Rugalmas állandók mérése
|
|
- Elvira Petra Dobosné
- 8 évvel ezelőtt
- Látták:
Átírás
1 KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: november 16. Szerda délelőtti csoport
2 1. A mérés rövid leírása Mérésem során különböző anyagok rugalmas tulajdonságait kellett vizsgálnom. Erre két módszert alkalmaztam. Az egyikben egy hengeres rúd s egy téglatest Young-moduluszát határoztam meg statikusan, különböző súlyokkal terhelve őket, és a lehajlásukat vizsgálva. Ebben a mérésben a téglalap alapú hasáb rövidebb és hosszabb élére is megvizsgáltam az összefüggést. A másik módszerrel egy torziós szál torziómoduluszának meghatározására a torziós inga periódusidejét határoztam meg, különböző tehetetlenségi nyomatékokra. 2. A mérés eszközei A3 jelű téglalap alpú hasáb S9 jelű hengeres rúd Súlyok Kétkarú emelő 7-es és 8-as tárcsák Tolómérő, mérőszalag, csavarmikrométer Torziós inga Analitikai mérleg 3. A mérés elmélete 3.1. A Young-modulusz mérése A mérés alapja a testek rugalmas deformációjának azon jellemzője, hogy a testek bizonyos részei lehajlás során rövidülnek, vagy megnyúlnak, de mindig lesz egy olyan rész, az ún. neutrális zóna, melynek hossza állandó marad. Erre [1] alapján felírhatjuk az alábbi összefüggést: l 3 s = 1 48EI F ahol s a lehajlás nagysága, l a felfüggesztések távolsága, I a keresztmetszet másodrendű nyomatéka F a testre ható, deformáló erő, E pedig a keresett Youngmodulusz. I definíciója: I = z 2 df F 1
3 Ezt tehát a minta alakja határozza meg. Mérésünkben kör keresztmetszetű, és téglalap alakú formák fordulnak elő, ezekre: ahol a az alap, és b a magasság Torziós modulusz mérése I k = R4 π 4 I t = ab3 12 A torziós modulusz (G) és az inga periódusideje (T ) között az alábbi összefüggés áll fenn: G = k Θ T 2 K = 8πl r 4 ahol Θ a rendszer tehetetlenségi nyomatéka és K a torziós szál jellemzésére használt mennyiség, l a torziás szál hossza, r a sugara. Θ nem ismert, ezért a felhelyezett két tárcsát úgy célszerű választanunk, hogy azok közel azonos tömegűek legyenek, és Θ 1 Θ 2. A távolságuk a tengelytől a. A tehetetlenségi nyomatéka a tárcsáknak, ha R a tárcsa sugara: Ekkor igaz az alábbi összefüggés: Θ tárcsa = 1 2 mr2 Θ = Θ ü +Θ 1 +Θ 2 +(m 1 +m 2 )a 2 ahol Θ ü az üres inga tehetetlenségi nyomatéka, (m 1 +m 2 )a 2 pedig a Steiner-tétel következménye. T 2 = K G (Θ +Θ 1 +Θ 2 )+ K(m 1 +m 2 ) a 2 G AT 2 (a 2 ) adatokra egynest illesztek, innen számolhatóak al alábbi mennyiségek: m = K G (m 1 +m 2 ) b = K G Θ +Θ 1 +Θ 2 ahol m az egyenes meredksége, b pedig a tengelymetszete. A torziómodulusz innen tehát: G = K m 1 +m 2 m Az üres inga tehetetlenségi nyomatéka: Θ = Gb K Θ 1 Θ 2 2
4 4. Mérési eredmények és kiértékelés 4.1. Young-modulusz Fontos eltérés a mérési leírásban ([1]) szereplő módszerhez képest, hogy a kapott mintákat a kétkarú emelőbe való befogáskor nem használtam állandó terhelést. Ezt azért tehettem, mert a számomra fontos adat az erő-behajlás egyenes meredeksége, nem pedig a tengellyel alkotott metszéspontja. Azonban azt biztosítottam, hogy a terhelő kar mindig megfeszüljön, hogy a minta ne mozdulhasson el, ezáltal a mérőóra állása ne változzon. A testeket lehetőleg szimmetrikusan támasztottam alá Az A3 jelű hasáb Az általam mért A3 jelű hasábra kapott geometriai adatok: Hosszabb él a [mm] Rövidebb él b [mm] 11,98 7,86 12,01 7,87 11,99 7,86 Átlag 11,99 7,86 1. táblázat. Az A3 jelű test geometriai adatai A hosszmérés hibája a = b = 0.01mm. Ennek lehajlási nyomatéka: I a oldal = ab3 12 = 486±1,9mm4 I b oldal = ba3 12 = 1133±6,5mm4 A rögzítés távolsága l = 36 cm volt. Az erre mért lehajlási értékek a (2). táblázatban találhatók. Az ezen pontokra illesztett egyenesek paraméterei: m a alap = 0,0277±0,0005 mm N b a alap = 0,15±0,02mm m b alap = 0,0126±0,0002 mm N b b alap = 0,26±0,01mm Az egyenesek egyenlete a (1). ábrán láthatók. 3
5 Hosszabb él, a az alap Rövidebb él, b az alap m [kg] F [N] s [mm] m [kg] F [N] s [mm] 0,75 7,36 0,40 1 9,81 0,42 1 9,81 0,43 1,5 14,72 0,45 1,25 12,26 0, ,62 0, ,62 0,67 2,5 24,53 0,56 2,5 24,53 0, ,43 0, ,43 0,95 3,5 34,34 0,68 3,5 34,34 1, ,24 0, ,24 1,22 4,5 44,15 0,81 4,5 44,15 1, ,05 0, ,05 1,51 5,5 53,96 0,93 5,5 53,96 1, ,86 1,01 6,5 63,77 1, ,67 1,15 2. táblázat. Az A3 jelű test tömeg-erő-lehajlás értékei 2 Illesztett egyenes, a alap Adatok, a alap Illesztett egyenes, b alap Adatok, b alap 1.5 s [mm] F [N] 1. ábra. A hasáb adataira illesztett egyenesek, és a mért adatok Ezekből már számolható a Young-modulusz: l 3 E a = 1 = (72,3±2,1) GPa 48I a m a 4
6 E b = 1 = (67,9±2,2) GPa 48I b m b A hibát az alábbi képlet alapján számoltam: ( m E = E m +3 l + I ) l I Az S9 jelű rúd l 3 Ezután lemértem az S9 jelű rudat, aminek az alábbiak a geometriai adatai: Átmérőd[mm] 9,92 9,91 9,91 Átlag 9,91 Sugár 4,96 Ennek lehajlási nyomatéka: 3. táblázat. Az A3 jelű test geometriai adatai I rúd = R4 π 4 = 474±1,1mm 4 Az erre mért lehajlási értékek a (4). táblázatban találhatók. m [kg] F [N] s [mm] 0,5 4,91 0,52 0,75 7,36 0,58 1 9,81 0,64 1,25 12,26 0,71 1,5 14,72 0, ,62 0,90 2,5 24,53 1, ,43 1,17 3,5 34,34 1, ,24 1,42 4,5 44,15 1, ,05 1,71 4. táblázat. Az S9 jelű rúd tömeg-erő-lehajlás értékei Az ezen pontokra illesztett egyenesek paraméterei: m rúd = 0,0267±0,0002 mm N 5
7 Az egyenesek a (2). ábrán láthatók. b rúd = 0,379±0,005mm 1.8 Illesztett egyenes Adatok s [mm] F [N] 2. ábra. A rúd adataira illesztett egyenes, és a mért adatok Ezekből már számolható a Young-modulusz: l 3 E rúd = 1 = (72,3±1,4) GPa 48I rúd m rúd A lehajlás és az alátámasztás közti összefüggés Ezt követően vizsgáltam a lehajlás (s) és az alátámastás helye (l) közötti összefüggést. A mérést az A3-as hasábbal végeztem. Azért ezt választottam, és nem a rudat, mert a rúd elfordulásából származó hibát így kiküszöbölhetem. Minden hossznál két tömeggel végeztem el a mérést. A feladat az volt, hogy kimutassam, hogysl köbével lesz arányos, azazs(l 3 ) (Itts = s 2 s 1, azaz a két lehajlás különbsége). A két tömegem m 1 = 1kg és m 2 = 6kg voltak. Az adatokat a (5). táblázat, az illesztett egyenest a (3). grafikon tartalmazza. 6
8 l/2 [m] l 3 [m 3 ] s 1 [mm] s 2 [mm] s [mm] 0,12 0,0017 0,26 0,45 0,19 0,16 0,0041 0,28 0,44 0,16 0,20 0,0080 0,42 0,61 0,19 0,24 0,0138 0,32 0,77 0,45 0,28 0,0220 0,32 1,21 0,89 0,32 0,0328 0,44 1,53 1,09 0,36 0,0467 0,53 2,01 1,48 0,40 0,0640 0,51 2,46 1,95 5. táblázat. Az A3 jelű hasáb mért értékei 2 Illesztett egyenes Adatok 1.5 s [mm] l 3 [m 3 ] 3. ábra. A rúd adataira illesztett egyenes, és a mért adatok m = 29,94±1,5 mm E = 1 F 48Im = 70,2±4,1GPa Jól láthatóan itt a hiba nagyobb, mint az előző mérésnél, ám az értékek jó közelítéssel egyeznek. m 3 7
9 4.2. Torziómodulusz mérése A következő feladatom a torziós inga torziómoduluszának kimérése volt. Az inga periódusidejét vizsgáltam különböző tárcsahelyzetek, azaz tehetetlenségi nyomatékok esetén. A tárcsák geometriai- és tömegadatait a (6). táblázat tartalmazza. Szám m [g] d [cm] R [cm] 7 196,8395 4,505 2, ,2783 4,5 2,25 A tárcsák tehetetlenségi nyomatékai: Ahol a hiba: 6. táblázat. A tárcsák adatai Θ 7 = ( 4,892±0,2210 5) kgm 2 Θ 8 = ( 4,968±0,2210 5) kgm 2 ( mi Θ i = Θ i +2 R ) i m i R i A torziós szál l = 59,7±0,1cm hosszú, ésd = 0,51±0,01mm átmérőjű, azaz a sugara r = 0,255±0,005mm. Innen számolható ak: K = 8πl r 4 = 3, ±0, m 3 Itt K hibáját a következő módon számoltam: ( l K = K +4 r ) l r A periódusidőket a (7). táblázat mutatja. A hibamérés a (8). táblázatban található. a [cm] a 2 [cm 2 ] 10T [s] T [s] T 2 [s 2 ] ,257 5,526 30, ,189 6,819 46, ,461 7,646 58, ,552 8,655 74, ,290 9,729 94, ,440 10, , ,105 12, , ,751 13, , ,814 14, , táblázat. A mért periódusidők 8
10 T 1 86,552 T 2 86,768 T 3 86,753 10T 86,691 10T 0,14 T 0, táblázat. A mért 5. periódusidő - hibaszámítás A mért, és megfelelő hatványra hozott adatpontokra egyenest illesztettem, ennek grafikonja a (4). 200 Illesztett egyenes Adatok 150 T 2 [s 2 ] a 2 [cm 2 ] Az egyenes paraméterei: 4. ábra. A toziós inga T 2 (a 2 ) grafikonja m = 1,75±0,02 s2 cm 2 b = 31,2±0,9 s 2 Ebből már számolhatjuk a torziómoduluszt: G = K M 7 +M 8 m = 79,5±7 GPa 9
11 A tengelymetszet segítségével számolható az üres inga tehetetlenségi nyomatéka: Θ üres = (M 7 +M 8 ) b m Θ 7 Θ 8 = ±4, kgm 2 ahol: ( K G = G K + M 7 + M 8 + m M 7 +M 8 m ) Hivatkozások [1] Böhönyey - Havancsák - Huhn: Mérések a klasszikus fizika laboratóriumban, Szerkesztette: Havancsák Károly, ELTE Eötvös Kiadó, Budapest,
Rugalmas állandók mérése
Rugalmas állandók mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/30/2011 Beadás ideje: 12/07/2011 1 1. A mérés rövid leírása Mérésem
Rugalmas állandók mérése
Rugalmas állandók mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. április 23. (hétfő délelőtti csoport) 1. Young-modulus mérése behajlásból 1.1. A mérés menete A mérés elméleti háttere megtalálható a jegyzetben
2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű
Hangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A
Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv
(-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9 A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk
2. Rugalmas állandók mérése
2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Mikroszkóp vizsgálata Folyadék törésmutatójának mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport
Mágneses szuszceptibilitás mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az
Nehézségi gyorsulás mérése megfordítható ingával
Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja
Fényhullámhossz és diszperzió mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 9. MÉRÉS Fényhullámhossz és diszperzió mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 19. Szerda délelőtti csoport 1. A mérés célja
Fázisátalakulások vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 6. MÉRÉS Fázisátalakulások vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. szeptember 28. Szerda délelőtti csoport 1. A mérés célja A mérés
2. Rugalmas állandók mérése
. Rugalas állandók érése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolya 00.10.7. Beadva: 00.1.1. 1. A -ES, AZAZ AZ ABLAK FELLI MÉRHELYEN MÉRTEM. Ezen a laboron a férudak Young-oduluszát értük, pontosabban
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés
Termoelektromos hűtőelemek vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 4. MÉRÉS Termoelektromos hűtőelemek vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 30. Szerda délelőtti csoport 1. A mérés célja
Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)
Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag
Mágneses szuszceptibilitás mérése
Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az
Mágneses szuszceptibilitás mérése
Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása
7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
7. Mágneses szuszceptibilitás mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 22. Leadás dátuma: 2008. 11. 05. 1 1. A mérési összeállítás A mérési összeállítás sematikus ábrája
Szilárd testek rugalmassága
Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)
2. Rugalmas állandók mérése
. Rugalmas állandók mérése Tóth Bence fizikus,. évfolyam 00.0.. péntek délelőtt beadva: 00.03.04. . A mérés első felében fémrudak Young-moduluszát mérjük, pontosabban behajlást mérünk, és ebből számolunk
Mágneses szuszceptibilitás mérése
Mágneses szuszceptibilitás mérése Mérési jegyzőkönyv Szőke Kálmán Benjamin 2010. november 9. Mérés célja: A mérési feladat hitelesíteni a Hall-szondát, és meghatározni a 3-as alumínium rúd, 5-ös réz rúd
3. Hangfrekvenciás mechanikai rezgések vizsgálata
3. Hangfrekvenciás mechanikai rezgések vizsgálata Tóth Bence fizikus,. évfolyam 005.03.04. péntek délelőtt beadva: 005.03.. . A mérés első részében a megvastagított végű rúd (a D jelű) felharmonikusait
7. Mágneses szuszceptibilitás mérése
7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,
Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv
(-as számú mérés) mérési jegyzõkönyv Készítette:, II. éves fizikus... Beadás ideje:... / A mérés leírása: A mérés során egy mikroszkóp különbözõ nagyítású objektívjeinek nagyítását, ezek fókusztávolságát
3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:
1. A mellékelt táblázat a Naphoz legközelebbi 4 bolygó keringési időit és pályagörbéik félnagytengelyeinek hosszát (a) mutatja. (A félnagytengelyek Nap- Föld távolságegységben vannak megadva.) a) Ábrázolja
Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)
Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz
(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely)
(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) Mérést végezte: Szalontai Gábor Mérőtárs neve: Nagy Dániel Mérés időpontja: 2012.11.22. Bevezető A hétköznapi és kézzelfogható
A mágneses szuszceptibilitás vizsgálata
