[GVMGS11MNC] Gazdaságstatisztika
|
|
- Ervin Kocsis
- 7 évvel ezelőtt
- Látták:
Átírás
1 [GVMGS11MNC] Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem
2 Oktatók Előadó Kóczy Á. László Fogadóóra: kedd 11:30 11:55, TA125 Gyakorlatvezető Bukucs Erzsébet Fogadóóra:
3 Jegyzet Általános Statisztika I II. Szerkesztette: Korpás Attiláné dr. Nemzeti Tankönyvkiadó, Budapest Általános Statisztika Példatár I-II. Molnár Máténé dr Tóth Mártonné dr. Nemzeti Tankönyvkiadó, Budapest A kurzus weboldala: Tematika Előadások fóliái Házifeladatok Régi vizsgafeladatok
4 A kurzusról A kurzus célja A statisztika eszköztárának megismertetése, a mutatók képzésének, számításának bemutatása, elemzési technikák elsajátítása. A gazdasági élet különböző területeinek jellemzésére, elemzésére legalkalmasabb módszerek, mutatószámok megismertetése. A tárgy kreditpontszáma: 4 Heti óraszám: 2 előadás + 2 gyakorlat
5 Követelmények illetve számonkérés Jelenlét kötelező az előadáson és a gyakorlaton is (TVSZ szerint) + gyakorlatra házi feladatot hozni 2 x 45 perces ZH elméleti és gyakorlati feladatokkal 1 a 7. héten 2 a 13. héten A ZH- értékelése: 0-50% elégtelen (1) 51-62% elégséges (2) 63-74% közepes (3) 75-86% jó (4) % jeles (5) pót ZH a 14. héten elégtelen félévközi jegy javítható a 15. héten
6 A statisztika és fajtái Statisztika A valóság tömör, számszerű jellemzésére szolgáló tudományos módszertan, illetve gyakorlati tevékenység. Statisztika, mint gyakorlati tevékenység A tömegesen előforduló jelenségek egyedeire vonatkozó információk gyűjtése, feldolgozása, elemzése, a vizsgált jelenség tömör számszerű jellemzése. Leíró statisztika Információk összegyűjtése, összegzése, rendszerezése Statisztikai következtetés Szűkebb csoport megfigyeléséből következtetés az egészre
7 Sokaság Statisztikai sokaság A megfigyelés tárgyát képező egyedek összessége, halmaza. Az egyedeket a sokaság egységeinek nevezzük. A sokaság lehet diszkrét vagy folytonos álló lakosság hitelállomány vagy mozgó látogatók jövedelem
8 A statisztikai ismérv Statisztikai ismérv A statisztikai sokaság egyedeit jellemző tulajdonság. Az ismérv lehetséges kimenetelei az ismérvváltozatok. alternatív Kétféle értéket vehet fel. Pl férfi/nő. közös A sokaság minden tagjára jellemző megkülönböztető a sokaság tagjait megkülönbözteti egymástól időbeli idő(szako)t jelző ismérv területi minőségi számszerűen nem mérhető tulajdonság mennyiségi számszerűen mérhető/megszámlálható tulajdonság ismérvértékek
9 A statisztikai mérés Mérés Számok meghatározott szabályok szerinti hozzárendelése jelenségekhez, illetve tulajdonságaikhoz. 4-féle mérési szint, ill. skála névleges (nominális) Számok kötetlen hozzárendelése. Rendszám, irsz. Csak címke! sorrendi (ordinális) Rangsor szerinti hozzárendelés. különbségi (intervallum-) Önkényes 0 pont. Különbség számolható. (pl: hőmérséklet) arányskála Valódi nullpont. Arány, stb számolható. (pl. hosszúság, jövedelem,..)
