STATISZTIKA. Mit nevezünk idősornak? Az idősorok elemzésének módszertana. Az idősorelemzés célja. Determinisztikus idősorelemzés
|
|
- Csaba Nagy
- 6 évvel ezelőtt
- Látták:
Átírás
1 Mit nevezünk idősornak? STATISZTIKA 10. Előadás Idősorok analízise Egyenlő időközökben végzett megfigyelések A sorrend kötött, y 1, y 2 y t y N N= időpontok száma Minden időponthoz egy adat, reprodukálhatatlanság problémája Egyváltozós, többváltozós idősorok Az idősorelemzés célja 1. A jelenség leírása, alakító tényezők megismerése 2. ELŐREJELZÉS Az idősorok elemzésének módszertana Determinisztikus (főként hosszú távú előrejelzés) Sztochasztikus (főként rövid távú előrejelzés) Determinisztikus idősorelemzés Az idősort alakító tényezők elvileg teljes körűen számba vehetőek A fentiek alapján az idősor alakulása pontosan leírható Véletlen hatás: Nincs teljes körű számbavétel Korlátozottak a mérési lehetőségeink Méréseink hibával terheltek Sztochasztikus idősorelemzés A véletlennek folyamatépítő szerepe van a modellben, öngeneráló hatások A véletlen az idősor későbbi alakulását is befolyásolja. beépülnek a sokkok Alkalmazási területe: elsősorban rövid távra 1
2 A determinisztikus idősor komponensei Trend (alapirányzat) Ciklus (éven túli ingadozás a trend körül) Szezonalitás (éven belüli ingadozás) Hiba (véletlen ingadozás) Additív jelenség Y t =T t +S t +e t Dekompozíciós idősormodellek. Additív Multiplikatív Feltételek (additív) Multiplikatív jelenség Y t =T t S t e t Feltételek (multiplikatív) A trend becslésének módszerei Mozgó átlagolás (szimmetrikus vagy egyoldali) Analitikus trendfüggvény megadása 2
3 Mozgóátlag, szimmetrikus X t-1 X t X t+1 k= mozgóátlag tagszáma l= részsorozat sorszáma l+(k+1)/ Mozgóátlagolás Minél nagyobb a tagszám, annál jobban kiszűrjük a véletlen hatásokat. Általában szimmetrikus ablak egyenlő súlyokkal A leggyakoribb: 3, 5, 7, 9, 15 és 21 pontos Hátránya: Az idősor lerövidül Nincs matematikailag elemezhető trendvonal A mozgóátlagok fajtái Előrejelző mozgóátlag: csak a múlt adatai alapján, a trend megváltozását késve jelzi Előrejelző mozgóátlag (5 tagú, csak múltbeli adatokból) Exponenciális mozgóátlag (simítás): súly α és 1-α, frissebb adat nagyobb súllyal Súlyozott mozgóátlag: frissebb adatok nagyobb súllyal Mozgóátlag szezonalitás esetén A mozgóátlag tagszámát úgy kell megválasztani, hogy tartalmazza az összes szezonalitást. Centrírozott mozgóátlagolás A mozgóátlagot páratlan k esetén a részsorozat középső elemének tekintjük, l+(k+1)/2-edik elem. Pl. havi adatok esetén 12 tagú átlagolás vagy egész számú többszöröse Pl. negyedéves adatok esetén 4 tagú átlagolás vagy egész számú többszöröse Ha k páros, akkor l+(k+1)/2 nem egész. Ezért az így kapott átlagokból kéttagú mozgóátlagolással kapjuk az egész indexű értékeket. Ezt nevezik centrírozásnak vagy középre igazításnak. 3
4 Centrírozott mozgóátlagok $trend Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 NA NA NA NA NA NA NA NA NA NA NA NA Trend mozgó átlagolással (12 tagú) Trend mozgó átlagolással (8 tagú) Trend mozgó átlagolással (16 tagú) Analitikus trendfüggvény A legkisebb négyzetek módszerével becsüljük. Gyakori függvénytípusok: Lineáris Exponenciális Másodfokú parabola Logisztikus 4