Bán Marcell ETR atonosító BAMTACT.ELTE Beadási határidő: 2012.12.13 A mágneses szuszceptibilitás vizsgálata 1.1 Mérés elve Anyagokat mágneses térbe helyezve, a tér hatására az anygban mágneses dipólusmomentum
Mérési jegyzőkönyv. M1 számú mérés. Testek ellenállástényezőjének mérése
Tanév, félév 2010-11 I. félév Tantárgy Áramlástan GEÁTAG01 Képzés főiskola (BSc) Mérés A Nap Hét A mérés dátuma 2010 Dátum Pontszám Megjegyzés Mérési jegyzőkönyv M1 számú mérés Testek ellenállástényezőjének
Mérést végezte: Varga Bonbien. Állvány melyen plexi lapok vannak rögzítve. digitális Stopper
Mérést végezte: Varga Bonbien Mérőtárs neve: Megyeri Balázs Mérés időpontja: 2008.04.22 Jegyzőkönyv Leadásának időpontja: 2008.04.29 A Mérés célja: Hooke Törvény Vizsgálata Hooke törvényének igazolása,
Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.
Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. április 20. A mérés száma és címe: 20. Folyadékáramlások 2D-ban Értékelés: A beadás dátuma: 2009. április 28. A mérést végezte: Márton Krisztina Zsigmond
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
Lineáris erőtörvény vizsgálata és rugóállandó meghatározása
Lineáris erőtörvény vizsgálata és rugóállandó meghatározása A mérés célja Szeretnénk igazolni az F=-Dx skaláris Hooke-törvényt, azaz a rugót nyújtó erő és a rugó megnyúlása közt fennálló lineáris kapcsolatot,
Merev testek kinematikája
Merev testek kinematikája Egy pontrendszert merev testnek tekintünk, ha bármely két pontjának távolsága állandó. (f=6, Euler) A merev test tetszőleges mozgása leírható elemi transzlációk és elemi rotációk
Fényhullámhossz és diszperzió mérése
Fényhullámhossz és diszperzió mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/09/011 Beadás ideje: 11/16/011 1 1. A mérés rövid leírása
Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FELADATOK
Oktatási Hivatal A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA I. KATEGÓRIA FELADATOK Bimetal motor tulajdonságainak vizsgálata A mérőberendezés leírása: A vizsgálandó
HELYI TANTERV. Mechanika
HELYI TANTERV Mechanika Bevezető A mechanika tantárgy tanításának célja, hogy fejlessze a tanulók logikai készségét, alapozza meg a szakmai tantárgyak feldolgozását. A tanulók tanulási folyamata fejlessze
Modern fizika laboratórium
Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mérési jegyzőkönyv Szőke Kálmán Benjamin 2010. november 16. Mérés célja: Feladat meghatározni a mikroszkópon lévő
Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
Központosan nyomott vasbeton oszlop méretezése:
Központosan nyomott vasbeton oszlop méretezése: Központosan nyomott oszlopok ellenőrzése: A beton által felvehető nyomóerő: N cd = A ctot f cd Az acélbetétek által felvehető nyomóerő: N sd = A s f yd -
Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin
Tömegvonzás, bolygómozgás
Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test
1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező
Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:
A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel
A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina
Homogén testnek nevezzük az olyan testet, amelynek minden része ugyanolyan tulajdonságú. ρ = m V.
SZILÁRD TESTEK SŰRŰSÉGÉNEK MÉRÉSE 1. Elméleti háttér Homogén testnek nevezzük az olyan testet, amelynek minden része ugyanolyan tulajdonságú anyagból áll. Homogén például az üveg, a fémek, a víz, a lufiba
Modern fizika laboratórium
Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid
Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel
Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Segédlet az A végeselem módszer alapjai tárgy 4. laborgyakorlatához http://www.mm.bme.hu/~kossa/vemalap4.pdf Kossa Attila (kossa@mm.bme.hu)
Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013
Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 2. Kísérleti feladat (10 pont) B rész. Rúdmágnes mozgásának vizsgálata fémcsőben (6 pont)
Fajhő mérése. (Mérési jegyzőkönyv) Hagymási Imre február 26. (hétfő délelőtti csoport)
Fajhő mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. február 26. (hétfő délelőtti csoport) 1. A mérés elméleti háttere Az anyag fajhőjének mérése legegyszerűbben a jólismert Q = cm T m (1) összefüggés
Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy
Fogorvosi anyagtan fizikai alapjai 6.
Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv
Fázisátalakulások vizsgálata
Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18
Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin
A II. kategória Fizika OKTV mérési feladatainak megoldása
Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett
Modern Fizika Labor. 17. Folyadékkristályok
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 11. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2011. okt. 23. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
2009/2010. tanév Országos Középiskolai Tanulmányi Verseny döntő forduló. FIZIKA I. kategória FELADATLAP. Valós rugalmas ütközés vizsgálata.
A versenyző kódszáma: 009/00. tanév Országos Középiskolai Tanulmányi Verseny FIZIKA I. kategória FELADATLAP Valós rugalmas ütközés vizsgálata. Feladat: a mérőhelyen található inga, valamint az inga és
Keresztmetszet másodrendű nyomatékainak meghatározása
BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra
Fázisátalakulások vizsgálata
Fázisátalakulások vizsgálata Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/12/2011 Beadás ideje: 10/19/2011 1 1. A mérés rövid leírása Mérésem
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk
KERESZTMETSZETI JELLEMZŐK
web-lap : www.hild.gor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 50. KERESZTMETSZETI JELLEMZŐK A TARTÓK MÉRETEZÉSE SORÁN SZÁMOS ESETBEN SZÜKSÉGÜNK VAN OLYAN ADATOKRA,
Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.
1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.
Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:
Segédlet: Kihajlás. Készítette: Dr. Kossa Attila BME, Műszaki Mechanikai Tanszék május 15.
Segédlet: Kihajlás Készítette: Dr. Kossa ttila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2012. május 15. Jelen segédlet célja tömören összefoglalni a hosszú nyomott rudak kihajlásra történő ellenőrzését.
} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =
. Az { a n } számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! a = 26 2. Az A és B halmazokról tudjuk, hogy A B = {;2;3;4;5;6}, A \ B = {;4} és A B = {2;5}. Sorolja fel
Abszolút és relatív aktivitás mérése
Korszerű vizsgálati módszerek labor 8. mérés Abszolút és relatív aktivitás mérése Mérést végezte: Ugi Dávid B4VBAA Szak: Fizika Mérésvezető: Lökös Sándor Mérőtársak: Musza Alexandra Török Mátyás Mérés
Tömegmérés stopperrel és mérőszalaggal
Tömegmérés stopperrel és mérőszalaggal 1. Általános tudnivalók Mérőhelyén egy játékpisztolyt, négy lövedéket, valamint egy jól csapágyazott, fatalpra erősített fémlemezt talál. A lentebb közölt utasítások
Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.
Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak
Nyomott oszlopok számítása EC2 szerint (mintapéldák)
zéhenyi István Egyetem zerkezetépítési és Geotehnikai Tanszék yomott oszlopok számítása E szerint 1. Központosan nyomott oszlop Központosan nyomott az oszlop ha e = 0 (e : elsőrendű, vagy kezdeti külpontosság).
1. Feladat. a) Mekkora radiális, tangenciális és axiális feszültségek ébrednek a csőfalban, ha a csővég zárt?
1. Feladat Egy a = mm első és = 150 mm külső sugarú cső terhelése p = 60 MPa első ill. p k = 30 MPa külső nyomás. a) Mekkora radiális, tangenciális és axiális feszültségek érednek a csőfalan, ha a csővég
A Horváth Mérnökiroda, A Budapesti Műszaki Egyetem Gépjárművek Tanszéke. A Schwarzmüller Járműgyártó és Kereskedelmi Kft
A járóképes alvázakra épített különböző felépítményekkel kialakítható tehergépkocsik forgalombahelyezésének hatósági eljárásához A Horváth Mérnökiroda, A Budapesti Műszaki Egyetem Gépjárművek Tanszéke
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással
Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással Előző dolgozatunkban jele: ( E ), címe: Szimmetrikusan szélezett körkeresztmetszet geometriai jellemzőinek meghatározása
Tartószerkezetek I. (Vasbeton szilárdságtan)
Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.10.11. Vasbeton külpontos nyomása Az eső ágú σ-ε diagram miatt elvileg minden egyes esethez külön kell meghatározni a szélső szál összenyomódását.
Érettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
5. modul Térfogat és felszínszámítás 2
Matematika A 1. évfolyam 5. modul Térfogat és felszínszámítás Készítette: Vidra Gábor Matematika A 1. évfolyam 5. modul: TÉRFOGAT ÉS FELSZÍNSZÁMÍTÁS Tanári útmutató A modul célja Időkeret Ajánlott korosztály
ACÉLÍVES (TH) ÜREGBIZTOSÍTÁS
Miskolci Egyetem Bányászati és Geotechnikai Intézet Bányászati és Geotechnikai Intézeti Tanszék ACÉLÍVES (TH) ÜREGBIZTOSÍTÁS Oktatási segédlet Szerző: Dr. Somosvári Zsolt DSc professzor emeritus Szerkesztette:
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.
Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az
Magspektroszkópiai gyakorlatok
Magspektroszkópiai gyakorlatok jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Deák Ferenc Mérés dátuma: 010. április 8. Leadás dátuma: 010. április 13. I. γ-spekroszkópiai mérések A γ-spekroszkópiai
Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. dec. 16. A mérés száma és címe: 11. Spektroszkópia Értékelés: A beadás dátuma: 2011. dec. 21. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
5. Fajhő mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
5. Fajhő mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 08. Leadás dátuma: 2008. 10. 15. 1 1. A mérési összeállítás A mérés során a 6-os számú minta fajhőjét akarjuk meghatározni.
A csoport. Statika ZH feladat. Határozza meg az erőrendszer nyomatékát a F pontra! a = 3 m b = 4 m c = 4 m
Stata ZH-1. 215. 1. 14. A csoport 1. feladat Határozza meg az erőrendszer nyomatéát a F pontra! a = 3 m b = 4 m c = 4 m F 1 = 5 N F 2 = 1 N M = 5 Nm M = + 4 + 3 4 F 1 = 2 = + 12 16 + 9 + 16 3 + 4 F 2 =
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
Ejtési teszt modellezése a tervezés fázisában
Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,
Mérési adatok illesztése, korreláció, regresszió
Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,
PÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
Ajánlott szakmai jellegű feladatok
Ajánlott szakmai jellegű feladatok A feladatok szakmai jellegűek, alkalmazásuk mindenképpen a tanulók motiválását szolgálja. Segít abban, hogy a tanulók a tanultak alkalmazhatóságát meglássák. Értsék meg,
Félvezetk vizsgálata
Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak
Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2013. szeptember 23. Javítva: 2013.10.09.
Kompetencia Alapú Levelező Matematika Verseny
Név: Iskola: Kompetencia Alapú Levelező Matematika Verseny 2012. december 10. 2. forduló Pótlapok száma: db. 1. Egy telek területe 2000 m 2. Adja meg az érdeklődő angol vevőnek, hány négyzetlábbal egyenlő
6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)
SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy
Érettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ]
1 Ismét a fahengeres keresztmetszetű gerenda témájáról Az 1. ábrával már korábban is találkozhatott az Olvasó. 1. ábra forrása: [ 1 ] Ezen azt láthatjuk, hogy bizonyos esetekben a fűrészelt fagerenda a
Mérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség