Rugalmas állandók mérése
|
|
- Róbert Balog
- 7 évvel ezelőtt
- Látták:
Átírás
1 Rugalmas állandók mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/30/2011 Beadás ideje: 12/07/2011 1
2 1. A mérés rövid leírása Mérésem során különböző anyagok rugalmassági tulajdonságait kellett vizsgálnom. Két féle módszerrel mértem. Az egyikben egy hengeres rúd és egy téglatest Young-moduluszát kellett statikus módszerrel meghatároznom. Ezt úgy végeztem, hogy a rudak lehajlását vizsgáltam különböző terhelések esetében. A másikban egy torziós szál torziómoduluszát határoztam meg oly módon, hogy az ebből összeállított torziós inga periódusidejét mértem kis kitérésekre, különböző tehetetlenségi nyomatékok esetében. 2. Méréshez használt eszközök Kétkarú emelő V2 hengeres rézrúd és A5 alumínium téglatest minták Terhelősúlyok Torziós szálból készített torziós inga Elektronikus detektor periódusidő mérővel 7-es és 8-as tárcsa Tolómérce, csavarmikrométer, mérőszalag Analitikai mérleg 3. Rövid elméleti összefoglaló 3.1. Young-modulusz mérése a rúd lehajlásából A mérés elve azon alapszik, hogy minden merev test lehajlása esetén lesz egy úgy nevezett neutrális zóna, amelynek a hossza nem fog megváltozni. Az ettől különböző rétegek hossza nő vagy csökken. A neutrális rétegre felírhatjuk (a [1] könyvben részletesen levezetett) összefüggést: l 3 s = 1 48 EI F, ahol s a lehajlás nagysága, l a felfüggesztési pontok távolsága, F az előidéző erő, E a keresett Young-modulusz, I pedig a keresztmetszet másodrendű 2
3 nyomatéka. I definíció szerint: I = z 2 df. F Látható, hogy I-t a minta alakja fogja meghatározni, tehát az adott test formajellemzője. A gyakran előforduló formákra kiszámolva: Kör keresztmetszetű R sugarú rúd esetében: I rúd = R4 π 4. Cső esetén, ahol R a külső, r a belső sugár: I cső = π 4 ( R 4 r 4). Téglalap alak esetén, ahol a az alap, b a magasság: I tégla = ab Torziómodulusz mérése torziós ingával Belátható, hogy a T torziómodulusz és a toriziós inga T periódusideje között az alábbi összefüggés áll fent: G = K Θ T 2, ahol Θ a rendszer tehetetlenségi nyomatéka, K pedig a torziós szálat jellemző mennyiség: K = 8πl r. 4 Itt l a torziós szál hossza, r pedig a sugara. Mivel Θ nem ismert, ezért úgy kell eljárnunk, hogy az ingára szimmetrikusan két, Θ 1 és Θ 2 tárcsát helyezünk. Hogy szimmetrikus legyen a terhelés, ezért meg kell követelnünk, hogy m 1 m 2 és Θ 1 Θ 2 legyenek. A tárcsák távolsága a forgástengelytől legyen a. Ekkor írhatjuk a következőt: Θ = Θ ü + Θ 1 + Θ 2 + (m 1 + m 2 )a 2, ahol Θ ü az üres inga tehetetlenségi nyomatékát jelöli, az (m 1 + m 2 )a 2 -es tag pedig a Steiner-tételből származik. A fenti képletbe ezt visszaírva kapjuk: T 2 = K G (Θ ü + Θ 1 + Θ 2 ) + K(m 1 + m 2 ) a 2. G 3
4 A T 2 (a 2 ) pontpárokra egyenest illesztve, annak meredeksége: η = K G (m 1 + m 2 ), tengelymetszete pedig η 0 = K G Θ ü + Θ 1 + Θ 2. Az illesztett egyenes segítségével már meg tudjuk adni a rendszer torziómoduluszát: G = K m 1 + m 2 η és ennek segítségével már az üres inga tehetetlenségi nyomatékát is: Θ ü = Gη 0 K Θ 1 Θ 2. A tárcsák tehetetlenségi nyomatéka pedig a következő (mivel a tárcsák tömör korongok esetünkben): ahol R i a tárcsák sugara. Θ i = 1 2 m ir 2 i, 4. Mérési eredmények 4.1. Young-modulusz mérése Első mérésként a statikus mérést végeztem el. Itt két különböző rúd Youngmoduluszát kellett meghatároznom. A mérést egy kétkarú emelővel végeztem, olyan módon, hogy az emelő aljára helyeztem a mintát és két ponton alátámasztottam. Az alátámasztást igyekeztem szimmetrikusan beállítani, hogy a kiértékelés menete egyszerűbb legyen. A kétkarú emelőre különböző súlyokat akarsztottam, majd leolvastam a rúd meghajlását. Innen már az elméleti részben tárgyaltak alapján meg tudtam határozni az I hajlítási nyomatékot és az E Young-moduluszt. Először felvettem a minták geometriai adatait. Azért, hogy meggyőződjem arról, hogy a csavarmikrométerről leolvasott adatok helyesek, tolómérővel is megmértem a mintákat, ám ezeket az adatokat a számolásba nem vettem bele, mivel a tolómérő pontossága sokkal rosszabb. 4
