Idősorok elemzése. Salánki Ágnes

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Idősorok elemzése. Salánki Ágnes"

Átírás

1 Idősorok elemzése Salánki Ágnes Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1

2 Idősorok analízise Alapfogalmak Komponenselemzés Összehasonlítás Tárolás/Indexelés 2

3 Alapfogalmak Eddig: rekordok egy adatbázisban (valami struktúrával), a sorrend nem számít o Pl. vásárló kosara (pelenka sör) Sorrend is: szekvenciaelemzés o Pl. időben különböző vásárlások (fényképezőgép fényképnyomtató egy hónapon belül) Időbélyeg is: idősorelemzés 3

4 Alapfogalmak Idősor-adatbázis megadott időközönként rögzített érték- vagy esemény szekvenciák o Megj.: tehát minden idősor egy szekvencia is Alkalmazások o Természeti jelenségek adatai: hőmérséklet, légnyomás o Tőzsdeelemzés és jóslás o Folyamatirányítási rendszerek 4

5 Idősor 5

6 Idősor 6

7 Idősor 7

8 Idősor 8

9 Komponensek Y = T + S + C + I Trendmozgás Szezonális mozgás Ciklikus mozgás Irreguláris mozgás 9

10 Komponensek Y = T + S + C + I Trendmozgás Szezonális mozgás Ciklikus mozgás általános irány egy hosszú időszakon belül Irreguláris mozgás 10

11 Komponensek Y = T + S + C + I Trendmozgás Szezonális mozgás Ciklikus mozgás időszakok szerint rendszeres mozgás; pl. Valentin napi virágeladás Irreguláris mozgás 11

12 Komponensek Y = T + S + C + I Trendmozgás Szezonális mozgás Ciklikus mozgás hosszú távú változások a trend körül; megj.: nem feltétlenül periodikus Irreguláris mozgás 12

13 Komponensek Y = T + S + C + I Trendmozgás Szezonális mozgás Ciklikus mozgás véletlenszerű, előre semmilyen módon nem jósolható Irreguláris mozgás 13

14 Idősorok elemzése Egyedi idősorok jellemzése o dekompozíció o becslések a jövőre nézve Idősorok viszonya egymáshoz o távolságok meghatározása o összehasonlítás 14

15 Trendelemzés Dekompozíció, becslések 15

16 Szabad kéz módszere Trendelemzés 16

17 Módszer Szabad kéz módszere Leírás 17

18 Szabad kéz módszere Analitikus módszer o regresszió Trendelemzés 18

19 Módszer Regresszió Adott: x = x 1, x 2, x n független és y = y 1, y 2,, y m függő változók. Keressük: y = f(x, β) összefüggést és ebben a β paramétert Lineáris regresszió o a függő változó a függetlenek lineáris kombinációja Nemlineáris regresszió o paramétereiben lineáris függvények o interpoláció spline-okkal 19

20 Lineáris regresszió Sejtés: az y és az x között lineáris kapcsolat Legyen n a tanítóhalmaz mérete, illesszünk rá hipersíkot: y = β 0 + n β j x j j=1 A β paraméter meghatározása: legkisebb négyzetek módszere a teljes adathalmazra N RSS β = (y i β 0 x i,j β j i=1 n j=1 Innen megvan az optimális β paramétervektor DE: csak óvatosan ) 2 20

21 Paramétereiben Paraméterében lineáris lineáris r. r. y = a b x y = a + b 1 x y = a + b log x y = a x b 21

22 Spline-ok Interpoláció Paraméterében spline-okkal lineáris r. Regressziós modellezés: általános modell Interpoláció: egy-egy pontra lokális függvény Alkalmazás: o Korlátozott számú mérőpont o Mérési hiba o Tehát előrejelzést nem tudunk adni! 22 Kép forrása:

23 Szabad kéz módszere Analitikus módszer o Regresszió Trendelemzés Simítás? o Mozgó átlag! 23

24 Módszer k-adrendű mozgóátlag k hosszú ablak, a benne szereplő elemek átlagát vesszük Eredeti k = 3 NA NA k = 4 NA NA NA NA Súlyozással is k 2,3 = k3 7,4 = Eredeti k = 3 NA NA k = 3 ( 1,3,1 ) NA NA 4 24

25 k-adrendű mozgóátlag 25

26 k-adrendű mozgóátlag 26

27 Szezonális mozgások Cél: a szezonális mozgások kiiktatása/becslése o Minden, ami naptári intervallumhoz köthető o Példa: pékség és virágüzlet január-március Szezonális index: havi átlagtól való eltérés %-ban o Ezekkel kell leosztani/ezeket kell kivonni 27

28 Szezonális mozgások Alapfeladat: kezdeményezett mobilhívások (millió) Év I. negyedév II. negyedév IIII. negyedév IV. negyedév

29 Szezonális mozgások Alapfeladat: kezdeményezett mobilhívások (millió) Év I. negyedév II. negyedév IIII. negyedév IV. negyedév Lépések: 1. Trend kiszámítása (itt: negyedrendű mozgóátlag) 29

30 Szezonális mozgások Alapfeladat: kezdeményezett mobilhívások (millió) Év I. negyedév II. negyedév IIII. negyedév IV. negyedév Lépések: 1. Trend kiszámítása (itt: negyedrendű mozgóátlag) 30

31 Szezonális mozgások Alapfeladat: kezdeményezett mobilhívások (millió) Év I. negyedév II. negyedév IIII. negyedév IV. negyedév Lépések: 1. Trend kiszámítása (itt: negyedrendű mozgóátlag) 2. Szezonális index kiszámítása 31

32 Szezonális mozgások Alapfeladat: kezdeményezett mobilhívások (millió) Év I. negyedév II. negyedév IIII. negyedév IV. negyedév Lépések: 1. Trend kiszámítása (itt: negyedrendű mozgóátlag) 2. Szezonális index kiszámítása 32

33 Szezonális mozgások Alapfeladat: kezdeményezett mobilhívások (millió) Év I. negyedév II. negyedév IIII. negyedév IV. negyedév Lépések: 1. Trend kiszámítása (itt: negyedrendű mozgóátlag) 2. Szezonális index kiszámítása 3. Átlagolás 33

34 Szezonális mozgások Alapfeladat: kezdeményezett mobilhívások (millió) Év I. negyedév II. negyedév IIII. negyedév IV. negyedév Átlag Lépések: 1. Trend kiszámítása (itt: negyedrendű mozgóátlag) 2. Szezonális index kiszámítása 3. Átlagolás 34

35 Ciklikus mozgások Cél: ciklikus komponens meghatározása Szezonmentesített adatokon: Ciklikus = mozgóátlag- trendfüggvény Lépések: 1. Trend kiszámítása (mozgóátlag) 2. A mozgóátlagra trendfüggvényt illesztünk 3. Ciklikus = mozgóátlag - trendfüggvény 35

36 Ciklikus mozgások 2. 36

37 Ciklikus mozgások 2. 37

38 Ciklikus mozgások 2. 38

39 Összehasonlítás Távolságfüggvények, dinamikus idővetemítés 39

40 Összehasonlítás motivációk Teljes egyezés (whole sequence matching) o egy szekvencia-halmazban talál hasonlóakat egymáshoz o Pl. olyan termékek, amiknek az eladási mutatói hasonlóak Rész-szekvencia keresése (subsequence matching) o egy előre definiált rész-szekvenciát keresünk az idősorokban o Pl. EKG-ban adott rendellenesség keresése 40

41 Minkowski távolság Két n dimenziós adatvektor távolsága lehet például: p d p x, y = (x k y k ) p n k=1 = x y p 41

42 Manhattan távolság p = 1 Speciális Minkowskik o d 1 x, y = x k y k Euklideszi távolság p = 2 2 o d 2 x, y = ( (x k y k ) 2 ) Chebyshev távolság p o gyakorlatilag a megegyező indexű elemek távolságai közül a legnagyobb 42

43 Speciális Minkowskik A (0, 0) ponttól 1 egységre lévő pontok halmaza p = 1, p = 2 és p = esetén 43

44 Outlierek o Mozgóátlag o Zajszűrés Euklideszi problémák Y tengely menti eltolás különböző Y tengely menti skálázás különböző normalizálás : y i = y i Átlag(y) SZÓRÁS(y) 44

45 Euklideszi problémák 45

46 Euklideszi problémák 46

47 Euklideszi problémák 2 X tengely menti eltolás? Összehasonlítás kiugró értékek alapján? Különböző hosszúságú idősorok? Dinamikus idővetemítés 47

48 Dinamikus idővetemítés Dynamic Time Wraping Az idősorok pontjait nem indexenként hasonlítjuk össze o Motiváció pl. hangfelismerésnél Kép forrása: 48

49 Dinamikus idővetemítés számítása Lépések 1. n m-es D mátrixban rögzítjük a sorok egymástól való távolságát 2. Lépkedünk a szomszédos mezőkön Kell: p = p 1, p 2, p k útvonal a D 1, 1 és D n, m között Cél: minimális költségű út Szabályok: 1. Minden lépésben előre haladunk (nem távolodhatunk, tehát i, j i, j esetén i i, j j) 2. Az út folytonos, mindig csak szomszédos cellákra léphetünk 49

50 Dinamikus idővetemítés Sakoe-Chiba sáv (**Ikatura par.) Kép forrása: 50

51 Más hasonlóságok Befoglaló négyszögek hasonlósága o Inkább a különbözőek szűrhetőek ki o Nem túl hatékony Burkolt szegmensek hasonlósága o Két konfigurációs paraméter Szegmensek közötti megengedett eltérés: ε Azonos szegmensek minimális értéke: min_supp o Gyakorlatban is alkalmazott 51

52 Tárolás/Indexelés DFT, szegmentálás, fontos pontok 52

53 Idősorok hatékony tárolása k-adrendű átlagolás Szegmentálás Fontos pontok Diszkrét Fourier-transzformáció 53

54 k-adrendű átlagolás Alkalmazása főleg DTW-nél (Keogh+Pazzani, 2000) Lépések 1. n hosszúságú idősort N darab egyenlő hosszúságú részre bontunk 2. mindenhová az átlagot helyettesítjük be: n N i x i = N n x j j= n N i

55 Szegmentálás Cél: az idősort egyenes szakaszokkal közelítsük o Minél kevesebb egyenes legyen VAGY o Minél pontosabban közelítsen Kép forrása: Keogh, Chu, Hart, Pazzani. Segmenting Time Series: A Novel Approach 55

56 Szegmentálás 2 Csúszóablakos algoritmus o Egyszerű, online, de ha nagyon rezeg, nem jó o pl. egészségügy Top Down o Minden lehetséges töréspontot megvizsgál o A legkisebb hibájúnál vág Bottom Up o A legfinomabb felbontással kezdjük o A legjobban illeszkedző i. és i + 1. szakaszt összeolvasztjuk, majd frissítjük a távolságokat 56

57 Magyarázat Összehasonlítás o E maximális hiba egy adott szegmensre o ME teljes közelítő hiba o K szegmensek száma o L a szegmens átlagos hossza Algoritmus Konfiguráció Online Bonyolultság Csúszóablakos E IGEN O(Ln) Top-Down E, ME, K NEM O(Kn 2 ) Bottom-Up E, ME, K NEM O(Ln) 57

58 Fontos pontok módszere Válasszuk ki a reprezentatív pontokat, a többieket hagyjuk el Összehasonlításnál a többi idősornak is csak a fontos pontjait vesszük figyelembe Miért lehet egy a m pont fontos minimum? o Minimális az a i,, a m,, a j szekvenciában o sokkal kisebb, mint az intervallumhatárok: a i a m R és a j a m R Kép forrása: Fink, Pratt. Indexing of Compressed Time Series 58

59 Diszkrét Fourier-transzformáció Cél: időtartományból frekvenciatartományba transzformálni az adatokat Miért jó? o a zajszűrés könnyebb o a transzformálás lineáris (af 1 t + bf 2 t = af 1 ω + bf 2 (ω)) o a tengelyeken való eltolások megjelennek (kompenzálni tudunk a fr.t.-ban is) o azonos Euklideszi távolság az idősorok és tr.-ik között 59

60 Diszkrét Fourier-transzformáció 2 Képzése N 1 1 F k = f i e 2πjki N N k=0 0 k N 1-re 1. Amit kapunk: Fourier-együtthatók 2. Tömörítés: az első néhány együttható alapján jellemzünk csak 3. Készítünk az együtthatók alapján egy keresőfát, amiben már könnyű lesz keresni 60

61 Idősorok analízise Összefoglalás Alapfogalmak Komponenselemzés Összehasonlítás Tárolás/Indexelés 61

STATISZTIKA. Mit nevezünk idősornak? Az idősorok elemzésének módszertana. Az idősorelemzés célja. Determinisztikus idősorelemzés

STATISZTIKA. Mit nevezünk idősornak? Az idősorok elemzésének módszertana. Az idősorelemzés célja. Determinisztikus idősorelemzés Mit nevezünk idősornak? STATISZTIKA 10. Előadás Idősorok analízise Egyenlő időközökben végzett megfigyelések A sorrend kötött, y 1, y 2 y t y N N= időpontok száma Minden időponthoz egy adat, reprodukálhatatlanság

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH Idősorok Idősor Statisztikai szempontból: az egyes időpontokhoz rendelt valószínűségi változók összessége. Speciális sztochasztikus kapcsolat; a magyarázóváltozó az idő Determinisztikus idősorelemzés esetén

Részletesebben

Adatbányászati szemelvények MapReduce környezetben

Adatbányászati szemelvények MapReduce környezetben Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta

Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta Autoregresszív és mozgóátlag folyamatok Géczi-Papp Renáta Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1

Részletesebben

Idősorok elemzése előadás. Előadó: Dr. Balogh Péter

Idősorok elemzése előadás. Előadó: Dr. Balogh Péter Idősorok elemzése előadás Előadó: Dr. Balogh Péter Idősorok elemzése A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Az idősorokban

Részletesebben

Autoregresszív és mozgóátlag folyamatok

Autoregresszív és mozgóátlag folyamatok Géczi-Papp Renáta Autoregresszív és mozgóátlag folyamatok Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1

Részletesebben

Adaptív dinamikus szegmentálás idősorok indexeléséhez

Adaptív dinamikus szegmentálás idősorok indexeléséhez Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Nagyméretű Adathalmazok Kezelése

Nagyméretű Adathalmazok Kezelése Nagyméretű Adathalmazok Kezelése Idősorok Elemzése Márta Zsolt BME-SZIT (Hallgató) 2011.04.01 Márta Zsolt (BME-SZIT (Hallgató)) Idősorok Elemzése 2011.04.01 1 / 34 Tartalom 1 Bevezetés 2 Hasonlósági mértékek

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

Diszkréten mintavételezett függvények

Diszkréten mintavételezett függvények Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott

Részletesebben

Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre

Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre Statisztika I. 13. előadás Idősorok elemzése Előadó: Dr. Ertse Imre A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Ezek a

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

Fourier transzformáció

Fourier transzformáció a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos

Részletesebben

c adatpontok és az ismeretlen pont közötti kovariancia vektora

c adatpontok és az ismeretlen pont közötti kovariancia vektora 1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )

Részletesebben

Gépi tanulás a gyakorlatban. Lineáris regresszió

Gépi tanulás a gyakorlatban. Lineáris regresszió Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják

Részletesebben

Idősorok. Nagyméretű adathalmazok kezelése. Bartók Ferenc

Idősorok. Nagyméretű adathalmazok kezelése. Bartók Ferenc Idősorok Nagyméretű adathalmazok kezelése Bartók Ferenc 2014.03.31. Tartalom Bevezetés Modellezés Szegmentálás Anomáliák 2 Idősor Megfigyelések egy sorozata Tipikusan adott időközönkénti mérések Pl. naponta,

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton

Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton Osztályozás, regresszió Nagyméretű adathalmazok kezelése Tatai Márton Osztályozási algoritmusok Osztályozás Diszkrét értékkészletű, ismeretlen attribútumok értékének meghatározása ismert attribútumok értéke

Részletesebben

Exponenciális kisimítás. Üzleti tervezés statisztikai alapjai

Exponenciális kisimítás. Üzleti tervezés statisztikai alapjai Exponenciális kisimítás Üzleti tervezés statisztikai alapjai Múlt-Jelen-Jövő kapcsolat Egyensúlyi helyzet Teljes konfliktus Részleges konfliktus: 0 < α < 1, folytatódik a múlt, de nem változatlanul módosítás:

Részletesebben

Szezonális kiigazítás az NFSZ regisztrált álláskeresők idősorain. Készítette: Multiráció Kft.

Szezonális kiigazítás az NFSZ regisztrált álláskeresők idősorain. Készítette: Multiráció Kft. az NFSZ regisztrált álláskeresők idősorain Készítette: Multiráció Kft. SZEZONÁLITÁS Többé kevésbe szabályos hullámzás figyelhető meg a regisztrált álláskeresők adatsoraiban. Oka: az időjárás hatásainak

Részletesebben

Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi

Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris

Részletesebben

Digitális Domborzat Modellek (DTM)

Digitális Domborzat Modellek (DTM) Digitális Domborzat Modellek (DTM) Digitális Domborzat Modellek (DTM) Digitális Domborzat Modellek (DTM) DTM fogalma A földfelszín számítógéppel kezelhető topográfiai modellje Cél: tetszőleges pontban

Részletesebben

Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb

Részletesebben

A HŐMÉRSÉKLET ÉS A CSAPADÉK HATÁSA A BÜKK NÖVEKEDÉSÉRE

A HŐMÉRSÉKLET ÉS A CSAPADÉK HATÁSA A BÜKK NÖVEKEDÉSÉRE A HŐMÉRSÉKLET ÉS A CSAPADÉK HATÁSA A BÜKK NÖVEKEDÉSÉRE Manninger M., Edelényi M., Jereb L., Pödör Z. VII. Erdő-klíma konferencia Debrecen, 2012. augusztus 30-31. Vázlat Célkitűzések Adatok Statisztikai,

Részletesebben

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás. Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok

Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Algoritmusok és Adatszerkezetek II. utolsó előadás Beszédtechnológiai algoritmusok. (csak egy kis felszínkapargatás)

Algoritmusok és Adatszerkezetek II. utolsó előadás Beszédtechnológiai algoritmusok. (csak egy kis felszínkapargatás) Algoritmusok és Adatszerkezetek II. utolsó előadás Beszédtechnológiai algoritmusok (csak egy kis felszínkapargatás) Beszédtechnológia Eredeti feladat: beszédfelismerés Input: beszédjel (mikrofonon át)

Részletesebben

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen

Részletesebben

Numerikus matematika vizsga

Numerikus matematika vizsga 1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos

Részletesebben

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció

Részletesebben

Numerikus módszerek beugró kérdések

Numerikus módszerek beugró kérdések 1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:

Részletesebben

Idő-frekvencia transzformációk waveletek

Idő-frekvencia transzformációk waveletek Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 2015. április 23. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos

Részletesebben

1 Lebegőpontos számábrázolás

1 Lebegőpontos számábrázolás Tartalom 1 Lebegőpontos számábrázolás... 2 2 Vektornormák... 4 3 Indukált mátrixnormák és tulajdonságaik... 5 4 A lineáris rendszer jobboldala hibás... 6 5 A kondíciószám és tulajdonságai... 7 6 Perturbációs

Részletesebben

Wavelet transzformáció

Wavelet transzformáció 1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat PM-07 p. 1/13 Programozási módszertan Dinamikus programozás: A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-07

Részletesebben

Regresszió számítás az SPSSben

Regresszió számítás az SPSSben Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására

Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására VÉGZŐS KONFERENCIA 2009 2009. május 20, Budapest Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására Hidasi Balázs hidasi@tmit.bme.hu Konzulens: Gáspár-Papanek Csaba Budapesti

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos

Részletesebben

JAVASLAT A TOP-K ELEMCSERÉK KERESÉSÉRE NAGY ONLINE KÖZÖSSÉGEKBEN

JAVASLAT A TOP-K ELEMCSERÉK KERESÉSÉRE NAGY ONLINE KÖZÖSSÉGEKBEN JAVASLAT A TOP-K ELEMCSERÉK KERESÉSÉRE NAGY ONLINE KÖZÖSSÉGEKBEN Supporting Top-k item exchange recommendations in large online communities Barabás Gábor Nagy Dávid Nemes Tamás Probléma Cserekereskedelem

Részletesebben

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1 numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú

Részletesebben

Idő-frekvencia transzformációk waveletek

Idő-frekvencia transzformációk waveletek Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 013. áprils 17. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos

Részletesebben

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis 1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb

Részletesebben

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2

Részletesebben

Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot

Részletesebben

Shor kvantum-algoritmusa diszkrét logaritmusra

Shor kvantum-algoritmusa diszkrét logaritmusra Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

A LEGKÖZELEBBI SZOMSZÉD ANALÍZISHEZ SZÜKSÉGES TERÜLETI ADATBÁZISOK KIALAKÍTÁSÁNAK MÓDSZERTANI KÉRDÉSEI

A LEGKÖZELEBBI SZOMSZÉD ANALÍZISHEZ SZÜKSÉGES TERÜLETI ADATBÁZISOK KIALAKÍTÁSÁNAK MÓDSZERTANI KÉRDÉSEI A LEGKÖZELEBBI SZOMSZÉD ANALÍZISHEZ SZÜKSÉGES TERÜLETI ADATBÁZISOK KIALAKÍTÁSÁNAK MÓDSZERTANI KÉRDÉSEI Pfening Viola ELTE TTK Regionális Tudományi Tanszék Társadalom és térinformatika Innovatív módszerek

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

Idő-frekvencia transzformációk waveletek

Idő-frekvencia transzformációk waveletek Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 2014. május 8. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az

Részletesebben

Szezonális kiigazítás munkaügyi idősorokra

Szezonális kiigazítás munkaügyi idősorokra Szezonális kiigazítás munkaügyi idősorokra Készítette: Szente László és Láz József (MultiRáció Kft.) Szezonalitás a munkaügyi idősorokban Éven belüli, évről évre ismétlődő ingadozás, hullámzás figyelhető

Részletesebben

Termelés- és szolgáltatásmenedzsment

Termelés- és szolgáltatásmenedzsment Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Előrejelzési módszerek 14. Az előrejelzési modellek felépítése

Részletesebben

Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!)

Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!) DSP processzorok: 1 2 3 HP zajgenerátor: 4 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! Fehérzajhoz a konstans érték kell - megoldás a digitális

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben

III. Kvantitatív változók kapcsolata (korreláció, regresszió)

III. Kvantitatív változók kapcsolata (korreláció, regresszió) III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés

Részletesebben

Bevezetés Standard 1 vállalatos feladatok Standard több vállalatos feladatok 2017/ Szegedi Tudományegyetem Informatikai Intézet

Bevezetés Standard 1 vállalatos feladatok Standard több vállalatos feladatok 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 10. Előadás Vállalatelhelyezés Vállalatelhelyezés Amikor egy új telephelyet kell nyitni,

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN*

CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN* A Miskolci Egyetem Közleménye A sorozat, Bányászat, 66. kötet, (2004) p. 103-108 CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN* Dr.h.c.mult. Dr. Kovács Ferenc az

Részletesebben

Shift regiszter + XOR kapu: 2 n állapot

Shift regiszter + XOR kapu: 2 n állapot DSP processzorok: 1 2 HP zajgenerátor: 3 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! 4 Fehérzajhoz a konstans érték kell - megoldás a digitális

Részletesebben

Mintavételezés, szűrés, kilógó esetek detektálása

Mintavételezés, szűrés, kilógó esetek detektálása Mintavételezés, szűrés, kilógó esetek detektálása Salánki Ágnes salanki@mit.bme.hu Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Matematika alapjai; Feladatok

Matematika alapjai; Feladatok Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \

Részletesebben

Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet

Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november

Részletesebben

Gépi tanulás és Mintafelismerés

Gépi tanulás és Mintafelismerés Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,

Részletesebben

Strukturált Generátorrendszerek Online Tanulása és Alk-ai

Strukturált Generátorrendszerek Online Tanulása és Alk-ai Strukturált Generátorrendszerek Online Tanulása és Alkalmazásai Problémamegoldó Szeminárium 2010. nov. 5 Tartalomjegyzék Motiváció, példák Regressziós feladatok (generátorrendszer fix) Legkisebb négyzetes

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

Geofizikai kutatómódszerek I.

Geofizikai kutatómódszerek I. Geofizikai kutatómódszerek I. A gravitációs és mágneses kutatómódszer Dr. Szabó Norbert Péter egyetemi docens Miskolci Egyetem Geofizikai Intézeti Tanszék e-mail: norbert.szabo.phd@gmail.com 1. A gravitációs

Részletesebben

Statisztikai módszerek a skálafüggetlen hálózatok

Statisztikai módszerek a skálafüggetlen hálózatok Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti

Részletesebben

Vizuális adatelemzés - Gyakorlat. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Vizuális adatelemzés - Gyakorlat. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Vizuális adatelemzés - Gyakorlat Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Adatelemzés szerepe a rendszermodellezésben Lényeges paraméterek meghatározása

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Matematikai statisztikai elemzések 7.

Matematikai statisztikai elemzések 7. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 7. MSTE7 modul Bevezetés az idősorelemzésbe SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői

Részletesebben

Az előadás tartalma. Debrecen 110 év hosszúságú csapadékadatainak vizsgálata Ilyés Csaba Turai Endre Szűcs Péter Ciklusok felkutatása

Az előadás tartalma. Debrecen 110 év hosszúságú csapadékadatainak vizsgálata Ilyés Csaba Turai Endre Szűcs Péter Ciklusok felkutatása Miskolci Egyetem Környezetgazdálkodási Intézet Geofizikai és Térinformatikai Intézet MTA-ME Műszaki Földtudományi Kutatócsoport Debrecen 110 év hosszúságú csapadékadatainak vizsgálata Ilyés Csaba Turai

Részletesebben

A KLT (Kanade Lucas Tomasi) Feature Tracker Működése (jellegzetes pontok választása és követése)

A KLT (Kanade Lucas Tomasi) Feature Tracker Működése (jellegzetes pontok választása és követése) A KL (Kanade Lucas omasi) Feature racker Működése (jellegzetes pontok választása és követése) Készítette: Hajder Levente 008.11.18. 1. Feladat A rendelkezésre álló videó egy adott képkockájából minél több

Részletesebben

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8. Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás

Részletesebben

Legkisebb négyzetek módszere, Spline interpoláció

Legkisebb négyzetek módszere, Spline interpoláció Közelítő és szimbolikus számítások 10. gyakorlat Legkisebb négyzetek módszere, Spline interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján

Részletesebben

Alapfogalmak. Trendelemzés Szezonalitás Modellek. Matematikai statisztika Gazdaságinformatikus MSc október 29. 1/49

Alapfogalmak. Trendelemzés Szezonalitás Modellek. Matematikai statisztika Gazdaságinformatikus MSc október 29. 1/49 Matematikai statisztika Gazdaságinformatikus MSc 8. előadás 2018. október 29. 1/49 alapfogalmak Elméleti idősor - valószínűségi változók egy indexelt {X t, t T } családja, avagy időtől függő véletlen mennyiség.

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban

Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban Szépszó Gabriella Országos Meteorológiai Szolgálat, szepszo.g@met.hu RCMTéR hatásvizsgálói konzultációs workshop 2015. június 23.

Részletesebben

Minden az adatról. Csima Judit. 2015. február 11. BME, VIK, Csima Judit Minden az adatról 1 / 41

Minden az adatról. Csima Judit. 2015. február 11. BME, VIK, Csima Judit Minden az adatról 1 / 41 Minden az adatról Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2015. február 11. Csima Judit Minden az adatról 1 / 41 Adat: alapfogalmak Adathalmaz elvileg bármi, ami információt

Részletesebben

A keveredési réteg magasságának detektálása visszaszóródási idősorok alapján

A keveredési réteg magasságának detektálása visszaszóródási idősorok alapján ORSZÁGOS METEOROLÓGIAI SZOLGÁLAT A keveredési réteg magasságának detektálása visszaszóródási idősorok alapján Timár Ágnes Alapítva: 1870 A planetáris határréteg (PHR) Mechanikus és termikus turbulencia

Részletesebben

Grafikonok automatikus elemzése

Grafikonok automatikus elemzése Grafikonok automatikus elemzése MIT BSc önálló laboratórium konzulens: Orosz György 2016.05.18. A feladat elsődleges célkitűzései o eszközök adatlapján található grafikonok feldolgozása, digitalizálása

Részletesebben

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Alkalmazásával 214 Monostori László egyetemi tanár Váncza József egyetemi docens 1 Probléma Igények

Részletesebben

VIZSGADOLGOZAT. I. PÉLDÁK (60 pont)

VIZSGADOLGOZAT. I. PÉLDÁK (60 pont) VIZSGADOLGOZAT (100 pont) A megoldások csak szöveges válaszokkal teljes értékűek! I. PÉLDÁK (60 pont) 1. példa (13 pont) Az egyik budapesti könyvtárban az olvasókból vett 400 elemű minta alapján a következőket

Részletesebben

Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus

Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus Csíkszereda IRT-. kurzus 3. Előadás: A mohó algoritmus 1 Csíkszereda IRT. kurzus Bevezetés Az eddig tanult algoritmus tipúsok nem alkalmazhatók: A valós problémák nem tiszta klasszikus problémák A problémák

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben