Idő-frekvencia transzformációk waveletek
|
|
- Virág Borosné
- 7 évvel ezelőtt
- Látták:
Átírás
1 Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika május 8.
2 Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos wavelet transzformáció skálagram Spektrogram, skálagram alkalmazások Folytonos vagy diszkrét? Többfelbontású analízis Ortogonális wavelet transzformáció alapú eljárások 2
3 Alapfogalmak: Idő-frekvencia sík Idő-frekvencia atom Energiasűrűség az idő-frekvencia síkon - peremeloszlások Idő-frekvencia atom: Olyan függvény, aminek energiája időben és frekvenciában is lokalizált. u 2 t 2 1 f f 1 f f t 2 f ( t) f ( ) t u 2 dt 2 2 d f ( t) 2 2 dt f ( ) 2 d 3
4 Határozatlansági reláció Alsó korlát az idő-frekvencia atom kiterjedésére t 1 2 Egyenlőség Gábor-atomra (Gábor Dénes, 1946): f ( t ) ae it e b ( t u ) 2 4
5 Heisenberg-doboz Idő-frekvencia atom kiterjedése az idő-frekvencia síkon 5
6 Rövid idejű Fourier-transzformáció 1. STFT: short-time Fourier-transform folytonos ablakozott Fourier-transzformáció Az idő-frekvencia atom: i t g u, e g ( t u ) g 1 6
7 Rövid idejű Fourier-transzformáció 2. A transzformáció: Invertálható, a jel teljes energiája megmarad. Energiasűrűség-eloszlás az idő-frekvencia síkon (spektrogram): Egyenletes lefedés: i t Sf ( u, ) f, g f ( t) g ( u t) e dt P S u, f ( u, ) Sf ( u, ) 2 7
8 Frekvencia (khz) 8 Példa spektrogram alkalmazására Idő (s)
9 Wavelet definíció Wavelet: időben jól lokalizált, nullközepű függvény. Komplex, analitikus wavelet: frekvenciában is jól lokalizált! 9
10 Folytonos wavelet transzformáció 1. CWT: continuous wavelet transform Komplex, analitikus wavelet Az idő-frekvencia atom: 1 t u s s u, s 1 10
11 Folytonos wavelet transzformáció 2. A transzformáció: Invertálható, a jel teljes energiája megmarad. Energiasűrűség-eloszlás az idő-frekvencia síkon (skálagram): Lefedés változó alakú atomokkal: Wf ( u, s) f, u, P W f ( u, s) Wf ( u, s) s f ( t) 2 1 s t u s dt 11
12 Példa skálagram alkalmazására Frekvencia (Hz) ,7 7,8 7,9 Idő (s) 8,0 8,1 8,2 12
13 Példa skálagram alkalmazására Frekvencia (Hz) ,7 7,8 7,9 Idő (s) 8,0 8,1 8,2 13
14 Példa skálagram alkalmazására Frekvencia (Hz) ,0 0,5 1,0 Idő (s) 2,0 2,5 3,0 8,2 14
15 A két módszer összehasonlítása 15
16 Idő-frekvencia atomok kiválasztása Komplex, analitikus atomok (STFT esetén automatikusan) Az atom típusa függ a jeltől, de általában a Gábor-atom jó (Gauss-ablak, Morlet-wavelet) Az atom paramétereit a fizikai modell határozza meg: STFT esetén az ablakhosszt CWT esetén a wavelet rendjét (~hullámok számát) A jó paraméterezést a fizikai kép határozza meg (lásd: lebegés) 16
17 f1=300 Hz f2=303 Hz Lebegés 303 Hz 300 Hz 1 Acos t Acos t 2Acos t cos t 303 Hz 300 Hz 301,5 Hz 2 t =600 0,66 s 1,5 Hz t 2 t =300 2 t =200 2 t =60 t t 17 t
18 Frekvencia (khz) Pokol Gergő: Idő-frekvencia transzformációk waveletek Lebegés példa Idő (s)
19 Vibrafon 19
20 Vibrafon 20
21 Folytonos vagy diszkrét A folytonos transzformáció: Alapvető tulajdonságok idő-eltolás invariáns frekvencia-eltolás invariáns (vagy skálainvariáns) redundáns ábrázolás a transzformált értékek összefüggnek A diszkrét transzformáció (ortogonális bázissal): nem idő-eltolás invariáns nem frekvencia-eltolás invariáns nem redundáns ábrázolás a transzformált értékek függetlenek 21