5 V2 jelzésű hengeres rúd # 2r (mm) átlag 9.89 r (mm) 4.95 A5 jelzésű téglatest # a (mm) b (mm) átlag Itt (2r) = a = b = 0.01 mm. A megmért geometriai adatok segítségével meg tudtam határozni a minták lehajlási nyomatékát: I rúd = R4 π = 471 ± 1.9 mm 4, 4 I tégla1 = 1 12 ab3 = 1142 ± 4.3 mm 4, I tégla2 = 1 12 a3 b = 516 ± 2.2 mm 4. Ahol a hibákat a relatív hibaszámításos módszerrel kaptam. 5
6 Ezt követően behelyeztem a mintákat a kétkarú emelőbe. A rögzítés távolsága l = 36 ± 0.1 cm volt. A behelyezést követően elkezdtem a mintát terhelni. Minden mérési pontban ellenőriztem, hogy kis kitérítés hatására visszatér-e a mutató az előző állapotba és csak azokat az adatokat fogadtam el helyesnek, amelyekre ez teljesült. Ilyen mód a mért adatok a réz rúdra: Itt s = 0.01 mm. V2 jelzésű réz rúd m (kg) F (N) s (mm)
7 A mért pontokra egyenest illesztettem: 1,5 s (mm) 1,4 1,3 1,2 1,1 1,0 0,9 0,8 0,7 0,6 0,5 Mért pontok Illesztett egyenes Value Standard Error Intercept 0, ,00263 Slope 0, ,22207E F (N) Az illesztett egyenes meredeksége: tengelymetszete: 1. ábra. Réz minta s(f ) grafikonja m rúd = ± mm N, b rúd = ± mm. Innen a V2 réz rúd Young-modulusza: E rúd = 1 l 3 = 125 ± 2.1 GPa. 48 I rúd m rúd Itt a Young-modulusz hibáját az alábbi formulával számoltam: ( m E = E m + 3 l + I ). l I 7
8 Hasonlóan jártam el az alumínium téglatest esetében is, annyi különbséggel, hogy kétféleképp mértem. Először az a oldala volt a magasság és b az alap, majd fordítva. Az első esetben a mért adatok: A5 jelzésű alumínium rúd a magassággal m (kg) F (N) s (mm)
9 A mért pontokra illesztett egyenes: 1,8 1,6 1,4 Mért pontok Illesztett egyenes s (mm) 1,2 1,0 0,8 0,6 0,4 0,2 Value Standard Error Intercept 0, ,01059 Slope 0, ,08E F (N) 2. ábra. Alumínium minta s(f ) grafikonja a magassággal Az illesztett egyenes meredeksége: tengelymetszete: m tégla2 = ± mm N, b tégla2 = ± mm. Az adatok segítségével meghatároztam az A5 minta Young-moduluszát a magasság esetén: l 3 E tégla2 = 1 = 68 ± 1.6 GPa. 48 I tégla2 m tégla2 9
10 Megmértem az alumínium minta Young-moduluszát úgy is, hogy a b oldala volt a magassága. Az így mért adatok: A5 jelzésű alumínium rúd b magassággal m (kg) F (N) s (mm)
11 A mért pontokra illesztett egyenes: 1,1 1,0 0,9 Mért pontok Illesztett egyenes s (mm) 0,8 0,7 0,6 0,5 0,4 Value Standard Error Intercept 0, ,00917 Slope 0, ,529E F (N) 3. ábra. Alumínium minta s(f ) grafikonja b magassággal Az illesztett egyenes meredeksége: tengelymetszete: m tégla1 = ± mm N, b tégla1 = 0.29 ± mm. Az adatok segítségével meghatároztam az A5 minta Young-moduluszát b magasság esetén: l 3 E tégla1 = 1 = 63 ± 1.9 GPa. 48 I tégla1 m tégla1 11
12 Ezt követően megvizsgáltam, hogy a lehajlás hogyan függ az alátámasztás távolságától, azaz l-től. Mérésemet a réz rúddal végeztem. Minden hossznál két tömeg esetén mértem a lehajlást. Itt azt kellett kimutatnom, hogy s(l 3 ), ahol s = s 2 s 1 a két mért behajlás különbsége. Az s 1 behajlást minden esetben 2 kg terhelésnél, az s 2 -t minden esetben 7 kg-nál mértem. Az így mért adatok és az arra illesztett egyenes: Behajlás hosszfüggése l 2 l (m) l3 (m 3 ) s 1 (mm) s 2 (mm) s (mm) ,70 s (mm) 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 Transzformált pontok Illesztett egyenes Value Standard Error Intercept 0, ,01103 Slope 15, , ,010 0,015 0,020 0,025 0,030 0,035 0,040 l 3 (m 3 ) 4. ábra. s(l 3 ) függése a réz mintán 12