10 A statisztikai adat A statisztikai adat Valamely statisztikai sokaság elemeinek száma vagy a sokaság másféle jellemzője, mérési eredménye. alapadatok Adatok, melyekhez számolás, mérés révén jutunk leszármaztatott adatok számítás eredménye A statisztikai mutatószám Rendszeresen ismétlődő jelenség statisztikai jellemzője.
11 Adatgyűjtés Mottó: elfogadható pontosság gyorsaság gazdaságosság teljes körű valamennyi egyedre kiterjed részleges csak egy kiválasztott részre terjed ki Reprezentatív (mintavételes): mintasokaság az alapsokaságból mintavételi hibával Monográfia: kiemelt egyedek részletes statisztikai vizsgálata. Egyéb Kérdőíves adatfelvétel: egyéni kérdőív, vagy lajstrom (több megfigyelési egység egy számbavételi egységnél) önszámlálás, vagy kikérdezés
12 Hiba Hiba: adatfeldolgozás, adatközlés során, v. mintavételben Abszolút hiba a = A Â, ahol A = valóságos, Â = mért adat Abszolút hibakorlát (â). A Â ± â. Relatív hiba α = a A Relatív hibakorlát: ˆα = ââ.
13 Statisztikai csoportosítás A csoportosítás A sokaság felosztása egy megkülönböztető ismérv szerint. Átfedésmentes és teljes. Csoportosító sor Osztály Egységek száma C 1 f 1 C 2 f 2. C i. C k Összesen. f i. f k N A csoportosító sor lehet minőségi mennyiségi területi idősor kombinatív
14 Összehasonĺıtás A csoportosítás Két, vagy több statisztikai adat viszonyítása. Sorba rendezve: Összehasonĺıtó sor Különböző időpontok: idősor Területi alapon: összehasonĺıtó területi sor
15 Viszonyszámok Viszonyszám Két, logikai kapcsolatban álló statisztikai adat hányadosa. Azonos fajta adatokból számolva Megoszlási viszonyszám: részsokaságok aránya az egészhez Koordinációs viszonyszám: részsokaságok aránya egymáshoz Dinamikus viszonyszám: két idősza/időpont adatainak hányadosa Különböző fajta, mértékegységű adatokból számolva intenzitási viszonyszám (telefon/1000 lakás)
16 Átlagok Átlagok Azonos fajta adatok tömör jellemzésére használjuk. Átlagolandó értékek: X 1, X 2, X 3,..., X N. Számtani átlag: X = Súlyozott számtani átlag: X = N i=1 X i N k i=1 f i X i k i=1 f i Harmonikus átlag: X h = N N i=1 1 X i = k i=1 f i k f i i=1 X i Mértani átlag: Xg = N N i=1 X i = k i=1 f i k i=1 X f i Négyzetes átlag: X q = N k i=1 X i 2 i=1 N = f i Xi 2 k i=1 f i i
17 Átlagok tulajdonságai X h X g X X q X min X X max Az értékek és a számtani átlag különbségeinek összege 0. Az értékek eltolása eltolja a számtani átlagot (számolhatunk átlaghőmérsékletet Celsiusban!) Az értéke felszorzása felszorozza a számtani átlagot (.. F-ben is!) A számtani összeg minimalizálja a különbségek négyzetösszegét.
Bevezető Mi a statisztika? Mérés Csoportosítás
Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető
RészletesebbenBevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I.
Statisztika I. 1. előadás: A statisztika alapfogalmai Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem A kurzusról A kurzus célja
RészletesebbenSta t ti t s i zt z i t k i a 3. előadás
Statisztika 3. előadás Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan A statisztika, mint gyakorlati tevékenység a tömegesen előforduló jelenségek egyedeire vonatkozó információk
RészletesebbenSta t ti t s i zt z i t k i a 1. előadás
Statisztika 1 előadás Témakörök Statisztikai alapfogalmak Statisztikai sorok Mennyiségi sorok csoportosítása Statisztikai táblák Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan
RészletesebbenBevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
RészletesebbenSTATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása
A változók mérési szintjei STATISZTIKA I. 3. Előadás Az adatok mérési szintjei, Viszonyszámok A változók az alábbi típusba tartozhatnak: Nominális (kategorikus és diszkrét) Ordinális Intervallum skála
Részletesebben2. előadás. Viszonyszámok típusai
2. előadás Viszonyszámok típusai Mérési skálák Nominális /névleges skála: kötetlen hozzárendelése a számoknak Sorrendi / Ordinális skála: sokaság egyedeinek egy közös tulajdonság szerinti sorbarendezése
RészletesebbenBevezető Adatok rendezése Adatok jellemzése Időbeli elemzés
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
RészletesebbenStatisztikai alapfogalmak
Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt
RészletesebbenKÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység
KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:
RészletesebbenStatisztika. Dr Gősi Zsuzsanna. Egyetemi adjunktus. Sportmenedzsment Tanszék
Statisztika Dr Gősi Zsuzsanna Egyetemi adjunktus Sportmenedzsment Tanszék Kötelező irodalom - Számonkérés Pintér József Ács Pongrác Bevezetés a sportstatisztikába Dialóg Campus Kiadó 2007 Honlap: www.dialog-kiado.hu
RészletesebbenÁruforgalom tervezése. 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok
Áruforgalom tervezése 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok Alapvető gazdasági számítások 1. Egy vállalkozás tevékenysége nagyon összetett. Szükség van arra, hogy ismerjük
RészletesebbenBevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I.
Statisztika I. 1. előadás: A statisztika alapfogalmai Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem A kurzusról A kurzus célja
RészletesebbenMegoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja
Megoldások 1. feladat A sokaság: 2007. szeptember 12-én a Miskolci Egyetem GT-204-es tankör statisztika óráján lévő tagjai az A 1 épület III. em. 53-as teremben 8-10-ig. Közös ismérv Megkülönböztető ismérv
RészletesebbenA mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015
A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel
RészletesebbenSándorné dr. Kriszt Éva dr. Csesznák Anita. Statisztika I. Szerkesztette Sándorné dr. Kriszt Éva. Nemzedékek Tudása Tankönyvkiadó, Budapest
Sándorné dr. Kriszt Éva dr. Csesznák Anita Ország Gáborné Statisztika I. Szerkesztette Sándorné dr. Kriszt Éva Nemzedékek Tudása Tankönyvkiadó, Budapest TARTALOMJEGYZÉK Előszó... 9 1. A statisztika alapfogalmai...11
RészletesebbenMintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
RészletesebbenStatisztika I. 1. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre A STATISZTIKA FOGALMA 1. Gyakorlati számbavételi tevékenység tömegjelenségek számbavétele, elemzése összefüggések feltárása következtetések levonása Célja:
RészletesebbenÁltalános statisztika I. Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth, Mártonné Korpás, Attiláné Csernyák, László
Általános statisztika I Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth, Mártonné Korpás, Attiláné Csernyák, László Általános statisztika I Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth,
RészletesebbenStatisztikai alapfogalmak
i alapfogalmak statisztikai sokaság: a megfigyelés tárgyát képező egyedek összessége 2 csoportja van: álló sokaság: mindig vmiféle állapotot, állományt fejez ki, adatai egy adott időpontban értelmezhetők
RészletesebbenViszonyszám A B. Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a. viszonyítadóadat
Viszonyszámok Viszonyszám Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a viszonyítandó adat Viszonyítás tárgya (viszonyítandó adat) B: a viszonyítás alapja V viszonyítadóadat
RészletesebbenÁltalános statisztika I Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth, Mártonné Korpás, Attiláné Csernyák, László
Általános statisztika I Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth, Mártonné Korpás, Attiláné Csernyák, László Általános statisztika I Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth,
RészletesebbenStatisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
RészletesebbenSTATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.
Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett
Részletesebben6. A kereskedelmi készletek elszámoltatása, az értékesítés elszámoltatása 46. Összefoglaló feladatok 48.
Tartalomjegyzék 1. Alapvető gazdasági számítások 4. 1.1. A gazdasági számítások jelentősége egy vállalkozás életében 4. 1.2. A gazdasági számításokkal szemben támasztott követelmények 4. 1.3. Milyen feladatokat
RészletesebbenStatisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
RészletesebbenMatematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakirány Arató Miklós Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar 2019. február 11. Arató Miklós (ELTE) Matematikai
Részletesebbenbiometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
RészletesebbenStatisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
RészletesebbenStatisztika 1. Tantárgyi útmutató
Módszertani Intézeti Tanszék Nappali tagozat Statisztika 1. Tantárgyi útmutató 2015/16 tanév II. félév 1/6 Tantárgy megnevezése: Statisztika 1. Tantárgy kódja: STAT1KAMEMM Tanterv szerinti óraszám: 2+2
RészletesebbenStatisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
RészletesebbenMi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
Részletesebben9.3. Külkereskedelmi statisztika...77 9.4. Pénzügystatisztika, az államháztartás információs rendszere...77 9.5. Agrárstatisztikai információs
Kovács Péter Statisztikai alapismeretek Tartalomjegyzék BEVEZETÉS...4. A STATISZTIKA ALAPFOGALMAI...5.. A statisztika tárgy, tudományági besorolása...5.. Alapfogalmak...6.3. A statisztikai munka fázisai...8.4.
Részletesebben1. Előadás. Statisztikai alapfogalmak. A statisztikai munka fázisai. Statisztikai adatok csoportosításának lehetőségei. Statisztikai sorok, táblák.
1. Előadás Statisztikai alapfogalmak. A statisztikai munka fázisai. Statisztikai adatok csoportosításának lehetőségei. Statisztikai sorok, táblák. A statisztika fogalma gyakorlati tevékenység, amelynek
RészletesebbenTANTÁRGYI ÚTMUTATÓ. Statisztika 1.
I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Statisztika 1. TÁVOKTATÁS Tanév 2014/2015 II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Statisztika 1. Tanszék: Módszertani Tantárgyfelelős neve: Sándorné Dr. Kriszt
RészletesebbenStatisztikai. Statisztika Üzleti szakügyintéző felsőfokú szakképzés I. évfolyam VS 210-4 (NFG ÜS302G4) 2010-2011-es tanév I. félév
Statisztika Üzleti szakügyintéző felsőfokú szakképzés I évfolyam VS 210-4 (NFG ÜS302G4) 2010-2011-es tanév I félév Statisztikai alapfogalmak Oktató: Dr Csáfor Hajnalka főiskolai docens Vállalkozás-gazdaságtan
Részletesebben2013 ŐSZ. 1. Ismertesse a mérési skálák tulajdonságait és a közöttük lévő összefüggéseket.
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK AZ 1. ZH-HOZ 2013 ŐSZ (Jelen kérdések az első zh összes elméleti témakörét összegzik, melyeket egymásra épülő sorrendben, illetve tematika szerinti bontásban
RészletesebbenBevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze. Célja: - a sokaságot
RészletesebbenBevezetés az SPSS program használatába
Bevezetés az SPSS program használatába Statisztikai szoftver alkalmazás Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable View Output Viewer Sintax
RészletesebbenKorrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
RészletesebbenTudnivalók a tantárgyról. Leíró és matematikai statisztika. Tudnivalók a tantárgyról/2. A tananyagról. Honlap: zempleni.elte.hu
Leíró és matematikai statisztika Matematika alapszak, matematikai elemző szakirány Zempléni András Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem
RészletesebbenOrvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN
Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás
Részletesebben1. óra: Területi statisztikai alapok viszonyszámok, középértékek
1. óra: Területi statisztikai alapok viszonyszámok, középértékek Tér és társadalom (TGME0405-GY) gyakorlat 2018-2019. tanév Viszonyszámok Viszonyszá m Viszonyítandó adat (A) Viszonyítási alap (B) 1. Megoszlási
RészletesebbenA statisztika alapjai - Bevezetés az SPSS-be -
A statisztika alapjai - Bevezetés az SPSS-be - Kvantitatív statisztikai módszerek Petrovics Petra, Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable
RészletesebbenFüggetlenségvizsgálat, Illeszkedésvizsgálat
Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata
RészletesebbenMatematikai statisztikai elemzések 2.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 2. MSTE2 modul Helyzetmutatók, átlagok, kvantilisek. A szórás és szóródás egyéb mérőszámai.