22 Folytonos vagy diszkrét Melyiket használjuk? A folytonos transzformáció: tranziens jeleknél fontos az invariancia vizualizálásnál hasznos a sima (összefüggő) kép az atomok szabadon választhatók A diszkrét transzformáció (ortogonális bázissal): sztochasztikus stacioner jeleknél nem fontos az invariancia, további statisztikus feldolgozás esetén hasznos a függetlenség ha a további használat előtt inverz transzformáljuk (szűrés, tömötítés) speciális ortogonális bázisok (atomok) kellenek (keret elmélet) Kevert tulajdonságú transzformációk pl. csúszóablakos FFT 22
23 Ortogonális wavelet transzformáció FWT (fast wavelet transform), gyors wavelet transzformáció Diszkrét transzformáció ortogonális waveletekre Speciális wavelet-ek: keret elmélet (frame theory) Morlet-wavelet nem jó. Diadikus skálázás, mintavétel: 23
24 Ortogonális wavelet Példa Egy lépésben waveletekte és azokra ortogonális skálafüggvényekre bontunk (Példa: Haar-wavelet, 1909) 24
25 MRA (Multiresolution analysis), többfelbontású analízis 25
26 MRA MRA (Multiresolution analysis), többfelbontású analízis: felbontás különböző skálaparaméterű közelítésekre és azt kiegészítő jelrészletekre Emlékeztető 26
27 Szűrő csoportok Minden diszkrét waveletnek megfelel egy digitális szűrő. Wavelet felüláteresztő szűrő HPF Skálafüggvény aluláteresztő szűrő LPF 27
28 Gyors wavelet transzformáció Analízis (dekompozíció): FWT: szűrők és lemintavételezések ciklikus alkalmazása Lemintavételezés: minden második pontot kihagyjuk 28
29 Gyors wavelet transzformáció Szintézis (rekonstrukció): Az analízis inverze felmintavételezéssel, duális (tükrözött) szűrőkkel (Felmintavételezés: minden pont közé beszúrunk egy 0-t) 29
30 Különböző wavelet családok Haar (legegyszerűbb) Daubechies (legtöbb eltűnő momentum adott hosszra, N/2) Symlet (hasonló a Daubechies-hez, csak szimmetrikusabb) db4 db8 30
31 FWT alapú zajszűrés FWT szűrés Inverz FWT Fontos a diszkrét ortogonális transzformáció függetlenül megváltoztatható komponensek Kemény küszöb: adott érték alatt elhagyjuk Puha küszöb: adott értékkel csökkentjük az összest Küszöb számolható különböző zajtípusokra A wavelet kiválasztása kritikus Hasonló elven működnek a tömörítő eljárások 31
32 2D waveletek (pl. JPEG2000) FWT alapú tömörítés Mozgóképekben is alkalmazzák (pl. ZRLE) Piecewise-Linear Haar (PLHaar) wavelet 32
33 Egyéb, avagy Mit szokás még wavelet módszerként emlegetni? Mindent, ahol egy skálainvariáns bázis szerepet játszik: Speciális waveletek korlátos jelekre Biortogonális waveletek Bármiféle wavelet transzformáción alapuló adatfeldolgozási eljárást Skálainvariáns bázis szerinti kifejtésen alapuló analitikus közelítő megoldásokat Skálainvariáns bázisfüggvényeket használó numerikus módszereket Skálainvarianciát kihasználó tömörítési eljárásokat Mintázatfelismerő eljárásokat... 33
34 Vibrafon Pokol Gergő: Idő-frekvencia transzformációk waveletek GoPro =QrxPuk0JefA 34
35 Vibrafon Specs: 60 fps 60 fps 35
36 Előadás: Irodalom Stéphane Mallat: A wavelet tour of signal processing (Academic Press) Alfred Mertins: Signal analysis (John Willey & Sons Ltd.)... 36
37 37
38 Wigner-Ville eloszlás 1. Definíció: Interferencia: P V f ( u, ) * i u f u e d f
39 Wigner-Ville eloszlás 2. Elemi idő-frekvencia atomokra pontos idő-frekvencia energiasűrűség-eloszlás Paraméterezést nem igényel Összetett jelre negatív értéket is felvehet Nem értelmezhető energiasűrűség-eloszlásként Lényeges jelkomponensek is elveszhetnek az interferenciában 39
