Geofizikai kutatómódszerek I.
|
|
- Károly Balla
- 6 évvel ezelőtt
- Látták:
Átírás
1 Geofizikai kutatómódszerek I. A gravitációs és mágneses kutatómódszer Dr. Szabó Norbert Péter egyetemi docens Miskolci Egyetem Geofizikai Intézeti Tanszék norbert.szabo.phd@gmail.com
2 1. A gravitációs direkt feladat
3 A gravitációs anomália számítása Kearey et al. (22)
4 A gömb modell A ható leghosszabb dimenziója jóval kisebb a mélységénél Pl. üreg, eltemetett tárgy, érctest stb. Az R sugarú gömb gravitációs hatása A ható z mélysége
5 A poligon módszer
6 Szabálytalan alakú 3D hatók
7 A gravitációs potenciál
8 A Haáz formula
9 3D hasáb gravitációs anomáliája
10 Eötvös inga adatok számítása
11 A többértelműség (ekvivalencia) Kearey et al. (22)
12 2. Gravitációs adatok inverziója
13 Az inverzió folyamatábrája Modellalkotás Mérési adatok, a priori ismeretek Elvi adatok számítása A modell finomítása Nem Mérési és elvi adatok összehasonlítása Elfogadható az egyezés? Igen A modell paraméterek elfogadása
14 A paraméter-érzékenység A sűrűség és a ható geometriai paramétereinek a mérési adatokra gyakorolt hatása különböző Érzékenységi függvény: a vizsgált kőzetfizikai vagy geometriai paraméter milyen mértékben befolyásolja az adatokat S ij = d i m j m j d i Az inverzió során az adattérbeli változásokra érzékeny paraméterek gyorsabban konvergálnak, míg a kevésbé változékonyak lemaradnak, mely lineáris inverziónál lokális minimumban való stabilizálódást okozhat. Kis érzékenységű paramétereket más forrásból kell meghatározni
15 Sűrűség-érzékenység
16 Vertikális koordináta-érzékenység
17 Horizontális koordináta-érzékenység
18 Horizontális koordináta-érzékenység
19 Az adat-modell kapcsolat ρ 1 ρ 2.. ρ i.. g J ρ Inverz feladat Direkt feladat ρ M modellvektor adatvektor sűrűség nehézségi gyorsulás g 1 g 2.. g k.. g N
20 A gravitáció direkt feladata N 1,2,..., k J ρ g ρ dv r r z z G g dv r r z - z y,z ) x, ρ( G ), y, x ( g M 1 i ki i k i M 1 i ΔV 3 k k 3 V z i
21 z[m] Y [m] Y [m] A túlhatározott gravitációs inverz feladat -2 g (mért) [Gal] -2 g (számított) -g (mért) [Gal] X [m] X [m] g/cm y[m] x[m]
22 Az alulhatározott gravitációs inverz feladat Minimalizálandó célfüggvény Csillapítási tényező Az aktuális és referencia modell négyzetes eltérése Lagrange-féle multiplikátor Adatok hibájával fordítottan arányos súlyok Mért és számított adatok négyzetes eltérése Büntető függvény, a sűrűség értékek korlátozását teszi lehetővé (pozitív ill. megadott intervallumban legyenek a sűrűség értékek) Simítást végző súlyok és mélység-súlyozás (a magfüggvény hatását komponzálja)
23 3D inverzió szintetikus gravitációs adatokon UBC Geophysical Inversion Facility
24 3D inverzió terepi gravitációs adatokon UBC Geophysical Inversion Facility
25 3. A mágneses direkt feladat
26 A mágneses anomália számítása Kearey et al. (22)
27 A mágneses dipólus indukciója
28 Dipól mágneses tere z = 1 km x = km, y = km m d = 1 9 Am 2 D = 2.5, I = 63 Zaj = 2 % Gauss eloszlás
29 Mágneses dipól térfrekvencia spektruma 2D DFT
30 A vertikális helyzetű hasáb modell
31 Szabálytalan alakú 3D hatók
32 A Kunaratnam formula
33 z[km] -2 2 Hasáb mágneses tere T [nt] -5 x 1 =-4 km, x 2 =4 km y 1 =-2 km, y 2 =2 km z 1 =1 km, z 2 =2 km J=1 A/m D=2.5, I=63 Y [m] X [m] y[km] x[km]
34 A pólusra redukálás A mért mágneses térképet átszámítjuk a mágneses pólusra (I=9 ) Az anomáliák könnyebben értelmezhetők ill. a görbe maximumok pontosan a ható felett jelentkeznek
35 Pólusra redukálás 1D esetben A pólusra redukálás a tér-, ill. a frekvencia tartományban r(x) t(x)* s(x) R(f) T(f)S(f) A komplex átviteli függvény a térfrekvencia tartományban S(f) Nn - Kk 1 i sign(f)(n k Kn) ahol x: profil menti távolság, t: nyers mágneses adatok, s: átviteli függvény, r: pólusra redukált mágneses adatok, f: térfrekvencia, R,T,S: térfrekvencia spektrumok, K,N: mágnesezettség vektorának irány-koszinuszai, k,n: Földi mágneses tér vektorának irány-koszinuszai.
