2. Rugalmas állandók mérése
|
|
- Irma Magyarné
- 9 évvel ezelőtt
- Látták:
Átírás
1 2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja:
2 I. A mérés célja: Két anyag Young-modulusának meghatározása a testek lehajlásának mérésével, valamint torziómoduluszés tehetetlenségi nyomaték mérése torziós inga segítségével. II. A mérés elméleti hátterének áttekintése: A két végén feltámasztott és középen terhelt rúd az ábrán látható módon deformálódik: Jól látható, hogy az alsó rész rétegei meghosszabbodnak, a felsők rövidülnek, mivel felül nyomó-, alul pedig húzó feszültségek lépnek fel. A két jól elkülöníthető rész közötti változatlan hosszúságú részt neutrális rétegnek nevezzük. Ezen rétegnek a vízszinteshez képest történő középső (legnagyobb) lehajlását az l 3 (EI ) F (1) s= 1 48 összefüggés írja le, amelyben s jelöli a lehajlás mértékét, l a feltámasztási pontok távolságát, F azt az erő, amely elődiézi a lehajlást, E a minta Young-modulusza, I pedig a minta keresztmetszetének másodrendű nyomatéka. Ha a koordináta rendszer x-y síkjának a vízszintes neutrális síkot választjuk, az x - tengely a rúd hosszának irányába mutat, a z -tengely pedig felfelé, akkor a másodrendű nyomaték az alábbi képlet alapján számolható: I = f z 2 df. (2) R sugarú kör keresztmetszetű rúd esetén I o = π 4 R4, (3) a alapú, b magasságú téglalap keresztmetszet esetén I = ab3 12. (4) A mérést a 2. ábrán látható, kétkarú emelőt tartalmazó eszköz segítségével végeztem. A rendelkezésre álló súlyok és az erőkar segítségével számos terhelés megvalósítható, a feltámasztás változtatásával pedig az l értéke módosítható egészen 40 cm-ig.
3 A rúd közepének lehajlása az eszközön található, 0,01 mm léptékű mérőóra segítségével mérhető. Ügyelni kell azonban arra, hogy a terhelés változtatásakor a rúd ne mozduljon el és a terhelés valóban középen legyen. Vékony huzal torziómoduluszát a huzalból készült torziós inga segítségével határoztam meg. A G torziós modulusz és az inga T lengéideje között az alábbi kapcsolat áll fenn: G=K Θ T 2. (5) Az összefüggésben szereplő Θ a lengő rendszer tehetetlenségi nyomatéka és K a torziós szálra jellemző állandó: K =8π l, (6) r 4 ahol r a szál sugara, l pedig a hossza. Ily módon Θ ismeretében a T lengésidő mérésével a G érték már meghatározható lenne. A tehetetlenségi nyomaték azonban általában nem ismert, ezért úgy végezzük a mérést, hogy a torziós inga tehetetlenségi nyomatékát ismert mértékben változtatjuk, így lehetségessé válik a torziómodulusz meghatározása. Az üres ingára a középponthoz képest szimmetrikusan két m 1 és m 2 tömegű, súlypontjukra nézve Θ 1 és Θ 2 tehetetlenségi nyomatékú tárcsát helyeztem. Törekedni kell arra, hogy a két tömeg és tehetetlenségi nyomaték minél inkább azonos legyen. Ha a tárcsák távolsága a forgástengelytől a, a rendszer eredő tehetetlenségi nyomatéka: Θ=Θ ü +Θ s1 +Θ s2 +(m 1 +m 2 )a 2. (7) A képletben szereplő Θ ü az üres inga tehetetlenségi nyomatéka, az (m 1 +m 2 )a 2 tag pedig a Steiner - tétellel magyarázható. Így az (5) kifejezést felhasználva az alábbi összefüggéshez jutunk: T 2 = K G (Θ +Θ +Θ )+K (m 1+m 2 ) ü si s2 a 2. (8) G Tehát, ha a mért T lengésidők négyzetét az a 2 értékek függvényében ábrázoljuk, egy egyenest kapunk, amely m meredekségéből a G torziómodulusz kiszámítható: amelyből m= K G (m 1+m 2 ), (9) G=K (m 1+m 2 ) m. (10) A lengésidőt egy fényérzékelőből álló egység detektálja, az időmérés egy elektronikus számlálóval történik, a műszerrel 10 vagy 50 lengés ideje mérhető. A mérés során a 10 lengés idejébőll származtatott periódusidőt használtam. Ha az inga az egyensúlyi helyen takarja el a fényérzékelő fényforrását, tehát ekkor kezdjük meg a mérést, a csillapítás miatt bekövetkezhető, az amplitúdócsökkenésből származó hiba csökkenthető, így a beállításkor erre ügyelnünk kell. Az inga keretén a tárcsák állása 1 cm-es osztással változtatható ±0,05 mm pontosságal. III.
4 IV. Mért adatok és kiértékelésük: 1) A Young-modulus meghatározása: A méréseket az A1 és S1 jelzésű mintákkal végeztem. A1 A1 A minták geometriai adatai: a (*10-3 m) 8,15 8,13 8,06 8,05 8,03 8,08 b (*10-3 m) 11,98 11,97 11,99 12,03 12,02 12,0 S1 d (*10-3 m) 9,90 9,94 9,99 9,91 9,97 9,94 A mért adatok átlagértékét a táblázat utolsó oszlopában tüntettem fel. A henger alakú minta esetén a sugár a szükséges adat: r = d/2 = 4,97 *10-3 m. Az (1) összefüggés ellenőrzésére kétféle mérést végeztem. a) Először állandó l hosszúság mellett feljegyeztem az s lehajlásokat különböző F terhelések esetén: l = 40 ± 0,25 cm mindhárom esetben. A1 (i. eset) A1 (ii. eset) S1 F (N) s (0,01 mm) F (N) s (0,01 mm) F (N) s (0,01 mm) 5 57, ,5 82 7,5 66,5 7, , ,5 12,5 101,5 12,5 85,5 12,5 59, , , A mért értékpárokat ábrázoltam, a várakozásnak megfelelően mindhárom esetben egyenest kaptam. Az egyenes meredekségéből a másodrendű nyomaték ismeretében a Young-modulusz meghatározható: s= 1 l 3 48 (EI ) F m= 1 l 3 E= 1 l 3 48 (EI ) 48 (mi ) A1 (i.) A1 (ii.) S1 Egyenes meredeksége: m 3,7486*10-5 1,6728*10-5 3,5638*10-5 A meredekség hibája: Δm ± 6,3*10-8 ± 5,8*10-8 ± 2,0*10-8
5 m 1 = 3,7486*10-5 ± 6,3*10-8 m 2 = 1,6728*10-5 ± 5,8*10-8 m 3 = 3,5638 *10-5 ± 2,0*10-8
6 A Young-modulusz hibája a hibaszámítás szabályai alapján: Δ E=3 (Δ l ) (Δ m) + l m +(Δ I ) I Az alábbi táblázat tartalmazza a Young-modulusz értékét és hibáját, valamint a számításhoz szükséges másodrendű nyomaték értékét és hibáját egyaránt: A1 (i.) A1 (ii.) S1 Másodrendű nyomaték: I 5,275*10-10 m 4 1,1635*10-9 m 4 4,792*10-10 m 4 Másodrendű nyomaték hibája: ΔI 1,5*10-11 m 4 1,9*10-11 m 4 1,5*10-11 m 4 Young-modulusz: E 6,743 *10 10 N/m 2 6,851 * N/m 2 7,8 * N/m 2 Young-modulusz hibája: ΔE ± 0,33 *10 10 N/m 2 ± 0,26 * N/m 2 ± 0,43 *10 10 N/m 2 b) Ezt követően állandó 1000 g-os majd 3000 g-os terhelés mellett megmértem a lehajlásokat különböző l éktávolságok mellett az S1 minta esetén. A mért értékek az alábbi táblázatban találhatók: l (cm) s 0 (*0,01 mm) 92, s t (*0,01 mm) s = s t -s 0 (*0,01 mm) 70, Az s= 1 l 3 48 (EI ) F=m l3 m= 1 F alapján a Young-modulus meghatározható. 48 (EI ) Ha az s lehajlást az l 3 függvényében ábrázoljuk, megkapjuk a szükséges egyenes merdekségét. Az egyenest a Gnuplot program segítségével illesztettem, a merededség: m = 0,01116 ± 0, Lehajlás s (*10-5 m) m = 0,01116 ± 0,00035 l 3 (*10-3 m 3 )
7 A mérési eredmények alapján a minta Young-modulusa: E= 1 F N 48 (mi ) =7, m 2. A Young-modulus hibája, ha az erő becsült relatív hibája ± 1%-nak tekinthető: Δ E=[ (Δ F ) m) +(Δ F m +(Δ I ) ] E=0, N I m 2. Az S1 mita Young-modulusa a második módszer alapján: E = (7,79 ± 0,566 )*10 10 N/m 2. c) Az 1/a) mérést a téglalap keresztmetszetű mintán mindkét élell párhuzamos terhelés mellett elvégeztem, a mérési eredmények és a Young-modulus számítása az a) részben megtalálható. m 1 A két merdekség arányára az alábbi mennyiséget kaptam: = (3, ) m 2 (1, ) =2,24. Ha tekintjük az I 2 I 1 = (1, ) (5, ) jegyig azonos, így azt mondhatjuk, hogy a feltételezett mérési hibából származik. =2,20 arányt, a két mennyiség a második tizedes m 1 m 2 = I 2 I 1 teljesül, a kis eltérés a 2) Torziómodulusz mérése, és az inga tehetetlenségi nyomatékának meghatározása: A torziós ingában található vékony szál geometriai adatait csavarmikrométer, valamint miliméter beosztású mérőszalag segítségével mértem, a csvarmikrométer hibája ± 0,005 mm, a hosszmérés hibája ± 0,05 cm. A mért adatok átlagát a táblázat utolsó oszlopában tüntettem fel: d (mm) 0,71 0,70 0,72 0,70 0,71 0,72 0,71 l (cm) 59,1 A súlyok geometriai adatait tolómérő és csavarmikrométer segítségével állapítottam meg, a tömeget analítikai mérleg segítségével mértem. A tolómérő hibája ± 0,025 mm, a tömegmérés estén a hiba ±0,0001 g. A méréshez az 5. és 8. sorszámú súlyokat használtam. A táblázat utolsó oszlopában az egyes mennyiségek átlaga szerepel d ±0,025 (mm) 45,1 45,0 45,05 45,0 45,04 h ± 0,005 (mm) 13,78 13,74 13,75 13,74 13,75 m 1 (g) 194,6370 d ±0,025 (mm) 45,1 45,0 45,1 45,0 45,05 h ± 0,005 (mm) 13,86 13,90 13,86 13,9 13,88 m 2 (g) 196,2680 Az alábbi táblázat az óvatosan kitérített inga lengésidejét, és a hozzájuk tartozó súlyok pozícióját tartalmazza. A súlyok az ingán található kereten szimmetrikusan helyezkedtek el, a táblázatban található a érték a súlyok rögzítési pontjának (jó közelítéssel a középpontok) távolságát jelzik ±0,05 mm pontossággal.
8 T 10 (s) Az időmérést minden esetben kétszer elvégeztem, a mérési eredméyekből látszik, hogy a műszer három tizedesjegy pontosággal méri a lengsidőt, a mérés sajátosságaiból adódóan azonban a mérési erdmények a második tizedesjegytől kezdve eltérnek, ezért célszerű a továbbiakban a számolást az első tizedesjegyre kerekített értékekkel végezni. 28,672 35,790 40,335 45,574 51,166 57,097 63,339 69,522 76,007 28,746 35,800 40,322 45,595 51,163 57,100 63,311 69,499 76,001 T (s) 2,87 3,58 4,03 4,56 5,12 5,71 6,33 6,94 7,60 a (cm) A T 2 értékeket az a 2 függvényében ábrázolta és a (8) összefüggésnek megfelelően egyenest kaptam. Az egyenes egyenlete: y = 4937,5 x + 8,36. A meredekség hibája: Δm = ± 11,18. A tengelymetszet: b = 8,36 ± 0,06. A G torziómodulusz meghatározásához szükséges a K állandó kiszámítása: K =8π l 1 r 4 =(9,35 0,26) 1014 m 3 G=K (m 1 +m 2 ) m = 9, (0, , ) =7, N 4937,5 m 2 A G torziómodulusz hibája az alábbi képlet alapján számítható ki: Δ G=[ (Δ K ) K +(Δ m 1+Δ m 2 ) (Δ m) (Δl ) (Δ r) + ]G=[ +4 (m 1 +m 2 ) m l r Tehát az inga torziómodulusza: G = (7,40 ± 0,02) *10 10 N/m 2. + (Δ m 1+Δ m 2 ) + (m 1 +m 2 ) (Δ m) m ]G
9 Tehetetlenségi nyomaték: Az inga tehetetlenségi nyomatékának maghatározásához szükség van a két test tehetetlenségi nyomatékára: Θ si = 1 2 m R 2 i i. Így az 5. tárcsa tehetetlenségi nyomatéka Θ s1 = 0, kg m 2, a 8. súly tehetetlenségi nyomatéka pedig Θ s2 = 0, kg m 2. Az inga tehetetlenségi nyomatéka: Θ ü =G b K Θ s1 Θ s2 =5, kg m 2. A tehetetlenségi nyomaték hibájának meghatározásához szükség van a tárcsák tehetetlenségi nyomatékának hibájára: Δ Θ si =[ (Δ m i) +2 (Δ R i) ]Θ m i R si. i ΔΘ s1 = ± 1,09 *10-7 ; ΔΘ s2 = ± 1,10 *10-7 ; Az üres inga tehetetlenségi nyomatékának hibája a fenti összefüggésben szereplő mennyiségek abszolút hibáinak összegeként adódik. Az üres inga tehetetlenségi nyomatéka Θ ü = (5,62 ± 0,46) *10-4 kg m 2. Az egyenes korrelációs együtthatójára az R = 0,9999 mennyiség adódott, ezzel igazolást nyert a Steiner-tétel.
Rugalmas állandók mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem
Részletesebben2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű
RészletesebbenRugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv
(-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9 A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk
RészletesebbenRugalmas állandók mérése
Rugalmas állandók mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. április 23. (hétfő délelőtti csoport) 1. Young-modulus mérése behajlásból 1.1. A mérés menete A mérés elméleti háttere megtalálható a jegyzetben
RészletesebbenRugalmas állandók mérése
Rugalmas állandók mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/30/2011 Beadás ideje: 12/07/2011 1 1. A mérés rövid leírása Mérésem
RészletesebbenHangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A
RészletesebbenHangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Részletesebben2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
RészletesebbenNehézségi gyorsulás mérése megfordítható ingával
Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja
RészletesebbenA mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,
RészletesebbenSzilárd testek rugalmassága
Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)
Részletesebben2. Rugalmas állandók mérése
. Rugalas állandók érése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolya 00.10.7. Beadva: 00.1.1. 1. A -ES, AZAZ AZ ABLAK FELLI MÉRHELYEN MÉRTEM. Ezen a laboron a férudak Young-oduluszát értük, pontosabban
Részletesebben7. Mágneses szuszceptibilitás mérése
7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer
RészletesebbenMikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv
(-as számú mérés) mérési jegyzõkönyv Készítette:, II. éves fizikus... Beadás ideje:... / A mérés leírása: A mérés során egy mikroszkóp különbözõ nagyítású objektívjeinek nagyítását, ezek fókusztávolságát
RészletesebbenMikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés
RészletesebbenMágneses szuszceptibilitás mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az
RészletesebbenJegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)
Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag
RészletesebbenLineáris erőtörvény vizsgálata és rugóállandó meghatározása
Lineáris erőtörvény vizsgálata és rugóállandó meghatározása A mérés célja Szeretnénk igazolni az F=-Dx skaláris Hooke-törvényt, azaz a rugót nyújtó erő és a rugó megnyúlása közt fennálló lineáris kapcsolatot,
RészletesebbenTömegmérés stopperrel és mérőszalaggal
Tömegmérés stopperrel és mérőszalaggal 1. Általános tudnivalók Mérőhelyén egy játékpisztolyt, négy lövedéket, valamint egy jól csapágyazott, fatalpra erősített fémlemezt talál. A lentebb közölt utasítások
Részletesebben3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:
1. A mellékelt táblázat a Naphoz legközelebbi 4 bolygó keringési időit és pályagörbéik félnagytengelyeinek hosszát (a) mutatja. (A félnagytengelyek Nap- Föld távolságegységben vannak megadva.) a) Ábrázolja
RészletesebbenMikroszkóp vizsgálata Folyadék törésmutatójának mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport
RészletesebbenModern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
RészletesebbenA= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező
Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:
Részletesebben(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely)
(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) Mérést végezte: Szalontai Gábor Mérőtárs neve: Nagy Dániel Mérés időpontja: 2012.11.22. Bevezető A hétköznapi és kézzelfogható
Részletesebben7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
7. Mágneses szuszceptibilitás mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 22. Leadás dátuma: 2008. 11. 05. 1 1. A mérési összeállítás A mérési összeállítás sematikus ábrája
RészletesebbenJegyzőkönyv. mágneses szuszceptibilitás méréséről (7)
Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz
RészletesebbenMérési jegyzőkönyv. M1 számú mérés. Testek ellenállástényezőjének mérése
Tanév, félév 2010-11 I. félév Tantárgy Áramlástan GEÁTAG01 Képzés főiskola (BSc) Mérés A Nap Hét A mérés dátuma 2010 Dátum Pontszám Megjegyzés Mérési jegyzőkönyv M1 számú mérés Testek ellenállástényezőjének
RészletesebbenMágneses szuszceptibilitás mérése
Mágneses szuszceptibilitás mérése Mérési jegyzőkönyv Szőke Kálmán Benjamin 2010. november 9. Mérés célja: A mérési feladat hitelesíteni a Hall-szondát, és meghatározni a 3-as alumínium rúd, 5-ös réz rúd
RészletesebbenNYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok
Hidrodinamikai Rendszerek Tanszék Készítette:... kurzus Elfogadva: Dátum:...év...hó...nap NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS Mérési feladatok 1. Csővezetékben áramló levegő nyomásveszteségének mérése U-csöves
RészletesebbenRegresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program
Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z
RészletesebbenA mágneses szuszceptibilitás vizsgálata
Bán Marcell ETR atonosító BAMTACT.ELTE Beadási határidő: 2012.12.13 A mágneses szuszceptibilitás vizsgálata 1.1 Mérés elve Anyagokat mágneses térbe helyezve, a tér hatására az anygban mágneses dipólusmomentum
RészletesebbenKeresztmetszet másodrendű nyomatékainak meghatározása
BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra
RészletesebbenMit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
Részletesebben7. Mágneses szuszceptibilitás mérése
7. Mágneses szuszceptbltás mérése PÁPICS PÉTER ISTVÁN csllagász, 3. évfolyam 5.9.. Beadva: 5.9.9. 1. A -ES MÉRHELYEN MÉRTEM. Elször a Hall-szondát kellett htelesítenem. Ehhez RI H -t konstans (bár a mérés
RészletesebbenMágneses szuszceptibilitás mérése
Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása
RészletesebbenPélda: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk
RészletesebbenNavier-formula. Frissítve: Egyenes hajlítás
Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a
Részletesebben29. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika 2014. február 27 28. 9. osztály
9. Nagy László Fizikaverseny 014. február 7 8. 1. feladat Adatok: H = 5 m, h = 0 m. A H magasságban elejtett test esési idejének (T 13 ) és a részidők (T 1, T 3 ) meghatározása: H g 13 13 = = =,36 s H
RészletesebbenHELYI TANTERV. Mechanika
HELYI TANTERV Mechanika Bevezető A mechanika tantárgy tanításának célja, hogy fejlessze a tanulók logikai készségét, alapozza meg a szakmai tantárgyak feldolgozását. A tanulók tanulási folyamata fejlessze
RészletesebbenModern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. április 20. A mérés száma és címe: 20. Folyadékáramlások 2D-ban Értékelés: A beadás dátuma: 2009. április 28. A mérést végezte: Márton Krisztina Zsigmond
RészletesebbenOktatási Hivatal FIZIKA I. KATEGÓRIA. A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FELADATOK
Oktatási Hivatal A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA I. KATEGÓRIA FELADATOK Bimetal motor tulajdonságainak vizsgálata A mérőberendezés leírása: A vizsgálandó
RészletesebbenA mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
RészletesebbenMérést végezte: Varga Bonbien. Állvány melyen plexi lapok vannak rögzítve. digitális Stopper
Mérést végezte: Varga Bonbien Mérőtárs neve: Megyeri Balázs Mérés időpontja: 2008.04.22 Jegyzőkönyv Leadásának időpontja: 2008.04.29 A Mérés célja: Hooke Törvény Vizsgálata Hooke törvényének igazolása,
RészletesebbenMikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mérési jegyzőkönyv Szőke Kálmán Benjamin 2010. november 16. Mérés célja: Feladat meghatározni a mikroszkópon lévő
RészletesebbenRácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát!
Konduktometriás titrálás kiértékelése Excel program segítségével (Office 2007) Alapszint 1. A mérési adatokat írjuk be a táblázat egymás melletti oszlopaiba. Az első oszlopba kerül a fogyás, a másodikba
RészletesebbenAbszolút és relatív aktivitás mérése
Korszerű vizsgálati módszerek labor 8. mérés Abszolút és relatív aktivitás mérése Mérést végezte: Ugi Dávid B4VBAA Szak: Fizika Mérésvezető: Lökös Sándor Mérőtársak: Musza Alexandra Török Mátyás Mérés
RészletesebbenFüggvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
Részletesebben19. A fényelektromos jelenségek vizsgálata
19. A fényelektromos jelenségek vizsgálata PÁPICS PÉTER ISTVÁN csillagász, 3. évfolyam Mérőpár: Balázs Miklós 2006.04.19. Beadva: 2006.05.15. Értékelés: A MÉRÉS LEÍRÁSA Fontos megállapítás, hogy a fénysugárzásban
RészletesebbenÉrettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
RészletesebbenGyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:
Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold
Részletesebben3. Hangfrekvenciás mechanikai rezgések vizsgálata
3. Hangfrekvenciás mechanikai rezgések vizsgálata Tóth Bence fizikus,. évfolyam 005.03.04. péntek délelőtt beadva: 005.03.. . A mérés első részében a megvastagított végű rúd (a D jelű) felharmonikusait
RészletesebbenMÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
RészletesebbenRezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?
Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye
RészletesebbenTömegvonzás, bolygómozgás
Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test
RészletesebbenÉrettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
RészletesebbenKERESZTMETSZETI JELLEMZŐK
web-lap : www.hild.gor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 50. KERESZTMETSZETI JELLEMZŐK A TARTÓK MÉRETEZÉSE SORÁN SZÁMOS ESETBEN SZÜKSÉGÜNK VAN OLYAN ADATOKRA,
RészletesebbenMérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
RészletesebbenGyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
Részletesebbenb) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
RészletesebbenHomogén testnek nevezzük az olyan testet, amelynek minden része ugyanolyan tulajdonságú. ρ = m V.
SZILÁRD TESTEK SŰRŰSÉGÉNEK MÉRÉSE 1. Elméleti háttér Homogén testnek nevezzük az olyan testet, amelynek minden része ugyanolyan tulajdonságú anyagból áll. Homogén például az üveg, a fémek, a víz, a lufiba
RészletesebbenModern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy
RészletesebbenFényhullámhossz és diszperzió mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 9. MÉRÉS Fényhullámhossz és diszperzió mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 19. Szerda délelőtti csoport 1. A mérés célja
RészletesebbenFázisátalakulások vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 6. MÉRÉS Fázisátalakulások vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. szeptember 28. Szerda délelőtti csoport 1. A mérés célja A mérés
RészletesebbenFigyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18
RészletesebbenModern fizika laboratórium
Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos
RészletesebbenModern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin
Részletesebben2. Rugalmas állandók mérése
. Rugalmas állandók mérése Tóth Bence fizikus,. évfolyam 00.0.. péntek délelőtt beadva: 00.03.04. . A mérés első felében fémrudak Young-moduluszát mérjük, pontosabban behajlást mérünk, és ebből számolunk
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
RészletesebbenTermoelektromos hűtőelemek vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 4. MÉRÉS Termoelektromos hűtőelemek vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 30. Szerda délelőtti csoport 1. A mérés célja
RészletesebbenModern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.
Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az
Részletesebben2009/2010. tanév Országos Középiskolai Tanulmányi Verseny döntő forduló. FIZIKA I. kategória FELADATLAP. Valós rugalmas ütközés vizsgálata.
A versenyző kódszáma: 009/00. tanév Országos Középiskolai Tanulmányi Verseny FIZIKA I. kategória FELADATLAP Valós rugalmas ütközés vizsgálata. Feladat: a mérőhelyen található inga, valamint az inga és
RészletesebbenModern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin
RészletesebbenMatematikai geodéziai számítások 10.
Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
RészletesebbenGyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.
Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
RészletesebbenMágneses szuszceptibilitás mérése
Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenPeltier-elemek vizsgálata
Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs
RészletesebbenFázisátalakulások vizsgálata
Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk
Részletesebben1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
RészletesebbenÉrettségi feladatok: Trigonometria 1 /6
Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat
RészletesebbenA II. kategória Fizika OKTV mérési feladatainak megoldása
Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett
RészletesebbenFrissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.
1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk
RészletesebbenMérés: Millikan olajcsepp-kísérlete
Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 14 XIV NEVEZETES GÖRbÉk 1 AZ EGYEnES EGYEnLETE A és pontokon átmenő egyenes egyenlete: (1), Az hányados neve iránytényező (iránytangens, meredekség) A ponton átmenő, m iránytangensű
RészletesebbenFelső végükön egymásra támaszkodó szarugerendák egyensúlya
1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra
RészletesebbenA 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK
Oktatási Hivatal A 016/017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK Szénszállal erősített polimer rúd rugalmassági modulusának mérése 1. A feladatok
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:
Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál
RészletesebbenMatematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
RészletesebbenVasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet
Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban
RészletesebbenEGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét.
EGYSZERŰ GÉPEK Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. Az egyszerű gépekkel munkát nem takaríthatunk meg, de ugyanazt a munkát kisebb
RészletesebbenModern fizika laboratórium
Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid
RészletesebbenElektromos egyenáramú alapmérések
Elektromos egyenáramú alapmérések A mérés időpontja: 8.. 5. hétf ő,.-4. Készítették: 5.mérőpár - Lele István (CYZH7) - Nagy Péter (HQLOXW) A mérések során elektromos egyenáramú köröket vizsgálunk feszültség-
RészletesebbenMatematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
RészletesebbenFajhő mérése. (Mérési jegyzőkönyv) Hagymási Imre február 26. (hétfő délelőtti csoport)
Fajhő mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. február 26. (hétfő délelőtti csoport) 1. A mérés elméleti háttere Az anyag fajhőjének mérése legegyszerűbben a jólismert Q = cm T m (1) összefüggés
Részletesebben