40 Cohen-osztály Interferencia csökkentése simítással: P f ( u, ) P f u u u dud V (, ) (,,, ) Simító kernelt megfelelően kell megválasztani Csökken az idő-frekvencia felbontás Paraméterezést igényel Speciális esete a lineáris transzformáció (STFT, CWT), mikor az interferencia teljesen eltűnik. Lin. tr. esetén simítás az atomok Wigner-Ville eloszlásával 40
Idő-frekvencia transzformációk waveletek
Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 2015. április 23. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos
RészletesebbenIdő-frekvencia transzformációk waveletek
Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 013. áprils 17. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos
RészletesebbenIdı-frekvencia transzformációk waveletek
Idı-frekvencia transzformációk waveletek Pokol Gergı BME NTI Mőszaki diagnosztika 010. április 13. Vázlat Alapfogalmak az idı-frekvencia síkon Rövid idejő Fourier-transzformáció spektrogram Folytonos wavelet
RészletesebbenWavelet transzformáció
1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan
Részletesebben4. Szűrés frekvenciatérben
4. Szűrés frekvenciatérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) Unitér transzformációk Az unitér transzformációk olyan lineáris,
RészletesebbenFehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!)
DSP processzorok: 1 2 3 HP zajgenerátor: 4 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! Fehérzajhoz a konstans érték kell - megoldás a digitális
RészletesebbenShift regiszter + XOR kapu: 2 n állapot
DSP processzorok: 1 2 HP zajgenerátor: 3 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! 4 Fehérzajhoz a konstans érték kell - megoldás a digitális
RészletesebbenJelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék
Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006
RészletesebbenKépfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika
Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, intenzitásviszonyok módosításahisztogram módosítás, zajszűrés) Képelemzés
RészletesebbenDINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1
DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n
RészletesebbenHa sokáig mérünk: kiátlagoljuk a jelet Milyen lesz ez a súlyfüggvény? T idejű integrálás + delta függvény T ideig integrálva:
1 Integráló voltmérő Ha sokáig mérünk: kiátlagoljuk a jelet Milyen lesz ez a súlyfüggvény? T idejű integrálás + delta függvény T ideig integrálva: A súlyfüggvény: T széles impulzus 2 Ha a bemenő zaj B
RészletesebbenKorszerű idő-frekvencia analízis programcsomag tranziens folyamatok vizsgálatára
Nukleon 0. szeptember V. évf. (0) Korszerű idő-frekvencia analízis programcsomag tranziens folyamatok vizsgálatára Horváth László, Lazányi Nóra, Papp Gergely, Pokol Gergő, Pór Gábor BME Nukleáris Technikai
RészletesebbenFourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz
Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos
RészletesebbenÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY Dr. Soumelidis Alexandros 2018.10.25. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mintavételezés
RészletesebbenADAT- ÉS INFORMÁCIÓFELDOLGOZÁS
ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS Földtudományi mérnöki MSc mesterszak 2018/19 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy
RészletesebbenDigitális jelfeldolgozás
Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.
RészletesebbenIdősorok elemzése. Salánki Ágnes
Idősorok elemzése Salánki Ágnes salanki.agnes@gmail.com 2012.04.13. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 Idősorok analízise Alapfogalmak Komponenselemzés
RészletesebbenJelfeldolgozás bevezető. Témalaboratórium
Jelfeldolgozás bevezető Témalaboratórium Tartalom Jelfeldolgozás alapjai Lineáris rendszerelmélet Fourier transzformációk és kapcsolataik Spektrális képek értelmezése Képfeldolgozás alapjai Néhány nevezetesebb
RészletesebbenAz Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1
RészletesebbenHíradástechikai jelfeldolgozás
Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu
RészletesebbenKépfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz
Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika 9. ea. 2015 ősz Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, intenzitásviszonyok módosításahisztogram módosítás,
RészletesebbenANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem. Jelfeldolgozás. ANTAL Margit. Adminisztratív. Bevezetés. Matematikai alapismeretek.
Jelfeldolgozás 1. Sapientia - Erdélyi Magyar Tudományegyetem 2007 és jeleket generáló és jeleket generáló és jeleket generáló Gyakorlatok - MATLAB (OCTAVE) (50%) Írásbeli vizsga (50%) és jeleket generáló
RészletesebbenÉRZÉKELŐK ÉS BEAVATKOZÓK I. 0. TANTÁRGY ISMERTETŐ
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 0. TANTÁRGY ISMERTETŐ Dr. Soumelidis Alexandros 2018.09.06. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG A tárgy célja
RészletesebbenJelanalízis. Neuronális aktivitás
Jelanalízis Neuronális aktivitás 2/10 a bioelektromos jelek lényegében két kategóriába esnek: gyors jelek (spike aktivitás) és lassú jelek (EEG, mezőpotenciál, stb.) a jelanalízis alapvetően különbözik
RészletesebbenRENDSZERTECHNIKA 8. GYAKORLAT
RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.
RészletesebbenNéhány fontosabb folytonosidejű jel
Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1
RészletesebbenEllenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen
RészletesebbenBevezetés. Korreláció a Mirnov-szondajelek sávteljesítményei között. plazma szélénél. Az elektron-ciklotron emissziós spektroszkópiai
ták, hogy a több száz méter vastag, 6 km 2 kiterjedésû másodlagos kôzet kiválóan alkalmas nukleáris tárolóhely létesítésére [14]. A legkedvezôtlenebb nedvesített anyagmintákon 12 I- és más izotópokkal
RészletesebbenMintavétel: szorzás az idő tartományban
1 Mintavételi törvény AD átalakítók + sávlimitált jel τ időközönként mintavétel Mintavétel: szorzás az idő tartományban 1/τ körfrekvenciánként ismétlődik - konvolúció a frekvenciatérben. 2 Nem fednek át:
RészletesebbenMit lássunk élnek? Hol van az él? Milyen vastag legyen? Hol
Textúra Könnyű az élt megtalálni? Mi lássunk élnek? Mit lássunk élnek? Hol van az él? Milyen vastag legyen? Mit lássunk élnek? Zaj A zajpontokat nem szabad az élpontokkal összekeverni Egy vagy két él?
RészletesebbenAkusztikai tervezés a geometriai akusztika módszereivel
Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika
RészletesebbenAz NMR és a bizonytalansági elv rejtélyes találkozása
Az NMR és a bizonytalansági elv rejtélyes találkozása ifj. Szántay Csaba MTA Kémiai Tudományok Osztálya 2012. február 21. a magspínek pulzus-gerjesztésének értelmezési paradigmája GLOBÁLISAN ELTERJEDT
RészletesebbenDekonvolúció a mikroszkópiában. Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ
Dekonvolúció a mikroszkópiában Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ 2015 Fourier-Sorok Minden 2π szerint periodikus függvény előállítható f x ~ a 0 2 + (a
RészletesebbenFourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata
Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Reichardt, András 27. szeptember 2. 2 / 5 NDSM Komplex alak U C k = T (T ) ahol ω = 2π T, k módusindex. Időfüggvény előállítása
RészletesebbenTANTÁRGYI PROGRAM Matematikai alapok 2. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
Részletesebben2013. január 9. A Heisenberg-féle határozatlansági relációt úgy szokás megfogalmazni, hogy egy
Hullámcsomagok és a határozatlansági reláció Nagy Dávid Gergely - I. számítógépes fizika beadandó 2013. január 9. A Heisenberg határozatlansági reláció A Heisenberg-féle határozatlansági relációt úgy szokás
RészletesebbenX. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.
RészletesebbenAnalóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció
RészletesebbenOrvosi Fizika és Statisztika
Orvosi Fizika és Statisztika Szegedi Tudományegyetem Általános Orvostudományi Kar Természettudományi és Informatikai Kar Orvosi Fizikai és Orvosi Informatikai Intézet www.szote.u-szeged.hu/dmi Orvosi fizika
RészletesebbenMegoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
RészletesebbenPanorámakép készítése
Panorámakép készítése Képregisztráció, 2009. Hantos Norbert Blaskovics Viktor Összefoglalás Panoráma (image stitching, planar mosaicing): átfedő képek összeillesztése Lépések: Előfeldolgozás (pl. intenzitáskorrekciók)
RészletesebbenÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS Dr. Soumelidis Alexandros 2018.10.04. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérés-feldolgozás
RészletesebbenAdaptív dinamikus szegmentálás idősorok indexeléséhez
Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november
RészletesebbenJelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03
Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő
Részletesebben1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények
1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási
RészletesebbenMISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR TRANZIENS ÉS KVÁZIPERIODIKUS FOLYAMATOK ANALÍZISE AZ IDŐ-FREKVENCIA TARTOMÁNYBAN PhD ÉRTEKEZÉS KÉSZÍTETTE: TÓTH LAJOS TIBOR OKLEVELES GÉPÉSZMÉRNÖK HATVANY
RészletesebbenGyakorló többnyire régebbi zh feladatok. Intelligens orvosi műszerek október 2.
Gyakorló többnyire régebbi zh feladatok Intelligens orvosi műszerek 2018. október 2. Régebbi zh feladat - #1 Az ábrán látható két jelet, illetve összegüket mozgóablak mediánszűréssel szűrjük egy 11 pontos
RészletesebbenKépfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz
Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika 9. ea. 2015 ősz Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, hisztogram módosítás, zajszűrés, élkiemelés) Képelemzés
RészletesebbenTANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
RészletesebbenMérés és adatgyűjtés
Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek
Részletesebben1. Jelgenerálás, megjelenítés, jelfeldolgozás alapfunkciói
1. Jelgenerálás, megjelenítés, jelfeldolgozás alapfunkciói FELADAT Készítsen egy olyan tömböt, amelynek az elemeit egy START gomb megnyomásakor feltölt a program 1 periódusnyi szinuszosan változó értékekkel.
RészletesebbenExplicit hibabecslés Maxwell-egyenletek numerikus megoldásához
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,
RészletesebbenInverz Laplace-transzformáció. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Definíció: Ha az f (t) függvény laplace-transzformáltja F (s), akkor f (t)-t az F (s) függvény inverz Laplace-transzformáltjának nevezzük. Definíció: Ha
RészletesebbenSajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István
Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága
RészletesebbenA Wigner FK részvétele a VIRGO projektben
Kettős rendszerek jellemzőinek meghatározása gravitációs hullámok segítségével A Wigner FK részvétele a VIRGO projektben Vasúth Mátyás PhD, MTA Wigner FK A Magyar VIRGO csoport vezetője MTA, 2016.05.05
RészletesebbenÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK Dr. Soumelidis Alexandros 2018.10.18. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérések
RészletesebbenVéletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
RészletesebbenIntelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
RészletesebbenHangtechnika. Médiatechnológus asszisztens
Vázlat 3. Előadás - alapjai Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék Ismétlés Vázlat I.rész: Ismétlés II.rész: A digitális Jelfeldolgozás
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
RészletesebbenSzámítógépes geometria (mester kurzus)
2010 sz, Debreceni Egyetem Csuklós szerkezetek animációja (Kép 1985-b l: Tony de Peltrie) Csontváz-modellek Csuklós szerkezet (robotkar) A robotkar részei: csuklók (joints) rotációs prizmatikus (transzlációs)
Részletesebbenn 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,
205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:
RészletesebbenA MODELLALKOTÁS ELVEI ÉS MÓDSZEREI
SZENT ISTVÁN EGYETEM GÖDÖLLŐ MECHANIKAI ÉS GÉPTANI INTÉZET A MODELLALKOTÁS ELVEI ÉS MÓDSZEREI Dr. M. Csizmadia Béla egyetemi tanár, az MMK Gépészeti Tagozatának elnöke Budapest 2013. október. 25. BPMK
RészletesebbenNumerikus módszerek beugró kérdések
1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:
RészletesebbenA keveredési réteg magasságának detektálása visszaszóródási idősorok alapján
ORSZÁGOS METEOROLÓGIAI SZOLGÁLAT A keveredési réteg magasságának detektálása visszaszóródási idősorok alapján Timár Ágnes Alapítva: 1870 A planetáris határréteg (PHR) Mechanikus és termikus turbulencia
RészletesebbenFourier transzformáció
a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos
RészletesebbenInformatika Rendszerek Alapjai
Informatika Rendszerek Alapjai Dr. Kutor László Jelek típusai Átalakítás analóg és digitális rendszerek között http://uni-obuda.hu/users/kutor/ IRA 2014 2014. ősz IRA3/1 Analóg jelek digitális feldolgozhatóságának
RészletesebbenNumerikus integrálás április 20.
Numerikus integrálás 2017. április 20. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
RészletesebbenFraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
RészletesebbenRobotika. Kinematika. Magyar Attila
Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc
RészletesebbenAdatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus
Részletesebbenbiometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
RészletesebbenÉrtelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,
25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit
RészletesebbenEKG jelek analízise waveletekkel
Fazekas Andrea January 7, 2009 Bevezetés A szív összehúzódása egy elektromos inger hatására jön létre, mely normális esetben a sinuscsomóból indul el és a szív sajátságos ingerületvezet rostjain keresztül
RészletesebbenFúziós plazmafizika ma Magyarországon
Fúziós plazmafizika ma Magyarországon Pokol Gergő BME NTI MAFIHE TDK és Szakdolgozat Hét 2015. november 9. Fúziós energiatermelés A csillagokban is fúziós reakciók zajlanak, azonban ezek túl kis energiasűrűséggel
RészletesebbenKépfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008
Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi
Részletesebben6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények
6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai
RészletesebbenNumerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok
Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes
RészletesebbenDigitális szűrők - (BMEVIMIM278) Házi Feladat
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rszerek Tanszék Digitális szűrők - (BMEVIMIM278) FIR-szűrő tervezése ablakozással Házi Feladat Név: Szőke Kálmán Benjamin Neptun:
Részletesebben1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban
1. témakör A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban A hírközlés célja, általános modellje Üzenet: Hír: Jel: Zaj: Továbbításra szánt adathalmaz
Részletesebben1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió
Mérés és adatgyűjtés - Kérdések 2.0 verzió Megjegyzés: ezek a kérdések a felkészülést szolgálják, nem ezek lesznek a vizsgán. Ha valaki a felkészülése alapján önállóan válaszolni tud ezekre a kérdésekre,
RészletesebbenMátrix-exponens, Laplace transzformáció
2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények
RészletesebbenTeremakusztikai méréstechnika
Teremakusztikai méréstechnika Tantermek akusztikája Fürjes Andor Tamás 1 Tartalomjegyzék 1. A teremakusztikai mérések célja 2. Teremakusztikai paraméterek 3. Mérési módszerek 4. ISO 3382 szabvány 5. Méréstechnika
RészletesebbenA gyakorlat célja a fehér és a színes zaj bemutatása.
A gyakorlat célja a fehér és a színes zaj bemutatása. 1.@. FFT begyakorlása n = [:9]; % Harminc minta x = cos(*pi*n/1); % 1 mintát veszünk periodusonként N1 = 64; % Három módon számoljuk az FFT-t N = 18;
RészletesebbenHíradástechikai jelfeldolgozás
Híradástehikai jeleldolgozás. előadás Sebességkonverziós jeleldolgozás 05. 04. 3. 05. április 3. Budapest Dr. Gaál Józse BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu Sebességkonverziós
Részletesebben6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján
Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei
Részletesebben4. Laplace transzformáció és alkalmazása
4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:
RészletesebbenSúlyozott automaták alkalmazása
Súlyozott automaták alkalmazása képek reprezentációjára Gazdag Zsolt Szegedi Tudományegyetem Számítástudomány Alapjai Tanszék Tartalom Motiváció Fraktáltömörítés Súlyozott véges automaták Képek reprezentációja
RészletesebbenZajok és fluktuációk fizikai rendszerekben
Zajok és fluktuációk fizikai rendszerekben Zajok információforrásként Makra Péter SZTE Kísérleti Fizikai Tanszék 2009-2010. őszi félév Változat: 0.0 Legutóbbi frissítés: 2009. október 14. Makra Péter (SZTE
RészletesebbenKépfeldolgozás jól párhuzamosítható
Képfeldolgozás jól párhuzamosítható B. Wilkinson, M. Allen: Parallel Programming, Pearson Education Prentice Hall, 2nd ed., 2005. könyv 12. fejezete alapján Vázlat A képfeldolgozás olyan alkalmazási terület,
RészletesebbenGeofizikai kutatómódszerek I.
Geofizikai kutatómódszerek I. A gravitációs és mágneses kutatómódszer Dr. Szabó Norbert Péter egyetemi docens Miskolci Egyetem Geofizikai Intézeti Tanszék e-mail: norbert.szabo.phd@gmail.com 1. A gravitációs
RészletesebbenFODOR GYÖRGY JELEK ÉS RENDSZEREK
FODOR GYÖRGY JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, 2006 Előszó A valóságos fizikai, kémiai, műszaki, gazdasági folyamatokat modellek segítségével írjuk le. A modellalkotás során leegyszerűsítjük
RészletesebbenMűszaki akusztikai mérések. (Oktatási segédlet, készítette: Deák Krisztián)
Műszaki akusztikai mérések (Oktatási segédlet, készítette: Deák Krisztián) Az akusztika tárgya a 20 Hz és 20000 Hz közötti, az emberi fül számára érzékelhető rezgések vizsgálata. A legegyszerűbb jel, a
Részletesebben5. mérés: Diszkrét Fourier Transzformáció (DFT), Gyors Fourier Transzformáció (FFT), számítógépes jelanalízis
Híradástechnika II. laboratóriumi mérések 5. mérés: Diszkrét Fourier Transzformáció (DFT), Gyors Fourier Transzformáció (FFT), számítógépes jelanalízis Összeállította: Kármán József Általános bevezet Az
RészletesebbenKéprestauráció Képhelyreállítás
Képrestauráció Képhelyreállítás Képrestauráció - A képrestauráció az a folyamat mellyel a sérült képből eltávolítjuk a degradációt, eredményképpen pedig az eredetihez minél közelebbi képet szeretnénk kapni
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Részletesebben11. Orthogonal Frequency Division Multiplexing ( OFDM)
11. Orthogonal Frequency Division Multiplexing ( OFDM) Az OFDM (Orthogonal Frequency Division Multiplexing ) az egyik legszélesebb körben alkalmazott eljárás. Ez az eljárás az alapja a leggyakrabban alkalmazott
RészletesebbenOptika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
RészletesebbenFORGÁCSOLÁSI FOLYAMATOK VIZSGÁLATA AZ ERŐ-SZIGNÁL ANALÍZISE ALAPJÁN. Összefoglaló
FORGÁCSOLÁSI FOLYAMATOK VIZSGÁLATA AZ ERŐ-SZIGNÁL ANALÍZISE ALAPJÁN INVESTIGATION OF CUTTING PROCESSES BASED ON ANALYSIS OF THE FORCE SIGNALS Kovács Tamás, Csizmás Edit, Szabó András, Kecskeméti Főiskola
Részletesebben3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.
Részletesebben