintavételezés elve Digitális jelfeldolgozás (DSP) alapjai A mintavételezés blokkvázlata Mintavételezés: Digitális jel mintavevô kvantáló kódoló Átvitel Tárolás antialiasing szűrő Feldolgozás
Számítógépes gyakorlat MATLAB, Control System Toolbox
Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges
Diszkréten mintavételezett függvények
Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 9. SZŰRŐK
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 9. SZŰRŐK Dr. Soumelidis Alexandros 2018.11.29. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG A szűrésről általában Szűrés:
Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41
Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét
Képalkotó diagnosztikai eljárások
Képalkotó diagnosztikai eljárások Soroljon fel néhány orvosi képalkotáson alapuló diagnosztikai eljárást, mely o transzmissziós o reflexiós o emissziós elv alkalmazásán alapul. Mire szolgálnak az egyes
Mintavételezés és FI rendszerek DI szimulációja
Mintavételezés és FI rendszerek DI szimulációja Dr. Horváth Péter, BME HVT 5. december.. feladat Adott az alábbi FI jel: x f (t) = cos(3t) + cos(4t), ([ω] =krad/s). Legalább mekkorára kell választani a
Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40
Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált
ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem. Jelfeldolgozás. ANTAL Margit. Adminisztratív. Bevezetés. Matematikai alapismeretek.
Jelfeldolgozás 1. Sapientia - Erdélyi Magyar Tudományegyetem 2007 és jeleket generáló és jeleket generáló és jeleket generáló Gyakorlatok - MATLAB (OCTAVE) (50%) Írásbeli vizsga (50%) és jeleket generáló
Híradástechikai jelfeldolgozás
Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu
Numerikus integrálás április 20.
Numerikus integrálás 2017. április 20. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
Mérés és adatgyűjtés
Mérés és adatgyűjtés 5. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 5. óra Verzió: 1.1 Utolsó frissítés: 2011. április 12. 1/20 Tartalom I 1 Demók 2 Digitális multiméterek
FODOR GYÖRGY JELEK ÉS RENDSZEREK
FODOR GYÖRGY JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, 2006 Előszó A valóságos fizikai, kémiai, műszaki, gazdasági folyamatokat modellek segítségével írjuk le. A modellalkotás során leegyszerűsítjük
1.A matematikai mintavételezés T mintavételi idővel felfogható modulációs eljárásnak, ahol a hordozó jel
1.A matematikai mintavételezés T mintavételi idővel felfogható modulációs eljárásnak, ahol a hordozó jel eltolt Dirac impulzusokból áll. Adja meg a hordozó jel I (s) T Laplace-transzformáltját és annak
Laboratórium mérés Házi feladat. Készítette: Koszó Norbert (GTPL3A) Második (javított) kiadás
Laboratórium 1. 4. mérés Házi feladat Készítette: Koszó Norbert (GTPL3A) Második (javított) kiadás 4. mérés Koszó Norbert (GTPL3A) Feladat 1. Adott egy diszkrét jel mintasorozata. A mintavételi idő t
Idő-frekvencia transzformációk waveletek
Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 013. áprils 17. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos
Képrestauráció Képhelyreállítás
Képrestauráció Képhelyreállítás Képrestauráció - A képrestauráció az a folyamat mellyel a sérült képből eltávolítjuk a degradációt, eredményképpen pedig az eredetihez minél közelebbi képet szeretnénk kapni
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben
Hangszintézis Mérési segédlet Hangtechnikai Laboratórium 2. Budapesti Műszaki és Gazdaságtudományi Egyetem Híradástechnikai Tanszék
Budapesti Műszaki és Gazdaságtudományi Egyetem Híradástechnikai Tanszék Hangszintézis Mérési segédlet Hangtechnikai Laboratórium 2. Írta: Gulyás Krisztián 2009. szeptember 17. Analízis 1. Bevezető A mérés
y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)
III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp
Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék
Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás
Idő-frekvencia transzformációk waveletek
Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 2014. május 8. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos
Képrekonstrukció 3. előadás
Képrekonstrukció 3. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Computed Tomography (CT) Elv: Röntgen-sugarak áthatolása 3D objektum 3D térfogati kép Mérések
Jelek és rendszerek - 12.előadás
Jelek és rendszerek - 12.előadás A Z-transzformáció és alkalmazása Mérnök informatika BSc Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék
LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei
Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2
Digitális jelfeldolgozás
Digitális jelfeldolgozás Átviteli függvények Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. október 13. Digitális
jelfeldolgozásba II.