RészletesebbenStatisztika I. 2. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 2. előadás Előadó: Dr. Ertsey Imre Statisztikai sorok Meghatározott szempontok szerint kiválasztott két vagy több logikailag összetartozó statisztikai adat, statisztikai sort képez. általában
RészletesebbenMatematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/ félév Arató Miklós
Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév Arató Miklós 1. elıadás: Bevezetés Irodalom, követelmények A félév célja Matematikai statisztika tárgya Történet
RészletesebbenMUNKAANYAG. Bernáth Julianna. Alapvető statisztikai módszerek a vállalkozás tevékenységét érintő javaslatok előkészítéséhez
Bernáth Julianna Alapvető statisztikai módszerek a vállalkozás tevékenységét érintő javaslatok előkészítéséhez A követelménymodul megnevezése: A beszerzés és az értékesítés előkészítése, megszervezése
RészletesebbenA sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos
Középérték Középérték A középérték a statisztikai adatok tömör számszerű jellemzése. helyzeti középérték: módusz medián számított középérték: számtani átlag kronológikus átlag harmonikus átlag mértani
RészletesebbenMérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
Részletesebben10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK
MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul
RészletesebbenA statisztika alapjai - Bevezetés az SPSS-be -
A statisztika alapjai - Bevezetés az SPSS-be - Petrovics Petra PhD Hallgató SPSS (Statistical Package for the Social Sciences ) 2 file: XY.sav - Data View XY.spv - Output Ez lehet hosszabb név is Rövid
RészletesebbenBiomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
RészletesebbenA sokaság/minta eloszlásának jellemzése
3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,
RészletesebbenStatisztika I. 7. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 7. előadás Előadó: Dr. Ertsey Imre STATISZTIKAI INDEXEK STATISZTIKAI INDEXEK Index: latin eredetű szó, egyszerűen mutatót jelent A statisztikai indexszám: - komplexebb tartalmú, - többet
RészletesebbenStatisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
RészletesebbenStatisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában
Statisztikai alapok Leíró statisztika Lineáris módszerek a statisztikában Tudományosan és statisztikailag tesztelhető állítások? A keserűcsokoládé finomabb, mint a tejcsoki. A patkány a legrondább állat,
Részletesebben[GVMGS11MNC] Gazdaságstatisztika
[GVMGS11MNC] Gazdaságstatisztika 5. előadás Érték-, ár-, és volumenindexek http://uni-obuda.hu/users/koczyl/gazdasagstatisztika.htm Kóczy Á. László KGK-VMI Az indexszám fogalma Gazdasági elemzésben fontos
RészletesebbenAz értékelés során következtetést fogalmazhatunk meg a
Az értékelés során következtetést fogalmazhatunk meg a a tanuló teljesítményére, a tanulási folyamatra, a célokra és követelményekre a szülők teljesítményére, a tanulási folyamatra, a célokra és követelményekre
RészletesebbenStatisztika I. 2. előadás: Statisztikai táblák elemzése. Kóczy Á. László. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem
Statisztika I 2 előadás: Statisztikai táblák elemzése Kóczy Á László koczylaszlo@kgkuni-obudahu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Eddig statisztikai alapfogalmak
RészletesebbenGAZDASÁGI STATISZTIKA
GAZDASÁGI STATISZTIKA Dr. Kun István GÁBOR DÉNES FŐISKOLA Tantárgy: Gazdasági statisztika Kódszám: 224 Lapszám: 1 TÉMAKÖRÖK A STATISZTIKA ALAPFOGALMAI STATISZTIKAI SOROK STATISZTIKAI TÁBLÁK ÖSSZETETT VISZONYSZÁMOK
RészletesebbenStatisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
RészletesebbenKvantitatív statisztikai módszerek
Kvantitatív statisztikai módszerek 1. konzultáció tárgyjegyző Dr. Szilágyi Roland Mérési skálák Számok meghatározott szabályok szerinti hozzárendelése jelenségekhez, bizonyos tulajdonságokhoz. 4 féle szabály
RészletesebbenÁltalános és gazdasági statisztika. Csugány Julianna
Általános és gazdasági statisztika Csugány Julianna MÉDIAINFORMATIKAI KIADVÁNYOK Általános és gazdasági statisztika Csugány Julianna Eger, 2015 Hungarian Online University Ágazati informatikai együttműködés
RészletesebbenStatisztika összefoglalás
Statisztika összefoglalás 1 / 18. oldal 1. Alapfogalmak Statisztika: a tömegesen előforduló jelenségek vizsgálatával foglalkozik, ezekre vonatkozóan adatokat gyűjt, feldolgoz, elemez és közzé tesz. o a
RészletesebbenStatisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
RészletesebbenMéréselmélet MI BSc 1
Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok
Részletesebbeny ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
RészletesebbenKÖVETELMÉNYEK 2018/ FÉLÉV. 1. hét Szervezési feladatok. Tematika, követelmények.
KÖVETELMÉNYEK 2018/19. 1. FÉLÉV A tantárgy kódja: BOV1114 A tantárgy neve: Matematikai nevelés és módszertana II. Kredit: 3 Kontakt óraszám: 2 óra/hét Féléves tematika: 1. hét Szervezési feladatok. Tematika,
RészletesebbenBevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.
RészletesebbenStatisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot
RészletesebbenTANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve ÉPÍTŐMÉRNÖKI INFORMATIKA 1.2 Azonosító (tantárgykód) BMEEOFTAT42 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus óraszám
RészletesebbenHipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
RészletesebbenMérés és modellezés Méréstechnika VM, GM, MM 1
Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni
RészletesebbenTANTÁRGY ADATLAP és tantárgykövetelmények Cím:
TANTÁRGY ADATLAP és tantárgykövetelmények Cím: ACÉLSZERKEZETEK Tárgykód: PMKSTNE050 Heti óraszám 1 : 2 ea, 2 / 1 gy, 0 lab Kreditpont: 4 / 4 / 3 / 2 Szak(ok)/ típus 2 : Építőmérnök BSc / Gépészmérnök BSc.,
RészletesebbenTANTÁRGYI ÚTMUTATÓ. Alkalmazott számítástechnika. tanulmányokhoz
2. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Alkalmazott számítástechnika tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) 1. félév A KURZUS ALAPADATAI Tárgy megnevezése: Alkalmazott Számítástechnika Tanszék:
RészletesebbenMatematika G1 és A1a-Analízis tárgyak (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar
Matematika G1 és A1a-Analízis tárgyak (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar Tárgykódok: BMETE93BG01, BMETE94BG01, BMETE90AX00 Kurzuskódok: G00, G01, G02, H0, H1, HV Követelmény: 4/2/0/V/6;
RészletesebbenVillamosenergetikai Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Energiagazdálkodás KVEEG11ONC Kreditérték: 6
Óbudai Egyetem Villamosenergetikai Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Energiagazdálkodás KVEEGONC Kreditérték: 6 nappali 6. félév Szakok melyeken a tárgyat oktatják: Villamosmérnöki
Részletesebben18. modul: STATISZTIKA
MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret
Részletesebben3/29/12. Biomatematika 2. előadás. Biostatisztika = Biometria = Orvosi statisztika. Néhány egyszerű definíció:
Biostatisztika = Biometria = Orvosi statisztika Biomatematika 2. előadás Néhány egyszerű definíció: A statisztika olyan tudomány, amely a tömegjelenségekkel kapcsolatos tapasztalati törvényeket megfigyelések
RészletesebbenBiomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
RészletesebbenNappali tagozat. Statisztika és Valószínűségszámítási alapok Tantárgyi útmutató
Módszetani Intézet Alkalmazott Kvantitatív Módszertan Tanszék Nappali tagozat Statisztika és Valószínűségszámítási alapok Tantárgyi útmutató 2018/19. tanév I. félév 1 Tantárgy megnevezése: Statisztika
Részletesebben11. modul: LINEÁRIS FÜGGVÉNYEK
MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
RészletesebbenSTATISZTIKA I. 3. rész. T.Nagy Judit
STATSZTKA. 3. rész T.Nagy Judit tnagy.judit@hjf.hu Standardizálás és standardizáláson alauló indexszámítás nhomogén (heterogén) sokaságokra vonatkozó átlagok; intenzitási viszonyszámok (átlagbérek, átlagos
RészletesebbenElemi statisztika fizikusoknak
1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Tudnivalók 2. oldal Év utolsó órája: ZH, jegy 50% projekt feladat: 5 perc(10fólia) iskolás fokú előadás egymásnak
RészletesebbenSTATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
RészletesebbenVizsgáljuk elôször, hogy egy embernek mekkora esélye van, hogy a saját
376 Statisztika, valószínûség-számítás 1500. Az elsô kérdésre egyszerû válaszolni, elég egy ellenpélda, és biztosan nem lehet akkor így kiszámolni. Pl. legyen a három szám a 3; 5;. A két kisebb szám átlaga
RészletesebbenJátékelmélet és stratégiai gondolkodás
Nyomtatás Játékelmélet és stratégiai gondolkodás Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Szociológia és Kommunikáció Tanszék TANTÁRGYI ADATLAP 0 I. Tantárgyleírás
RészletesebbenMatematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
Részletesebben1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő
Figyelem! A példasor nem tartalmazza valamennyi típuspéldát. A dolgozatban az órán leadott feladatok közül bármely típusú előfordulhat. A példasor már a második dolgozat anyagát gyakorló feladatokat is
RészletesebbenGazdasági matematika
Gazdasági matematika Tantárgyi útmutató Pénzügy és számvitel, Gazdálkodási és menedzsment, Emberi erőforrások alapképzési szakok nappali tagozat új tanrendűek számára 2017/18 tanév II. félév 1 Tantárgy
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
RészletesebbenMatematika A1a-Analízis (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar
Matematika A1a-Analízis (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar Kód: BMETE90AX00; Követelmény: 4/2/0/V/6; Félév: 2016/17/2; Nyelv: magyar; Előadó: Dr. Fülöp Ottilia Gyakorlatvezető: Dr. Fülöp
RészletesebbenMatematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése
Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık
RészletesebbenStratégiai és Üzleti Tervezés
Számvitel Intézeti Tanszék /fax: 06-1-383-8480 Cím: Budapest 72. Pf.: 35. 1426 TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT Stratégiai és Üzleti Tervezés c. tárgy tanulmányozásához 2013/2014.tanév I. félév 1 A tantárgy
RészletesebbenMérés és skálaképzés. Kovács István. BME Menedzsment és Vállalatgazdaságtan Tanszék
Mérés és skálaképzés Kovács István BME Menedzsment és Vállalatgazdaságtan Tanszék Miröl is lesz ma szó? Mi is az a mérés? A skálaképzés alapjai A skálaképzés technikái Összehasonlító skálák Nem összehasonlító
Részletesebben