13 Az illesztett egyenes meredeksége: m = ± 0.43 mm m, 3 A meredekség ismeretében már meg tudjuk határozni, hogy mekkora a Youngmodulusz: E = 1 F = 136 ± 4.3 GPa. 48 Im Jól látható, hogy a két mérés eredménye hibahatáron belül egyezik, viszont az előbbi jóval pontosabb, ez abból is látszik, hogy annak a hibája körülbelül fele ekkora. Meg kellett még vizsgálnom továbbá egy üreges csövet is és megmondani, hogy mennyivel lenne ellenállóbb, ha tömör anyagből készült volna. Ezt abból tudjuk megmondani, hogy kiszámoljuk a csőnek az I lehajlási nyomatékát és ezt összevetjük a tömör hengerével. Az üreges cső adatai: R = 5.89 ± mm, r = 4.5 ± 0.05 mm. Innen a cső lehajlási nyomatéka: I cső = π ( R 4 r 4) = 623 ± 7 mm 4, 4 ha viszont tömör henger lenne, akkor: I rúd = R4 π = 945 ± 1 mm 4. 4 Látható tehát, hogy a tömör rúd közel 1.5-ször ellenállóbb a hosszra merőleges terhelésekkel szemben Torziómodulusz mérése A statikus mérések után egy dinamikus mérést végeztem el. Egy adott torziós szál torziómoduluszát mértem ki, olyan módon, hogy az ebből készített torziós inga periódusidejét mértem különböző tehetetlenségi nyomatékok esetében. A periódusidőt egy erre a célra készített elektronikus berendezés végezte, mely 10 periódust mért. Az elméleti részben ismertetettek alapján először meg kell a tárcsák tehtetlenségi nyomatékát határozni. Ehhez megmértem a tárcsák sugarát és tömegét: Tárcsák sugarai # 2R 7 (cm) 2R 8 (m) átlag
14 Itt (2R i ) = 0.1 mm. Tehát a tárcsák sugarai: R 7 = R 8 = 2.25 cm ± 0.05 mm. Tárcsák tömegei M 7 (g) M 8 (g) Ahol M i = g. Innen a két tárcsa tehetetlenségi nyomatéka: Θ i = 1 2 M ir 2 i, Θ 7 = ± kgm 2, Θ 8 = ± kgm 2, ahol a hibát az alábbi módon számoltam: Θ i = Θ i ( mi m i + 2 R i R i Ezt követően megmértem a torziós szál adatait is, melyből meg tudtam határozni, az azt jellemző K számot. Torziós szál sugara # 2r (mm) átlag Itt (2r) = 0.01 mm. Innen a torziós szál sugara: r = 0.25 ± mm. Továbbá a torziós szál hossza: l = 59.2 ± 0.1 cm. Innen K kiszámolható: ). K = 8πl r 4 = ± m 3. Itt K hibáját a következő módon számoltam: ( l K = K + 4 r ). l r Ezek ismeretében elkezdtem mérni a periódusidőket. Ahhoz, hogy hibát tudjak becsülni a = 4 cm távolságnál 3 mérést végeztem. 14
15 A mért adatok: Tárcsák helyzete és periódusidők a (cm) a 2 (cm 2 ) 10T (s) T (s) T 2 (s 2 ) Transzformálás után a pontokra egyenest illesztettem: Transzformált pontok Illesztett egyenes 120 T 2 (s 2 ) Value Standard Error Intercept Slope a 2 (cm 2 ) 5. ábra. Torziós inga T 2 (a 2 ) függése 15
16 Az illesztett egyenes paraméterei: η = ± s2 cm, 2 η 0 = ± 0.27 s 2, R = Itt η az egyenes meredeksége, η 0 a tengelymetszete és R a korrelációs együttható. Mivel R 1, így ezzel bizonyítottuk, hogy a Steiner-tétel teljesül. A kiszámított egyenes meredekségéből meghatároztam a torziómoduluszt: G = K M 7 + M 8 η = 80 ± 7 GPa, ahol: ( K G = G K + M 7 + M 8 + η ). M 7 + M 8 η A nagy hibáért elsősorban r mérési hibája felel, mivel az egy 4 -es szorzót hoz be. A tengelymetszet segítségével meg tudtam továbbá mondani az üres inga tehetetlenségi nyomatékát: Θ ü = Gη 0 K Θ 7 Θ 8 = (M 7 +M 8 ) η 0 η Θ 7 Θ 8 = ± kgm 2. Itt a hibát a fentiekhez hasonló módon számoltam. 5. Diszkusszió Érdemes diszkutálnunk az első mérés eredményeit. A Young-modulusz értékek egymáshoz képest mindkét mérés esetében hibahatáron kívül esnek. Ennek vélhetően az az oka, hogy a formulák, amikkel számltam csak közelítőek, továbbá a leolvasás sem pontos és a mérőeszközbe se tudtam könnyen behelyezni a mintákat. A réz Young-moduluszának táblázati értéke E Cu = 130 GPa. Ez körülbelül a két, általam mért érték számtani közepénél van. Alumínium esetében pedig E Al = 70 GPa, ehhez is nagyon közel vannak az általam mért eredmények. Hivatkozások [1] Havancsák Károly: Mérések a klasszikus fizika laboratóriumban, ELTE Eötvös kiadó, Budapest,
Rugalmas állandók mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem
RészletesebbenRugalmas állandók mérése
Rugalmas állandók mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. április 23. (hétfő délelőtti csoport) 1. Young-modulus mérése behajlásból 1.1. A mérés menete A mérés elméleti háttere megtalálható a jegyzetben
Részletesebben2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű
Részletesebben2. Rugalmas állandók mérése
2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának
RészletesebbenRugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv
(-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9 A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk
RészletesebbenHangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A
RészletesebbenHangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
RészletesebbenMágneses szuszceptibilitás mérése
Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása
RészletesebbenNehézségi gyorsulás mérése megfordítható ingával
Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja
RészletesebbenA mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel
A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina
Részletesebben2. Rugalmas állandók mérése
. Rugalas állandók érése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolya 00.10.7. Beadva: 00.1.1. 1. A -ES, AZAZ AZ ABLAK FELLI MÉRHELYEN MÉRTEM. Ezen a laboron a férudak Young-oduluszát értük, pontosabban
RészletesebbenMikroszkóp vizsgálata Folyadék törésmutatójának mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport
RészletesebbenMágneses szuszceptibilitás mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az
RészletesebbenMérést végezte: Varga Bonbien. Állvány melyen plexi lapok vannak rögzítve. digitális Stopper
Mérést végezte: Varga Bonbien Mérőtárs neve: Megyeri Balázs Mérés időpontja: 2008.04.22 Jegyzőkönyv Leadásának időpontja: 2008.04.29 A Mérés célja: Hooke Törvény Vizsgálata Hooke törvényének igazolása,
Részletesebben2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
RészletesebbenFényhullámhossz és diszperzió mérése
Fényhullámhossz és diszperzió mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/09/011 Beadás ideje: 11/16/011 1 1. A mérés rövid leírása
RészletesebbenMikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés
RészletesebbenJegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)
Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag
RészletesebbenMágneses szuszceptibilitás mérése
Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az
RészletesebbenFázisátalakulások vizsgálata
Fázisátalakulások vizsgálata Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/12/2011 Beadás ideje: 10/19/2011 1 1. A mérés rövid leírása Mérésem
RészletesebbenSzilárd testek rugalmassága
Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)
Részletesebben3. Hangfrekvenciás mechanikai rezgések vizsgálata
3. Hangfrekvenciás mechanikai rezgések vizsgálata Tóth Bence fizikus,. évfolyam 005.03.04. péntek délelőtt beadva: 005.03.. . A mérés első részében a megvastagított végű rúd (a D jelű) felharmonikusait
Részletesebben7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
7. Mágneses szuszceptibilitás mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 22. Leadás dátuma: 2008. 11. 05. 1 1. A mérési összeállítás A mérési összeállítás sematikus ábrája
RészletesebbenModern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. április 20. A mérés száma és címe: 20. Folyadékáramlások 2D-ban Értékelés: A beadás dátuma: 2009. április 28. A mérést végezte: Márton Krisztina Zsigmond
RészletesebbenMágneses szuszceptibilitás mérése
Mágneses szuszceptibilitás mérése Mérési jegyzőkönyv Szőke Kálmán Benjamin 2010. november 9. Mérés célja: A mérési feladat hitelesíteni a Hall-szondát, és meghatározni a 3-as alumínium rúd, 5-ös réz rúd
RészletesebbenA mágneses szuszceptibilitás vizsgálata
Bán Marcell ETR atonosító BAMTACT.ELTE Beadási határidő: 2012.12.13 A mágneses szuszceptibilitás vizsgálata 1.1 Mérés elve Anyagokat mágneses térbe helyezve, a tér hatására az anygban mágneses dipólusmomentum
RészletesebbenModern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin
Részletesebben7. Mágneses szuszceptibilitás mérése
7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer
RészletesebbenFényhullámhossz és diszperzió mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 9. MÉRÉS Fényhullámhossz és diszperzió mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 19. Szerda délelőtti csoport 1. A mérés célja
RészletesebbenJegyzőkönyv. mágneses szuszceptibilitás méréséről (7)
Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz
RészletesebbenA mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,
RészletesebbenLineáris erőtörvény vizsgálata és rugóállandó meghatározása
Lineáris erőtörvény vizsgálata és rugóállandó meghatározása A mérés célja Szeretnénk igazolni az F=-Dx skaláris Hooke-törvényt, azaz a rugót nyújtó erő és a rugó megnyúlása közt fennálló lineáris kapcsolatot,
RészletesebbenModern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin
RészletesebbenMikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv
(-as számú mérés) mérési jegyzõkönyv Készítette:, II. éves fizikus... Beadás ideje:... / A mérés leírása: A mérés során egy mikroszkóp különbözõ nagyítású objektívjeinek nagyítását, ezek fókusztávolságát
RészletesebbenFázisátalakulások vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 6. MÉRÉS Fázisátalakulások vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. szeptember 28. Szerda délelőtti csoport 1. A mérés célja A mérés
RészletesebbenPeltier-elemek vizsgálata
Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre
Részletesebben2. Rugalmas állandók mérése
. Rugalmas állandók mérése Tóth Bence fizikus,. évfolyam 00.0.. péntek délelőtt beadva: 00.03.04. . A mérés első felében fémrudak Young-moduluszát mérjük, pontosabban behajlást mérünk, és ebből számolunk
RészletesebbenTömegmérés stopperrel és mérőszalaggal
Tömegmérés stopperrel és mérőszalaggal 1. Általános tudnivalók Mérőhelyén egy játékpisztolyt, négy lövedéket, valamint egy jól csapágyazott, fatalpra erősített fémlemezt talál. A lentebb közölt utasítások
RészletesebbenModern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
Részletesebben10. mérés. Fényelhajlási jelenségek vizsgála
Bán Marcell ETR atonosító BAMTACT.ELTE Beadási határidő 2012.10.15 (engedélyezett késés) 10. mérés Fényelhajlási jelenségek vizsgála Bevezetés: A mérések során a fény hullámhosszából adódó jelenségeket
RészletesebbenModern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy
RészletesebbenMérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
RészletesebbenMérési jegyzőkönyv. M1 számú mérés. Testek ellenállástényezőjének mérése
Tanév, félév 2010-11 I. félév Tantárgy Áramlástan GEÁTAG01 Képzés főiskola (BSc) Mérés A Nap Hét A mérés dátuma 2010 Dátum Pontszám Megjegyzés Mérési jegyzőkönyv M1 számú mérés Testek ellenállástényezőjének
Részletesebben(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely)
(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) Mérést végezte: Szalontai Gábor Mérőtárs neve: Nagy Dániel Mérés időpontja: 2012.11.22. Bevezető A hétköznapi és kézzelfogható
RészletesebbenA= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező
Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:
RészletesebbenFogorvosi anyagtan fizikai alapjai 6.
Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv
RészletesebbenModern Fizika Laboratórium Fizika és Matematika BSc 12. Infravörös spektroszkópia
Modern Fizika Laboratórium Fizika és Matematika BSc 1. Infravörös spektroszkópia Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 03/0/01 Beadás ideje: 03/4/01 Érdemjegy:
RészletesebbenModern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok
Modern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 05/08/2012 Beadás ideje: 05/11/2012 Érdemjegy: 1 1. A mérés
RészletesebbenFajhő mérése. Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport
Fajhő mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 0/05/20 Beadás ideje: 0/2/20 . A mérés rövid leírása Mérésem során egy alumínium (-es)
RészletesebbenCompton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.
Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak
Részletesebben1. Feladat. a) Mekkora radiális, tangenciális és axiális feszültségek ébrednek a csőfalban, ha a csővég zárt?
1. Feladat Egy a = mm első és = 150 mm külső sugarú cső terhelése p = 60 MPa első ill. p k = 30 MPa külső nyomás. a) Mekkora radiális, tangenciális és axiális feszültségek érednek a csőfalan, ha a csővég
RészletesebbenModern Fizika Laboratórium Fizika BSc 6. Zeeman-effektus
Modern Fizika Laboratórium Fizika BSc 6. Zeeman-effektus Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 04/17/12 Beadás ideje: 04//12 Érdemjegy: 1 1. A mérés rövid
RészletesebbenOktatási Hivatal FIZIKA I. KATEGÓRIA. A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FELADATOK
Oktatási Hivatal A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA I. KATEGÓRIA FELADATOK Bimetal motor tulajdonságainak vizsgálata A mérőberendezés leírása: A vizsgálandó
Részletesebben3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:
1. A mellékelt táblázat a Naphoz legközelebbi 4 bolygó keringési időit és pályagörbéik félnagytengelyeinek hosszát (a) mutatja. (A félnagytengelyek Nap- Föld távolságegységben vannak megadva.) a) Ábrázolja
RészletesebbenModern Fizika Laboratórium Fizika és Matematika BSc 8. Alkáli spektrumok
Modern Fizika Laboratórium Fizika és Matematika BSc 8. Alkáli spektrumok Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 03/7/0 Beadás ideje: 04/0/0 Érdemjegy: . A mérés
RészletesebbenFajhő mérése. Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: Jegyzőkönyv leadásának ideje:
Fajhő mérése Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: 206. 0. 20. egyzőkönyv leadásának ideje: 206.. 0. Bevezetés Mérésem során az -es számú minta fajhőjét kellett megmérnem.
RészletesebbenHELYI TANTERV. Mechanika
HELYI TANTERV Mechanika Bevezető A mechanika tantárgy tanításának célja, hogy fejlessze a tanulók logikai készségét, alapozza meg a szakmai tantárgyak feldolgozását. A tanulók tanulási folyamata fejlessze
Részletesebben2009/2010. tanév Országos Középiskolai Tanulmányi Verseny döntő forduló. FIZIKA I. kategória FELADATLAP. Valós rugalmas ütközés vizsgálata.
A versenyző kódszáma: 009/00. tanév Országos Középiskolai Tanulmányi Verseny FIZIKA I. kategória FELADATLAP Valós rugalmas ütközés vizsgálata. Feladat: a mérőhelyen található inga, valamint az inga és
RészletesebbenMikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mérési jegyzőkönyv Szőke Kálmán Benjamin 2010. november 16. Mérés célja: Feladat meghatározni a mikroszkópon lévő
RészletesebbenKeresztmetszet másodrendű nyomatékainak meghatározása
BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra
RészletesebbenGyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.
Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő
RészletesebbenKERESZTMETSZETI JELLEMZŐK
web-lap : www.hild.gor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 50. KERESZTMETSZETI JELLEMZŐK A TARTÓK MÉRETEZÉSE SORÁN SZÁMOS ESETBEN SZÜKSÉGÜNK VAN OLYAN ADATOKRA,
RészletesebbenModern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.
Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az
Részletesebben1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
RészletesebbenModern Fizika Laboratórium Fizika BSc 22. Kvantumradír
Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 05/15/2012 Beadás ideje: 05/26/2012 Érdemjegy: 1 1. A mérés rövid
RészletesebbenMérési jegyzőkönyv. 3. mérés: Röntgen-cső, emissziós spektrumok, abszorpció
Mérési jegyzőkönyv 3. mérés: Röntgen-cső, emissziós spektrumok, abszorpció A mérés helyszíne: Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium A mérés időpontja: 2013.02.27. A
RészletesebbenFajhő mérése. (Mérési jegyzőkönyv) Hagymási Imre február 26. (hétfő délelőtti csoport)
Fajhő mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. február 26. (hétfő délelőtti csoport) 1. A mérés elméleti háttere Az anyag fajhőjének mérése legegyszerűbben a jólismert Q = cm T m (1) összefüggés
RészletesebbenHajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel
Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Segédlet az A végeselem módszer alapjai tárgy 4. laborgyakorlatához http://www.mm.bme.hu/~kossa/vemalap4.pdf Kossa Attila (kossa@mm.bme.hu)
RészletesebbenTermoelektromos hűtőelemek vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 4. MÉRÉS Termoelektromos hűtőelemek vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 30. Szerda délelőtti csoport 1. A mérés célja
RészletesebbenFázisátalakulások vizsgálata
Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk
RészletesebbenMerev testek kinematikája
Merev testek kinematikája Egy pontrendszert merev testnek tekintünk, ha bármely két pontjának távolsága állandó. (f=6, Euler) A merev test tetszőleges mozgása leírható elemi transzlációk és elemi rotációk
RészletesebbenModern fizika laboratórium
Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid
RészletesebbenFrissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.
1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk
RészletesebbenMit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
RészletesebbenPÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
RészletesebbenModern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond
RészletesebbenMérés: Millikan olajcsepp-kísérlete
Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat
RészletesebbenModern fizika laboratórium
Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos
RészletesebbenModern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
Részletesebben. Számítsuk ki a megadott szög melletti befogó hosszát.
Szögek átváltása fokról radiánra és fordítva 2456. Hány fokosak a következő, radiánban (ívmértékben) megadott szögek? π π π π 2π 5π 3π 4π 7π a) π ; ; ; ; ; b) ; ; ; ;. 2 3 4 8 3 6 4 3 6 2457. Hány fokosak
RészletesebbenElméleti előadás Bővített kiadás (Nem prezentációnak szánt változat) Készítette: Boldizsár Zoltán Attila
Elméleti előadás Bővített kiadás (Nem prezentációnak szánt változat) Készítette: Boldizsár Zoltán Attila zoltan.boldizsar@ttk.elte.hu 1. Jegyzőkönyv-készítés: általános elvárások A jegyzőkönyveknek meghatározott
RészletesebbenModern Fizika Labor. 17. Folyadékkristályok
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 11. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2011. okt. 23. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
RészletesebbenTömegvonzás, bolygómozgás
Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test
RészletesebbenModern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. február 23. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2009. március 2. A mérést végezte: Zsigmond Anna Márton Krisztina
Részletesebben7. Mágneses szuszceptibilitás mérése
7. Mágneses szuszceptbltás mérése PÁPICS PÉTER ISTVÁN csllagász, 3. évfolyam 5.9.. Beadva: 5.9.9. 1. A -ES MÉRHELYEN MÉRTEM. Elször a Hall-szondát kellett htelesítenem. Ehhez RI H -t konstans (bár a mérés
RészletesebbenModern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.
Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:
RészletesebbenHőmérsékleti sugárzás
Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális
RészletesebbenNYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok
Hidrodinamikai Rendszerek Tanszék Készítette:... kurzus Elfogadva: Dátum:...év...hó...nap NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS Mérési feladatok 1. Csővezetékben áramló levegő nyomásveszteségének mérése U-csöves
RészletesebbenAbszolút és relatív aktivitás mérése
Korszerű vizsgálati módszerek labor 8. mérés Abszolút és relatív aktivitás mérése Mérést végezte: Ugi Dávid B4VBAA Szak: Fizika Mérésvezető: Lökös Sándor Mérőtársak: Musza Alexandra Török Mátyás Mérés
RészletesebbenKÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
RészletesebbenHomogén testnek nevezzük az olyan testet, amelynek minden része ugyanolyan tulajdonságú. ρ = m V.
SZILÁRD TESTEK SŰRŰSÉGÉNEK MÉRÉSE 1. Elméleti háttér Homogén testnek nevezzük az olyan testet, amelynek minden része ugyanolyan tulajdonságú anyagból áll. Homogén például az üveg, a fémek, a víz, a lufiba
RészletesebbenKirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
RészletesebbenModern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. dec. 16. A mérés száma és címe: 11. Spektroszkópia Értékelés: A beadás dátuma: 2011. dec. 21. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
RészletesebbenNév:...EHA kód:... 2007. tavasz
VIZSGA_FIZIKA II (VHNB062/210/V/4) A MŰSZAKI INFORMATIKA SZAK Név:...EHA kód:... 2007. tavasz 1. Egy 20 g tömegű testet 8 m/s sebességgel függőlegesen felfelé dobunk. Határozza meg, milyen magasra repül,
Részletesebben5. Fajhő mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
5. Fajhő mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 08. Leadás dátuma: 2008. 10. 15. 1 1. A mérési összeállítás A mérés során a 6-os számú minta fajhőjét akarjuk meghatározni.
RészletesebbenMagspektroszkópiai gyakorlatok
Magspektroszkópiai gyakorlatok jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Deák Ferenc Mérés dátuma: 010. április 8. Leadás dátuma: 010. április 13. I. γ-spekroszkópiai mérések A γ-spekroszkópiai
Részletesebben32. Hatvani István fizikaverseny Döntő. 1. kategória. 6. higanymilliméter 7. kalória 8. rőf 9. véka 10. arasz
1. kategória 1.D.1. 1. mérföld 2. hektoliter 3. tonna 4. celsius 5. fertályóra 6. higanymilliméter 7. kalória 8. rőf 9. véka 10. arasz 1.D.2. Egy autókaraván állandó sebességgel egyenes úton halad az autópályán.
RészletesebbenMéréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba
RészletesebbenModern Fizika Laboratórium Fizika és Matematika BSc 14. Holográfia
Modern Fizika Laboratórium Fizika és Matematika BSc 14. Holográfia Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 03/06/2012 Beadás ideje: 05/22/2012 (javítás) Érdemjegy:
RészletesebbenMőködési elv alapján. Alkalmazás szerint. Folyadéktöltéső nyomásmérık Rugalmas alakváltozáson alapuló nyomásmérık. Manométerek Barométerek Vákuummérık
Nyomásm smérés Nyomásm smérés Mőködési elv alapján Folyadéktöltéső nyomásmérık Rugalmas alakváltozáson alapuló nyomásmérık Alkalmazás szerint Manométerek Barométerek Vákuummérık Nyomásm smérés Mérési módszer
Részletesebben