TÁMOP-4.1.1.F-14/1/KONV-215-9 A gépészeti és informatikai ágazatok duális és moduláris képzéseinek kialakítása a Pécsi Tudományegyetemen Bevezetés a számítógépes jelfeldolgozásba II. Sári Zoltán Pécs 215
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
3.18. DIGITÁLIS JELFELDOLGOZÁS
3.18. DIGITÁLIS JELFELDOLGOZÁS Az analóg jelfeldolgozás során egy fizikai mennyiséget (pl. a hangfeldolgozás kapcsán a levegő nyomásváltozásait) azzal analóg (hasonló, arányos) elektromos feszültséggé
Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján
Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika rendszerek Irányítástechnika Budapest, 2008 2 Az előadás felépítése 1. 2. 3. 4. Irányítástechnika Budapest, 2008
illetve, mivel előjelét a elnyeli, a szinuszból pedig kiemelhető: = " 3. = + " 2 = " 2 % &' + +
DFT 1. oldal A Fourier-sorfejtés szerint minden periodikus jel egyértelműen felírható különböző amplitúdójú és fázisú szinusz és koszinusz jelek összegeként: = + + 1. ahol az együtthatók, szintén a definíció
Inverz Laplace-transzformáció. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Definíció: Ha az f (t) függvény laplace-transzformáltja F (s), akkor f (t)-t az F (s) függvény inverz Laplace-transzformáltjának nevezzük. Definíció: Ha
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?adás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs
Idő-frekvencia transzformációk waveletek
Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 2015. április 23. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos
Ha sokáig mérünk: kiátlagoljuk a jelet Milyen lesz ez a súlyfüggvény? T idejű integrálás + delta függvény T ideig integrálva:
1 Integráló voltmérő Ha sokáig mérünk: kiátlagoljuk a jelet Milyen lesz ez a súlyfüggvény? T idejű integrálás + delta függvény T ideig integrálva: A súlyfüggvény: T széles impulzus 2 Ha a bemenő zaj B
Az ideális határesetek, mint például tömegpont, tökéletesen merev testek pillanatszerű
Részlet Török János, Orosz László, Unger Tamás, Elméleti Fizika 1 jegyzetéből 1 1. fejezet Matematikai bevezető 1.1. Dirac-delta Az ideális határesetek, mint például tömegpont, tökéletesen merev testek
2. gyakorlat Mintavételezés, kvantálás
2. gyakorlat Mintavételezés, kvantálás x(t) x[k]= =x(k T) Q x[k] ^ D/A x(t) ~ ampl. FOLYTONOS idı FOLYTONOS ANALÓG DISZKRÉT MINTAVÉTELEZETT DISZKRÉT KVANTÁLT DIGITÁLIS Jelek visszaállítása egyenköző mintáinak
RENDSZERTECHNIKA 8. GYAKORLAT
RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.
Digitális jelfeldolgozás
Digitális jelfeldolgozás Dr. Fodor, Dénes Szerzői jog 2014 Pannon Egyetem A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0042 azonosító számú Mechatronikai mérnök MSc tananyagfejlesztés projekt keretében készült.
Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.
ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés
Anyagi tulajdonságok meghatározása spektrálisan
Ágazati Á felkészítés a hazai EL projekttel összefüggő ő képzési é és K+F feladatokra" " 9. előadás Anyagi tulajdonságok meghatározása spektrálisan bontott interferometriával (SR) 1 Bevezetés A diszperzív
Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata
Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Reichardt, András 27. szeptember 2. 2 / 5 NDSM Komplex alak U C k = T (T ) ahol ω = 2π T, k módusindex. Időfüggvény előállítása
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1
Jelek és rendszerek - 4.előadás
Jelek és rendszerek - 4.előadás Rendszervizsgálat a komplex frekvenciatartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet
Mozgásmodellezés. Lukovszki Csaba. Navigációs és helyalapú szolgáltatások és alkalmazások (VITMMA07)
TÁVKÖZLÉSI ÉS MÉDIAINFORMATIKAI TANSZÉK () BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM (BME) Mozgásmodellezés Lukovszki Csaba Áttekintés» Probléma felvázolása» Szabadsági fokok» Diszkretizált» Hibát
Z v 1 (t)v 2 (t τ)dt. R 12 (τ) = 1 R 12 (τ) = lim T T. ill. periódikus jelekre:
1 Korrelációs fügvények Hasonlóság mértéke a két függvény szorzatának integrálja Időbeli változások esetén lehet vizsgálni a hasonlóságot a τ relatív időkülönbség szerint: Keresztkorrelációs függvény:
Numerikus integrálás április 18.
Numerikus integrálás 2016. április 18. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK Dr. Soumelidis Alexandros 2018.10.18. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérések
Digitális szűrők - (BMEVIMIM278) Házi Feladat
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rszerek Tanszék Digitális szűrők - (BMEVIMIM278) FIR-szűrő tervezése ablakozással Házi Feladat Név: Szőke Kálmán Benjamin Neptun:
11. Orthogonal Frequency Division Multiplexing ( OFDM)
11. Orthogonal Frequency Division Multiplexing ( OFDM) Az OFDM (Orthogonal Frequency Division Multiplexing ) az egyik legszélesebb körben alkalmazott eljárás. Ez az eljárás az alapja a leggyakrabban alkalmazott
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Fourier sorok február 19.
Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható
Irányítástechnika 2. előadás
Irányítástechnika 2. előadás Dr. Kovács Levente 2013. 03. 19. 2013.03.19. Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Idősorok elemzése. Salánki Ágnes
Idősorok elemzése Salánki Ágnes salanki.agnes@gmail.com 2012.04.13. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 Idősorok analízise Alapfogalmak Komponenselemzés
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 8. A JELFELDOLGOZÁS ALAPJAI
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 8. A JELFELDOLGOZÁS ALAPJAI Dr. Soumelidis Alexandros 2018.11.22. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG A Fourier
Hogy volt akkor? Hogy lenne ma?
Adatátvitel a földi állomásra és a fedélzeti adattárolás kérdései. Dr. Hetényi Tamás 2015 Február 27 Projektek ETMSZ SSPI Whistler VEGA egyéb Hogy volt akkor? Hogy lenne ma? 618-as labor Z80 hőskora. PDP-12
Informatika Rendszerek Alapjai
Informatika Rendszerek Alapjai Dr. Kutor László Alapfogalmak Információ-feldolgozó paradigmák Analóg és digitális rendszerek jellemzői Jelek típusai Átalakítás rendszerek között http://uni-obuda.hu/users/kutor/
Numerikus módszerek 1.
Numerikus módszerek 1. Tantárgy kódja: IP-08bNM1E, IP-08bNM1G (2+2) Az elsajátítandó ismeretanyag rövid leírása: A lebegıpontos számábrázolás egy modellje. A hibaszámítás elemei. Lineáris egyenletrendszerek
Mintavételezés és AD átalakítók
HORVÁTH ESZTER BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM JÁRMŰELEMEK ÉS JÁRMŰ-SZERKEZETANALÍZIS TANSZÉK ÉRZÉKELÉS FOLYAMATA Az érzékelés, jelfeldolgozás általános folyamata Mérés Adatfeldolgozás 2/31
1.1 Számítógéppel irányított rendszerek
Számítógépes irányításelmélet 4. Számítógéppel irányított rendszerek A fejezetnek az a célja, hogy bevezesse a számítógéppel irányított rendszerek alapfogalmait. Bemutatja a folytonos jel mintavételezését,