5 Lineáris trend Az egyenes meredeksége az időbeli változás abszolút mértékét mutatja. Exponenciális trend A jelenség egyenletesen gyorsulva vagy lassulva változik A változás üteme állandó A logaritmus transzformáció nem ad pontos becslést! Exponenciális függvény (pozitív hatványkitevő) Exponenciális függvény (negatív hatványkitevő) Parabolikus trend Parabolikus függvény (konvex) Globális minimummal vagy maximummal rendelkező jelenségeknél. 5
6 Parabolikus függvény (konkáv) Logisztikus trend Szakaszai: Lassú növekedés Gyors növekedés Lassuló növekedés Telítettség Logisztikus függvény Szezonális ingadozás Rendszeresen ismétlődő, azonos hullámhosszú, szabályos amplitúdójú ingadozások. Leggyakrabban havi vagy negyedéves ingadozások. A szezonális hatások egy perióduson belül kiegyenlítik egymást, azaz összegük nulla vagy egy. Szezonális eltérés (additív modell) Szezonindex (multiplikatív modell) Szezonális eltérés számítása 1. A megfigyelt idősorból levonjuk a trendértékeket. 2. Szezononként átlagoljuk az adatokat 3. Nyers szezonális eltérés 4. Korrigált szezonális eltérés Detrendelt adatok Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 NA NA NA NA NA NA 5,5 4,0 2,8 0,5-1,8-2, ,7-4,0-2,8-0,9 1,4 3,8 6,7 3,9 2,3 0,9-1,4-3, ,1-4,6-2,6-0,5 2,4 3,4 4,9 4,9 2,6 0,5-1,0-4, ,6-4,4-2,1-0,5 1,1 3,8 5,6 4,7 3,3 0,4-2,0-4, ,9-5,1-2,4 0,6 1,6 3,9 4,9 4,3 2,7 0,2-1,2-3, ,9-4,9-1,3-0,6 1,5 3,5 NA NA NA NA NA NA Átlagok: -5,9-4,6-2,2-0,4 1,6 3,7 5,5 4,4 2,7 0,5-1,5-3,7 Átlaga: 0 i= sorok száma j= oszlopok száma, szezon 6
7 Nyers szezonális eltérés Additív szezonális hatás A megfigyelt idősor a j-edik szezonban átlagosan mennyivel tér el a trendértéktől. Korrigált szezonális eltérés: a nyers szezonális eltérésekből levonjuk az átlagukat. A véletlen hatás Szezonindex számítása 1. A megfigyelt idősort osztjuk a trendértékekkel. 2. Szezononként átlagoljuk az adatokat (számtani átlag) 3. Nyers szezonindexek 4. Korrigált szezonindexek: nyers szezonindexek osztva az átlagukkal Detrendelt adatok (multiplikatív) Qtr1 Qtr2 Qtr3 Qtr NA NA 0,7 1, ,5 0,4 0,8 1, ,0 0,7 0,9 1, ,1 0,5 0,8 2, ,6 0,6 1,3 1, ,9 0,6 NA NA Nyers szezonindex A j-edik szezonban a megfigyelt idősor átlagosan hányszorosa a trendértéknek. Korrigált szezonindex: nyers szezonindex osztva a számtani átlagával Átlagok: (nyers szezonindexek) 1,0172 0,5637 0,8770 1,5344 Korrigált szezonindexek: 1,0191 0,5648 0,8787 1,5374 7
8 Multiplikatív szezonális hatás A véletlen hatás (multiplikatív) Előrejelzés (extrapoláció) Előrejelzés Y t =T t +S t vagy Y t =T t S t Korábban tanult módszerek az idősorelemzésben Az idősor elemzése átlagokkal A jelenség átlagos nagysága Milyen átlagot kell meghatározni? Abszolút változások átlaga Relatív változások átlaga 8
9 Idősorok Tartam idősor (flow): mozgó sokaságok jellemzői, egy időtartamra vonatkoztatjuk. Pl. termelés napra, hónapra, évre. Állapot idősor (stock): állományi típusú, egy időpontra vonatkoznak. Pl. raktárkészlet Átlagok Tartam idősor (flow): egyszerű számtani átlag Állapot idősor (stock): kronológikus átlag A növekedés átlagos mértéke Derivált sor meghatározása (különbségképzés) A különbségek egyszerű számtani átlaga A növekedés átlagos üteme Láncviszonyszámok meghatározása Láncviszonyszámok mértani átlaga A forgalom változásának mértéke a évhez viszonyítva A forgalom változásának üteme 9
Szezonális ingadozás. (Stacionárius idősoroknál, ahol nem beszélhetünk trendről, csak a véletlen hatást kell kiszűrni. Ezzel nem foglalkozunk)
Szezonalitás Szezonális ingadozás Rendszeresen ismétlődő, azonos hullámhosszú és szabályos amplitúdóú, többnyire rövid távú ingadozásokat tekintük. Vizsgálatukkor a dekompozíciós modellekből a trend és
Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH
Idősorok Idősor Statisztikai szempontból: az egyes időpontokhoz rendelt valószínűségi változók összessége. Speciális sztochasztikus kapcsolat; a magyarázóváltozó az idő Determinisztikus idősorelemzés esetén
Idősorok elemzése előadás. Előadó: Dr. Balogh Péter
Idősorok elemzése előadás Előadó: Dr. Balogh Péter Idősorok elemzése A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Az idősorokban
Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre
Statisztika I. 13. előadás Idősorok elemzése Előadó: Dr. Ertse Imre A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Ezek a
Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot
Matematikai statisztikai elemzések 7.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 7. MSTE7 modul Bevezetés az idősorelemzésbe SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői
Exponenciális kisimítás. Üzleti tervezés statisztikai alapjai
Exponenciális kisimítás Üzleti tervezés statisztikai alapjai Múlt-Jelen-Jövő kapcsolat Egyensúlyi helyzet Teljes konfliktus Részleges konfliktus: 0 < α < 1, folytatódik a múlt, de nem változatlanul módosítás:
Vizsgafeladatok. 1. feladat (3+8+6=17 pont) (2014. január 7.)
Vizsgafeladatok 1. feladat (3+8+6=17 pont) (2014. január 7.) Az elmúlt négy év a 2010. I. és a 2013. IV. negyedéve között csapadék mennyiségének alakulásáról az alábbiakat ismerjük: Időszak Csapadék mennyiéség
STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.
Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett
Szezonális kiigazítás az NFSZ regisztrált álláskeresők idősorain. Készítette: Multiráció Kft.
az NFSZ regisztrált álláskeresők idősorain Készítette: Multiráció Kft. SZEZONÁLITÁS Többé kevésbe szabályos hullámzás figyelhető meg a regisztrált álláskeresők adatsoraiban. Oka: az időjárás hatásainak
Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb
VIZSGADOLGOZAT. I. PÉLDÁK (60 pont)
VIZSGADOLGOZAT (100 pont) A megoldások csak szöveges válaszokkal teljes értékűek! I. PÉLDÁK (60 pont) 1. példa (13 pont) Az egyik budapesti könyvtárban az olvasókból vett 400 elemű minta alapján a következőket
Szezonális kiigazítás munkaügyi idősorokra
Szezonális kiigazítás munkaügyi idősorokra Készítette: Szente László és Láz József (MultiRáció Kft.) Szezonalitás a munkaügyi idősorokban Éven belüli, évről évre ismétlődő ingadozás, hullámzás figyelhető
Alapfogalmak. Trendelemzés Szezonalitás Modellek. Matematikai statisztika Gazdaságinformatikus MSc október 29. 1/49
Matematikai statisztika Gazdaságinformatikus MSc 8. előadás 2018. október 29. 1/49 alapfogalmak Elméleti idősor - valószínűségi változók egy indexelt {X t, t T } családja, avagy időtől függő véletlen mennyiség.
Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
Üzleti előrejelzések készítésének módszerei
MISKOLCI EGYETEM Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Üzleti előrejelzések készítésének módszerei Polyák Andrea 2013 Tartalomjegyzék 1. Bevezetés...3 2. Alapfogalmak...5
Termelés- és szolgáltatásmenedzsment
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Előrejelzési módszerek 14. Az előrejelzési modellek felépítése
Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység
KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Statisztika II előadáslapok. 2003/4. tanév, II. félév
Statisztika II előadáslapok 3/4 tanév, II félév BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT Egyik konzervgyár vágott zöldbabot exportál A szabvány szerint az üvegek nettó töltősúlyának az átlaga 3 g, a szórása 5 g Az
Technikai indikátorok
Technikai indikátorok Trendindikátorok Momentum indikátorok Forgalom alapú indikátorok Volatilitást mérő indikátorok Az Ichimoku indikátor Divergenciák Az a jelenség, amikor az ármozgás és az indikátor
FGSZ Zrt február 28-tól február 29-ig AUKCIÓS NAPTÁR: ÉVES ÉVES KAPCSOLT KAPACITÁS HATÁRKERESZTEZŐ PONTOKON
AUKCIÓS NAPTÁR: ÉVES ÉVES KAPCSOLT KAPACITÁS HATÁRKERESZTEZŐ PONTOKON NEM MEGSZAKÍTHATÓ KAPACITÁS - Július első hétfője 2019.06.01* 2019.07.01 07:00 2019.10.01 04:00 2020.10.01 04:00 2019/2020 2020.10.01
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta
Autoregresszív és mozgóátlag folyamatok Géczi-Papp Renáta Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1
Autoregresszív és mozgóátlag folyamatok
Géczi-Papp Renáta Autoregresszív és mozgóátlag folyamatok Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1
A szezonális kiigazításról
Központi Statisztikai Hivatal A szezonális kiigazításról 2012. szeptember Az idősorok viselkedését nagymértékben befolyásolhatják olyan tényezők, amelyek különböző évek azonos időszakaiban, közel azonos
STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
7-8-9. előadás Idősorok elemzése
Idősorok elemzése 7-8-9. előadás 2015. október 19-26. és november 2. Idősor fogalma sokasági szemlélet: elméleti idősor - valószínűségi változók egy indexelt {Y t, t T } családja, avagy időtől függő véletlen
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
ELTE TáTK Közgazdaságtudományi Tanszék MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter
MAKROÖKONÓMIA MAKROÖKONÓMIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
Statisztikai alapfogalmak
Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Esetelemzések az SPSS használatával
Esetelemzések az SPSS használatával Az idegenforgalmi statisztikai adatok közül vizsgáljuk meg, hogy a Magyarországra utazó külföldiek száma hogyan alakult 1998 2001 között havi bontásban. Az adatok a
Az MNB statisztikai mérlege a júliusi előzetes adatok alapján
Az MNB statisztikai mérlege a 23. júliusi előzetes adatok alapján A jelen publikációtól kezdődően megváltozik a mérleget és a monetáris bázist tartalmazó táblák szerkezete a (ld. 1. sz. melléklet). Ezzel
Ingatlanpiac és elemzése. 15-16. óra Ingatlanpiaci előrejelzés
Ingatlanpiac és elemzése 15-16. óra Ingatlanpiaci előrejelzés Horváth Áron ELTEcon Ingatlanpiaci Kutatóközpont eltinga.hu Ingatlanpiaci előrejelzés 1. Egyváltozós elemzés trend + ciklus + szezonalitás
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
Szezonális kiigazításról:
Szezonális kiigazításról: Az idősorok viselkedését nagymértékben befolyásolhatják olyan tényezők, amelyek különböző évek azonos időszakaiban, közel azonos irányban és mértékben hatnak. Ilyenek például
STATISZTIKA II. SZÓBELI TÉTELEK
STATISZTIKA II. SZÓBELI TÉTELEK 1. Statisztikai mintavétel. Az alapsokaságból vehet minták száma. (14.o.) Az, hogy egy alapsokaságból hány minta vehet, a kombinatorika szabályai szerint határozható meg.
Normál deviza és forint elszámolási értéknapok 2011. évben
Normál deviza és forint elszámolási értéknapok 2011. évben Magyarázat A devizakonverziók normál elszámolásának meghatározása: Minden normál devizakonverziót alap esetben T+2 napos elszámolással teljesít
6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények
6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai
Csesznák Anita 1 ELŐREJELZÉSI MÓDSZEREK ÉS PÉNZÜGYI ALKALMAZÁSUK
Csesznák Anita 1 ELŐREJELZÉSI MÓDSZEREK ÉS PÉNZÜGYI ALKALMAZÁSUK A jövő megismerése mindig célja volt az embernek. Az ember cselekvéseiben mindig ott volt a jövő alakítása, saját életének illetve környezetének
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
Az éghajlatváltozás és az aszály
Az éghajlatváltozás és az aszály Szalai Sándor, Lakatos Mónika Szalai.sandor@mkk.szie.hu Lakatos.m@met.hu 1 Definíció Komplex jelenség Nincsen általánosan elfogadott definíciója Relatív jelenség A vízzel
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
STATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása
A változók mérési szintjei STATISZTIKA I. 3. Előadás Az adatok mérési szintjei, Viszonyszámok A változók az alábbi típusba tartozhatnak: Nominális (kategorikus és diszkrét) Ordinális Intervallum skála
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos
Középérték Középérték A középérték a statisztikai adatok tömör számszerű jellemzése. helyzeti középérték: módusz medián számított középérték: számtani átlag kronológikus átlag harmonikus átlag mértani
Elméleti kérdések. a Termelés- és szolgáltatásmenedzsment tárgy vizsgájához. Dr. Kalló Noémi egyetemi adjunktus
Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet Menedzsment és Vállalatgazdaságtan Tanszék Elméleti kérdések a Termelés- és szolgáltatásmenedzsment
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,
Korrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
A fizetési mérleg alakulása a márciusi adatok alapján
A fizetési mérleg alakulása a 21. márciusi adatok alapján A végleges számítások szerint 21. márciusban 48 millió euró hiánnyal zárt a folyó fizetési mérleg. Az egyenlegnek az előző év márciushoz mért 97
Idősorok elemzése. Salánki Ágnes
Idősorok elemzése Salánki Ágnes salanki.agnes@gmail.com 2012.04.13. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 Idősorok analízise Alapfogalmak Komponenselemzés
Termék lista és specifikáció Villamosenergia szegmens
Termék lista és specifikáció Villamosenergia szegmens HUDEX Hosszú Távú Magyar Pénzügyi Zsinór Villamosenergia Termék HUDEX Hosszú Távú Magyar Pénzügyi Zsinór Villamosenergia Hosszú távú pénzügyi termék
Sta t ti t s i zt z i t k i a 3. előadás
Statisztika 3. előadás Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan A statisztika, mint gyakorlati tevékenység a tömegesen előforduló jelenségek egyedeire vonatkozó információk
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál
A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál Nagy Zoltán, Tóth Zoltán, Morvai Krisztián, Szintai Balázs Országos Meteorológiai Szolgálat A globálsugárzás
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi
Regisztrál álláskeresők alakulása évben
Regisztrál álláskeresők alakulása 2011-2012 évben 1. számú melléklet Regisztrált álláskeresők száma zárónapon 2011/Jan 2011/Feb 2011/Mar 2011/Apr 2011/May 2011/Jun 2011/Jul 2011/Aug 2011/Sep 2011/Oct 2011/Nov
Bevezető Mi a statisztika? Mérés Csoportosítás
Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető
Mérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA
1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal
Kvantitatív adatelemzési módszerek felsőfokon
Kvantitatív adatelemzési módszerek felsőfokon DR. ALPEK B. LEVENTE PTE TTK, FÖLDRAJZI INTÉZET, TÁRSADALOMFÖLDRAJZI ÉS URBANISZTIKAI TANSZÉK Kapcsolat: alpeklevente@gmail.com, +36308720003 Tartalom Kvantitatív/kvalitatív
352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm
5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88
Az SPC (statisztikai folyamatszabályozás) ingadozásai
A TERMELÉSI FOLYAMAT MINÕSÉGKÉRDÉSEI, VIZSGÁLATOK 2.3 Az SPC (statisztikai folyamatszabályozás) ingadozásai Tárgyszavak: statisztikai folyamatszabályozás; Shewhart-féle szabályozókártya; többváltozós szabályozás.
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22
1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták.
1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták. a) Hozzon létre osztályközös gyakoriságot az alábbi osztályközökkel: - 100.000 100.000-150.000 150.000-200.000 200.000-250.000
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Statisztika példatár
Statisztika példatár v0.02 A példatár folyamatosan b vül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a letölthet példatárak közt. Országh Tamás Budapest, 2006 Mottó: Ki kéne vágni minden
A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása
azdaság- és Társadalomtudományi Kar Ipari Menedzsment és Vállakozásgazdaságtan Tanszék A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása Készítette: dr. Koltai Tamás egyetemi tanár Budapest,.
[GVMGS11MNC] Gazdaságstatisztika
[GVMGS11MNC] Gazdaságstatisztika 1. előadás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.uni-obuda.hu)
AZ EURÓÁRFOLYAM VÁLTOZÁSÁNAK HATÁSA NYUGAT- MAGYARORSZÁG KERESKEDELMI SZÁLLÁSHELYEINEK SZÁLLÁSDÍJ-BEVÉTELEIRE, VENDÉGFORGALMÁRA 2000 ÉS 2010 KÖZÖTT
AZ EURÓÁRFOLYAM VÁLTOZÁSÁNAK HATÁSA NYUGAT- MAGYARORSZÁG KERESKEDELMI SZÁLLÁSHELYEINEK SZÁLLÁSDÍJ-BEVÉTELEIRE, VENDÉGFORGALMÁRA 2000 ÉS 2010 KÖZÖTT Készítette: Vályi Réka Neptun-kód: qk266b 2011 1 Az elemzés
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005
2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
Számelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
2012. október 2 és 4. Dr. Vincze Szilvia
2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex
A leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Követelmény a 7. évfolyamon félévkor matematikából
Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.
A göngyölítéses módszer elvi leírása
Tárgy: Elvi leírás az adóelőleg eltérő módszerrel történő levonásához 2012-re Készítette: Vántus Imre Telefon: 0630/9389241, 0676/505-818 Email: v.imre@parameter.hu Tisztelt NAV! Alábbiakban egy éves göngyölítésen
Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév
Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen
Kvantitatív elemzési módszerek
Kvantitatív elemzési módszerek Dr. Szilágyi Roland Dr. Varga Beatrix Bevezetés 2 A statisztika fogalma gyakorlati tevékenység, amelynek eredményeképpen statisztikai adatokhoz jutunk; e tevékenység eredményeképpen
Statisztika összefoglalás
Statisztika összefoglalás 1 / 18. oldal 1. Alapfogalmak Statisztika: a tömegesen előforduló jelenségek vizsgálatával foglalkozik, ezekre vonatkozóan adatokat gyűjt, feldolgoz, elemez és közzé tesz. o a