36 Terepi adatok pólusra redukálása Telkibánya 21 Profile 2
37 Pólusra redukálás 2D esetben A pólusra redukálás a tér-, ill. a frekvencia tartományban r(x, y) t(x, y)* s(x, R(u, v) T(u, v)s(u, y) v) Gunn-féle algoritmus: 2D diszkrét Fourier transzformációval áttérünk a térfrekvencia tartományba, ahol az R redukált adatok -1 R P T A projekciót megvalósító komplex operátor P(u,v) il u s v im s nil u s im v s N ahol (u,v) a térfrekvenciák, (L,M,N) a mágnesezettség vektorának irány-koszinuszai, (l,m,n) a Földi mágneses tér vektorának iránykoszinuszai és s=(u 2 +v 2 ) 1/2 (i a képzetes egység).
38 Pólusra redukálás hasáb esetén x 1 =-3 km, x 2 =3 km y 1 =-2 km, y 2 =2 km z 1 =1 km, z 2 =2 km J=1 A/m D=2.5, I=63 Gauss zaj = 3%
39 4. Mágneses adatok inverziója
40 Az adat-modell kapcsolat κ 1 κ 2.. κ i.. B Inverz feladat G Direkt feladat κ M modellvektor adatvektor szuszceptibilitás mágneses indukció B 1 B 2.. B k.. B N
41 A mágneses direkt feladat M 1 j j ij i M 1 j j l V i i V i i V i i N 1,2,..., i κ G B κ H e dv r r 1 4π 1 B dv r r 1 κ(r)h 4π μ ) B(r dv r r 1 m(r) 4π μ ) B(r
42 A többértelműség (ekvivalencia)
43 Az alulhatározott mágneses inverz feladat Minimalizálandó célfüggvény Csillapítási tényező Az aktuális és referencia modell négyzetes eltérése Lagrange-féle multiplikátor Adatok hibájával fordítottan arányos súlyok Büntető függvény, a szuszceptibilitás értékek korlátozását teszi lehetővé Mért és számított adatok négyzetes eltérése Simítást végző súlyok
44 3D inverzió szintetikus mágneses adatokon UBC Geophysical Inversion Facility
45 3D inverzió terepi mágneses adatokon UBC Geophysical Inversion Facility
46 UBC-GIF MAG3D programcsomag Rács létrehozása
47 UBC-GIF MAG3D programcsomag Adatfile szerkezete
48 UBC-GIF MAG3D alkalmazása Direkt feladat Inverziós eredmény UBC Geophysical Inversion Facility
49 Magyarországi terepi alkalmazás Irota (211)
50 2D értelmezés eredménye Irota (211)
51 3D értelmezés eredménye Irota (211)
52 Köszönöm a figyelmet! Jó szerencsét!
Geofizika I. A gravitációs és mágneses kutatómódszer. Dr. Szabó Norbert Péter. BSc műszaki földtudományi alapszak hallgatóinak
Geofizika I. A gravitációs és mágneses kutatómódszer BSc műszaki földtudományi alapszak hallgatóinak Dr. Szabó Norbert Péter egyetemi adjunktus Miskolci Egyetem Geofizikai Intézeti Tanszék e-mail: norbert.szabo.phd@gmail.com
Geofizika I. A gravitációs és mágneses kutatómódszer. Dr. Szabó Norbert Péter. BSc műszaki földtudományi alapszak hallgatóinak
Geofizika I. A gravitációs és mágneses kutatómódszer BSc műszaki földtudományi alapszak hallgatóinak Dr. Szabó Norbert Péter egyetemi docens Miskolci Egyetem Geofizikai Intézeti Tanszék e-mail: norbert.szabo.phd@gmail.com
A MAGSAT MESTERSÉGES HOLD MÁGNESES ADATAINAK FELDOLGOZÁSA AZ
A MAGSAT MESTERSÉGES HOLD MÁGNESES M ADATAINAK FELDOLGOZÁSA AZ EURÓPAI RÉGIR GIÓRA Wittmann Géza, Ph.D. PhD eredmények a magyar geofizikában Magyar Tudományos Akadémia 2005. október 28. Mesterséges holdak
FÖLDMÁGNESES MÉRÉSEK A RÉGÉSZETBEN
FÖLDMÁGNESES MÉRÉSEK A RÉGÉSZETBEN Lenkey László Régészeti geofizika, konferencia, Budapest, 2013. november 5. FÖLDMÁGNESES KUTATÓMÓDSZER I. Min alapszik? 1. Anyagok eltérő mágneses tulajdonságain: 2.
ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS
ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS Földtudományi mérnöki MSc mesterszak 2018/19 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy
Hangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A
Inverziós módszerek alkalmazása a geofizikában
Inverziós módszerek alkalmazása a geofizikában Kis Márta Ph.D. Eötvös Loránd Geofizikai Intézet PhD értekezés: Felszínközeli földtani szerkezetek vizsgálata szeizmikus és egyenáramú geoelektromos adatok
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Alkalmazott spektroszkópia
Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp
Geoelektromos tomográfia alkalmazása a kőbányászatban
Geoelektromos tomográfia alkalmazása a kőbányászatban Dr. Baracza Mátyás Krisztián tudományos főmunkatárs Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1. Bevezetés 2. Felhasznált mérési módszer
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
GEOELEKTROMOS KOLLÉGIUM
GEOELEKTROMOS KOLLÉGIUM Földtudományi mérnöki MSc, Geofizikus-mérnöki specializáció 2018/19 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai
GEOSTATISZTIKA II. Geográfus MSc szak. 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
GEOSTATISZTIKA II. Geográfus MSc szak 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy adatlapja Tantárgy neve:
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus
-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.
1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus
Az előadás tartalma. Debrecen 110 év hosszúságú csapadékadatainak vizsgálata Ilyés Csaba Turai Endre Szűcs Péter Ciklusok felkutatása
Miskolci Egyetem Környezetgazdálkodási Intézet Geofizikai és Térinformatikai Intézet MTA-ME Műszaki Földtudományi Kutatócsoport Debrecen 110 év hosszúságú csapadékadatainak vizsgálata Ilyés Csaba Turai
Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!)
DSP processzorok: 1 2 3 HP zajgenerátor: 4 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! Fehérzajhoz a konstans érték kell - megoldás a digitális
Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin
CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN*
A Miskolci Egyetem Közleménye A sorozat, Bányászat, 66. kötet, (2004) p. 103-108 CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN* Dr.h.c.mult. Dr. Kovács Ferenc az
Hogyan készül a Zempléni Geotermikus Atlasz?
Hogyan készül a Zempléni Geotermikus Atlasz? MISKOLCI EGYETEM KÚTFŐ PROJEKT KÖZREMŰKÖDŐK: DR. TÓTH ANIKÓ NÓRA PROF. DR. SZŰCS PÉTER FAIL BOGLÁRKA BARABÁS ENIKŐ FEJES ZOLTÁN Bevezetés Kútfő projekt: 1.
Shift regiszter + XOR kapu: 2 n állapot
DSP processzorok: 1 2 HP zajgenerátor: 3 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! 4 Fehérzajhoz a konstans érték kell - megoldás a digitális
Ejtési teszt modellezése a tervezés fázisában
Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen
Diszkréten mintavételezett függvények
Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
Geofizika alapjai. Bevezetés. Összeállította: dr. Pethő Gábor, dr Vass Péter ME, Geofizikai Tanszék
Geofizika alapjai Bevezetés Összeállította: dr. Pethő Gábor, dr Vass Péter ME, Geofizikai Tanszék Geofizika helye a tudományok rendszerében Tudományterületek: absztrakt tudományok, természettudományok,
Mágneses szuszceptibilitás mérése
Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása
Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése
Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája
Vezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
Digitális képek feldolgozása Előfeldolgozás Radiometriai korrekció Geometriai korrekció Képjavítás Szűrők Sávok közötti műveletek Képosztályozás Utófe
Távérzékelés Digitális felvételek előfeldolgozása (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
GEOSTATISZTIKA. Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány. 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
GEOSTATISZTIKA Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek
Az Eötvös-ingától a GOCE műholdig
Az Eötvös-ingától a GOCE műholdig Földváry Lóránt BME Általános- és Felsőgeodézia Tanszék Elhangzott előadás a Magyar Mérnök Kamara, Geodéziai és Geoinformatikai Tagozatának taggyűlésén, Budapesti Műszaki
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
Matematikai geodéziai számítások 5.
Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
Villamosságtan szigorlati tételek
Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok
Pótlap nem használható!
1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3
Automatikus irányzás digitális képek. feldolgozásával TURÁK BENCE DR. ÉGETŐ CSABA
Automatikus irányzás digitális képek feldolgozásával TURÁK BENCE DR. ÉGETŐ CSABA Koncepció Robotmérőállomásra távcsővére rögzített kamera Képek alapján a cél automatikus detektálása És az irányzás elvégzése
PONTFELHŐ REGISZTRÁCIÓ
PONTFELHŐ REGISZTRÁCIÓ ITERATIVE CLOSEST POINT Cserteg Tamás, URLGNI, 2018.11.22. TARTALOM Röviden Alakzatrekonstrukció áttekintés ICP algoritmusok Projektfeladat Demó FORRÁSOK Cikkek Efficient Variants
Rugalmas állandók mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem
Fizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
Doktori értekezés tézisei
Doktori értekezés tézisei GEOELEKTROMOS MÉRÉSI ADATOK VIZSGÁLATA ANALITIKUS MODELLEZÉSEN ALAPULÓ ELJÁRÁSOKKAL FELSZÍNKÖZELI ÜREGEK KIMUTATÁSA ÉS PARAMÉTEREINEK MEGHATÁROZÁSA CÉLJÁBÓL Írta: Nyári Zsuzsanna
Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei
Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:
GEOFIZIKAI MÉRÉSEK. Földtudományi mérnöki mesterszak / Geofizikusmérnöki szakirány. 2017/18 II. félév. A kurzus ebben a félévben nem indult
GEOFIZIKAI MÉRÉSEK Földtudományi mérnöki mesterszak / Geofizikusmérnöki szakirány 2017/18 II. félév A kurzus ebben a félévben nem indult TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi
Dr. habil. Czupy Imre
AZ ERDŐ- ÉS VADGAZDÁLKODÁSBAN ELŐFORDULÓ ERGONÓMIAI KOCKÁZATOK ÉS AZ ÁLTALUK OKOZOTT MOZGÁSSZERVI MEGBETEGEDÉSEK Dr. habil. Czupy Imre SOPRONI EGYETEM intézetigazgató egyetemi docens SZABADBAN VÉGZETT
Konzulensek: Czeglédi Ádám Dr. Bojtár Imre
Konzulensek: Czeglédi Ádám Dr. Bojtár Imre FLAC : explicit véges differenciás program Kőzettömeg felosztása Zónákra Rácspontok Mozgásegyenlet Rácspont Zóna & u σ i ij ρ = + ρg t x j t+ t / 2) u& ( = u&
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54
A mágneses szuszceptibilitás vizsgálata
Bán Marcell ETR atonosító BAMTACT.ELTE Beadási határidő: 2012.12.13 A mágneses szuszceptibilitás vizsgálata 1.1 Mérés elve Anyagokat mágneses térbe helyezve, a tér hatására az anygban mágneses dipólusmomentum
A bifiláris felfüggesztésű rúd mozgásáról
1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl
A geoelektromos geofizikai módszerek alkalmazási lehetőségei a régészetben
A Miskolci Egyetem Közleményei, A sorozat, Bányászat, 82. kötet (2011) A geoelektromos geofizikai módszerek alkalmazási lehetőségei a régészetben Turai Endre egyetemi docens, a műszaki tudomány kandidátusa
Optimális mérési elrendezés hidraulikus hálózatokon
Optimális mérési elrendezés hidraulikus hálózatokon MaSzeSz Juniuor Szimpózium Wéber Richárd PhD hallgató, III. félév BME, GPK, Hidrodinamikai Rendszerek Tanszék Budapest, 2018, egyetemi docens Tartalom
Mágneses szuszceptibilitás mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az
Nagy pontosságú rövidtávú ivóvíz fogyasztás előrejelzés Készítette: Bibok Attila PhD Hallgató MHT XXXIV. Vándorgyűlés
Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki kar Vízi Közmű és Környezetmérnöki Tanszék Nagy pontosságú rövidtávú ivóvíz fogyasztás előrejelzés Készítette: Bibok Attila PhD Hallgató MHT
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Képrekonstrukció 3. előadás
Képrekonstrukció 3. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Computed Tomography (CT) Elv: Röntgen-sugarak áthatolása 3D objektum 3D térfogati kép Mérések
Végeselem modellezés alapjai 1. óra
Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,
Energiatételek - Példák
9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l
Excel segédlet Üzleti statisztika tantárgyhoz
Miskolci Egyetem Üzleti Statisztika és Előrejelzési Intézeti Tanszék Excel segédlet Üzleti statisztika tantárgyhoz. Z próba einek meghatározása óbafüggvény: x - m z = ; vagy σ/ n x - m z = ; vagy s/ n
Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz
Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos
Nanokristályos lágymágneses vasmagok minősitése
Nanokristályos lágymágneses vasmagok minősitése 1. Kvázi DC hiszterézis görbe felvétele A berendezést főleg extrém lágymágneses anyagokból (Hc < 1 A/m) készült toroid minták tesztelésére fejlesztettük
Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport
Analízis I. zárthelyi dolgozat javítókulcs, Informatika I. 2012. okt. 19. Elméleti kérdések A csoport 1. Hogyan számíthatjuk ki két trigonometrikus alakban megadott komplex szám szorzatát más alakba való
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
Szélsőérték feladatok megoldása
Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
INVERZIÓS MÓDSZERFEJLESZTÉS A FOURIER TRANSZFORMÁLT ZAJÉRZÉKENYSÉGÉNEK CSÖKKENTÉSÉRE
MIKOVINY SÁMUEL FÖLDTUDOMÁNYI DOKTORI ISKOLA Doktori (PhD) értekezés tézisei INVERZIÓS MÓDSZERFEJLESZTÉS A FOURIER TRANSZFORMÁLT ZAJÉRZÉKENYSÉGÉNEK CSÖKKENTÉSÉRE Írta: SZEGEDI HAJNALKA Tudományos vezető:
Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.
Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
7. Mágneses szuszceptibilitás mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 22. Leadás dátuma: 2008. 11. 05. 1 1. A mérési összeállítás A mérési összeállítás sematikus ábrája
Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11.
Haszongépj pjármű fékrendszer intelligens vezérl rlése Németh Huba Knorr-Bremse Kutatási és s Fejlesztési si Központ, Budapest 2004. November 17. Knorr-Bremse 19.11.2004 Huba Németh 1 Tartalom Motiváció
Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.
Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak
Digitális képek szegmentálása. 5. Textúra. Kató Zoltán.
Digitális képek szegmentálása 5. Textúra Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Textúra fogalma Sklansky: Egy képen egy területnek állandó textúrája van ha a lokális statisztikák vagy
Analízis házi feladatok
Analízis házi feladatok Készült a PTE TTK GI szakos hallgatóinak Király Balázs 200-. I. Félév 2 . fejezet Első hét.. Házi Feladatok.. Házi Feladat. Írjuk fel a következő sorozatok 0.,., 2., 5., 0. elemét,
MÉLYFÚRÁSI GEOFIZIKAI ADATOK ÉRTELMEZÉSÉNEK MODERN INVERZIÓS MÓDSZEREI
MIKOVINY SÁMUEL FÖLDTUDOMÁNYI DOKTORI ISKOLA Doktori értekezés tézisei MÉLYFÚRÁSI GEOFIZIKAI ADATOK ÉRTELMEZÉSÉNEK MODERN INVERZIÓS MÓDSZEREI Írta: SZABÓ NORBERT PÉTER Tudományos vezető: DR. DOBRÓKA MIHÁLY
Benapozásvédelmi eszközök komplex jellemzése
Budapesti Műszaki és Gazdaságtudományi Egyetem, Építészmérnöki Kar, Épületenergetikai és Épületgépészeti Tanszék, 1111 Budapest, Műegyetem rkp. 3. K.II.31. Benapozásvédelmi eszközök komplex jellemzése
Elektromos nagybıgı megvalósítása DSP-vel
Budapesti Mőszaki és Gazdaságtudományi Egyetem Gyurász Gábor Tamás Elektromos nagybıgı megvalósítása DSP-vel MSc. Önálló laboratórium II. beszámoló Konzulensek: dr. Bank Balázs Lajos Orosz György Problémafelvetés
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata
Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata Lutz András Gábor Kutatási beszámoló 2015, Budapest Feladat A mikrohullámú non reciprok eszközök paramétereit döntően meghatározzák a bennük
Minősítéses mérőrendszerek képességvizsgálata
Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek
Felügyelt önálló tanulás - Analízis III.
Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:
Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni.
Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni. Kezdjük a sort a menetidőgörbékről, illetve az NMO korrekcióról tanultakkal. A következő ábrán
Földmágneses kutatómódszer
Földmágneses kutatómódszer Alkalmazott l földfizika ik gyakorlat BEVEZETÉS A felszíni mágneses mérések a felszín alatt elhelyezkedő különböző mágnesezettségű kőzeteket ill. azok által a földi mágneses
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai
HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;
Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Függvényhatárérték és folytonosság
8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak
Számítógépes gyakorlat MATLAB, Control System Toolbox
Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Nehézségi gyorsulás mérése megfordítható ingával
Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.
Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement