[GVMGS11MNC] Gazdaságstatisztika

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "[GVMGS11MNC] Gazdaságstatisztika"

Átírás

1 [GVMGS11MNC] Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem

2 Oktatók Előadó Kóczy Á. László Fogadóóra: kedd 11:30 11:55, TA125 Gyakorlatvezető Bukucs Erzsébet Fogadóóra:

3 Jegyzet Általános Statisztika I II. Szerkesztette: Korpás Attiláné dr. Nemzeti Tankönyvkiadó, Budapest Általános Statisztika Példatár I-II. Molnár Máténé dr Tóth Mártonné dr. Nemzeti Tankönyvkiadó, Budapest A kurzus weboldala: Tematika Előadások fóliái Házifeladatok Régi vizsgafeladatok

4 A kurzusról A kurzus célja A statisztika eszköztárának megismertetése, a mutatók képzésének, számításának bemutatása, elemzési technikák elsajátítása. A gazdasági élet különböző területeinek jellemzésére, elemzésére legalkalmasabb módszerek, mutatószámok megismertetése. A tárgy kreditpontszáma: 4 Heti óraszám: 2 előadás + 2 gyakorlat

5 Követelmények illetve számonkérés Jelenlét kötelező az előadáson és a gyakorlaton is (TVSZ szerint) + gyakorlatra házi feladatot hozni 2 x 45 perces ZH elméleti és gyakorlati feladatokkal 1 a 7. héten 2 a 13. héten A ZH- értékelése: 0-50% elégtelen (1) 51-62% elégséges (2) 63-74% közepes (3) 75-86% jó (4) % jeles (5) pót ZH a 14. héten elégtelen félévközi jegy javítható a 15. héten

6 A statisztika és fajtái Statisztika A valóság tömör, számszerű jellemzésére szolgáló tudományos módszertan, illetve gyakorlati tevékenység. Statisztika, mint gyakorlati tevékenység A tömegesen előforduló jelenségek egyedeire vonatkozó információk gyűjtése, feldolgozása, elemzése, a vizsgált jelenség tömör számszerű jellemzése. Leíró statisztika Információk összegyűjtése, összegzése, rendszerezése Statisztikai következtetés Szűkebb csoport megfigyeléséből következtetés az egészre

7 Sokaság Statisztikai sokaság A megfigyelés tárgyát képező egyedek összessége, halmaza. Az egyedeket a sokaság egységeinek nevezzük. A sokaság lehet diszkrét vagy folytonos álló lakosság hitelállomány vagy mozgó látogatók jövedelem

8 A statisztikai ismérv Statisztikai ismérv A statisztikai sokaság egyedeit jellemző tulajdonság. Az ismérv lehetséges kimenetelei az ismérvváltozatok. alternatív Kétféle értéket vehet fel. Pl férfi/nő. közös A sokaság minden tagjára jellemző megkülönböztető a sokaság tagjait megkülönbözteti egymástól időbeli idő(szako)t jelző ismérv területi minőségi számszerűen nem mérhető tulajdonság mennyiségi számszerűen mérhető/megszámlálható tulajdonság ismérvértékek

9 A statisztikai mérés Mérés Számok meghatározott szabályok szerinti hozzárendelése jelenségekhez, illetve tulajdonságaikhoz. 4-féle mérési szint, ill. skála névleges (nominális) Számok kötetlen hozzárendelése. Rendszám, irsz. Csak címke! sorrendi (ordinális) Rangsor szerinti hozzárendelés. különbségi (intervallum-) Önkényes 0 pont. Különbség számolható. (pl: hőmérséklet) arányskála Valódi nullpont. Arány, stb számolható. (pl. hosszúság, jövedelem,..)

10 A statisztikai adat A statisztikai adat Valamely statisztikai sokaság elemeinek száma vagy a sokaság másféle jellemzője, mérési eredménye. alapadatok Adatok, melyekhez számolás, mérés révén jutunk leszármaztatott adatok számítás eredménye A statisztikai mutatószám Rendszeresen ismétlődő jelenség statisztikai jellemzője.

11 Adatgyűjtés Mottó: elfogadható pontosság gyorsaság gazdaságosság teljes körű valamennyi egyedre kiterjed részleges csak egy kiválasztott részre terjed ki Reprezentatív (mintavételes): mintasokaság az alapsokaságból mintavételi hibával Monográfia: kiemelt egyedek részletes statisztikai vizsgálata. Egyéb Kérdőíves adatfelvétel: egyéni kérdőív, vagy lajstrom (több megfigyelési egység egy számbavételi egységnél) önszámlálás, vagy kikérdezés

12 Hiba Hiba: adatfeldolgozás, adatközlés során, v. mintavételben Abszolút hiba a = A Â, ahol A = valóságos, Â = mért adat Abszolút hibakorlát (â). A Â ± â. Relatív hiba α = a A Relatív hibakorlát: ˆα = ââ.

13 Statisztikai csoportosítás A csoportosítás A sokaság felosztása egy megkülönböztető ismérv szerint. Átfedésmentes és teljes. Csoportosító sor Osztály Egységek száma C 1 f 1 C 2 f 2. C i. C k Összesen. f i. f k N A csoportosító sor lehet minőségi mennyiségi területi idősor kombinatív

14 Összehasonĺıtás A csoportosítás Két, vagy több statisztikai adat viszonyítása. Sorba rendezve: Összehasonĺıtó sor Különböző időpontok: idősor Területi alapon: összehasonĺıtó területi sor

15 Viszonyszámok Viszonyszám Két, logikai kapcsolatban álló statisztikai adat hányadosa. Azonos fajta adatokból számolva Megoszlási viszonyszám: részsokaságok aránya az egészhez Koordinációs viszonyszám: részsokaságok aránya egymáshoz Dinamikus viszonyszám: két idősza/időpont adatainak hányadosa Különböző fajta, mértékegységű adatokból számolva intenzitási viszonyszám (telefon/1000 lakás)

16 Átlagok Átlagok Azonos fajta adatok tömör jellemzésére használjuk. Átlagolandó értékek: X 1, X 2, X 3,..., X N. Számtani átlag: X = Súlyozott számtani átlag: X = N i=1 X i N k i=1 f i X i k i=1 f i Harmonikus átlag: X h = N N i=1 1 X i = k i=1 f i k f i i=1 X i Mértani átlag: Xg = N N i=1 X i = k i=1 f i k i=1 X f i Négyzetes átlag: X q = N k i=1 X i 2 i=1 N = f i Xi 2 k i=1 f i i

17 Átlagok tulajdonságai X h X g X X q X min X X max Az értékek és a számtani átlag különbségeinek összege 0. Az értékek eltolása eltolja a számtani átlagot (számolhatunk átlaghőmérsékletet Celsiusban!) Az értéke felszorzása felszorozza a számtani átlagot (.. F-ben is!) A számtani összeg minimalizálja a különbségek négyzetösszegét.

Bevezető Mi a statisztika? Mérés Csoportosítás

Bevezető Mi a statisztika? Mérés Csoportosítás Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető

Részletesebben

Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I.

Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I. Statisztika I. 1. előadás: A statisztika alapfogalmai Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem A kurzusról A kurzus célja

Részletesebben

Sta t ti t s i zt z i t k i a 3. előadás

Sta t ti t s i zt z i t k i a 3. előadás Statisztika 3. előadás Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan A statisztika, mint gyakorlati tevékenység a tömegesen előforduló jelenségek egyedeire vonatkozó információk

Részletesebben

Sta t ti t s i zt z i t k i a 1. előadás

Sta t ti t s i zt z i t k i a 1. előadás Statisztika 1 előadás Témakörök Statisztikai alapfogalmak Statisztikai sorok Mennyiségi sorok csoportosítása Statisztikai táblák Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

STATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása

STATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása A változók mérési szintjei STATISZTIKA I. 3. Előadás Az adatok mérési szintjei, Viszonyszámok A változók az alábbi típusba tartozhatnak: Nominális (kategorikus és diszkrét) Ordinális Intervallum skála

Részletesebben

2. előadás. Viszonyszámok típusai

2. előadás. Viszonyszámok típusai 2. előadás Viszonyszámok típusai Mérési skálák Nominális /névleges skála: kötetlen hozzárendelése a számoknak Sorrendi / Ordinális skála: sokaság egyedeinek egy közös tulajdonság szerinti sorbarendezése

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

Statisztika. Dr Gősi Zsuzsanna. Egyetemi adjunktus. Sportmenedzsment Tanszék

Statisztika. Dr Gősi Zsuzsanna. Egyetemi adjunktus. Sportmenedzsment Tanszék Statisztika Dr Gősi Zsuzsanna Egyetemi adjunktus Sportmenedzsment Tanszék Kötelező irodalom - Számonkérés Pintér József Ács Pongrác Bevezetés a sportstatisztikába Dialóg Campus Kiadó 2007 Honlap: www.dialog-kiado.hu

Részletesebben

Áruforgalom tervezése. 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok

Áruforgalom tervezése. 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok Áruforgalom tervezése 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok Alapvető gazdasági számítások 1. Egy vállalkozás tevékenysége nagyon összetett. Szükség van arra, hogy ismerjük

Részletesebben

Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I.

Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I. Statisztika I. 1. előadás: A statisztika alapfogalmai Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem A kurzusról A kurzus célja

Részletesebben

Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja

Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja Megoldások 1. feladat A sokaság: 2007. szeptember 12-én a Miskolci Egyetem GT-204-es tankör statisztika óráján lévő tagjai az A 1 épület III. em. 53-as teremben 8-10-ig. Közös ismérv Megkülönböztető ismérv

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Sándorné dr. Kriszt Éva dr. Csesznák Anita. Statisztika I. Szerkesztette Sándorné dr. Kriszt Éva. Nemzedékek Tudása Tankönyvkiadó, Budapest

Sándorné dr. Kriszt Éva dr. Csesznák Anita. Statisztika I. Szerkesztette Sándorné dr. Kriszt Éva. Nemzedékek Tudása Tankönyvkiadó, Budapest Sándorné dr. Kriszt Éva dr. Csesznák Anita Ország Gáborné Statisztika I. Szerkesztette Sándorné dr. Kriszt Éva Nemzedékek Tudása Tankönyvkiadó, Budapest TARTALOMJEGYZÉK Előszó... 9 1. A statisztika alapfogalmai...11

Részletesebben

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x

Részletesebben

Statisztika I. 1. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 1. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre A STATISZTIKA FOGALMA 1. Gyakorlati számbavételi tevékenység tömegjelenségek számbavétele, elemzése összefüggések feltárása következtetések levonása Célja:

Részletesebben

Általános statisztika I. Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth, Mártonné Korpás, Attiláné Csernyák, László

Általános statisztika I. Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth, Mártonné Korpás, Attiláné Csernyák, László Általános statisztika I Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth, Mártonné Korpás, Attiláné Csernyák, László Általános statisztika I Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth,

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak i alapfogalmak statisztikai sokaság: a megfigyelés tárgyát képező egyedek összessége 2 csoportja van: álló sokaság: mindig vmiféle állapotot, állományt fejez ki, adatai egy adott időpontban értelmezhetők

Részletesebben

Viszonyszám A B. Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a. viszonyítadóadat

Viszonyszám A B. Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a. viszonyítadóadat Viszonyszámok Viszonyszám Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a viszonyítandó adat Viszonyítás tárgya (viszonyítandó adat) B: a viszonyítás alapja V viszonyítadóadat

Részletesebben

Általános statisztika I Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth, Mártonné Korpás, Attiláné Csernyák, László

Általános statisztika I Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth, Mártonné Korpás, Attiláné Csernyák, László Általános statisztika I Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth, Mártonné Korpás, Attiláné Csernyák, László Általános statisztika I Havasy, György Molnár, Máténé Szunyogh, Zsuzsanna Tóth,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás. Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett

Részletesebben

6. A kereskedelmi készletek elszámoltatása, az értékesítés elszámoltatása 46. Összefoglaló feladatok 48.

6. A kereskedelmi készletek elszámoltatása, az értékesítés elszámoltatása 46. Összefoglaló feladatok 48. Tartalomjegyzék 1. Alapvető gazdasági számítások 4. 1.1. A gazdasági számítások jelentősége egy vállalkozás életében 4. 1.2. A gazdasági számításokkal szemben támasztott követelmények 4. 1.3. Milyen feladatokat

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakirány Arató Miklós Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar 2019. február 11. Arató Miklós (ELTE) Matematikai

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Statisztika 1. Tantárgyi útmutató

Statisztika 1. Tantárgyi útmutató Módszertani Intézeti Tanszék Nappali tagozat Statisztika 1. Tantárgyi útmutató 2015/16 tanév II. félév 1/6 Tantárgy megnevezése: Statisztika 1. Tantárgy kódja: STAT1KAMEMM Tanterv szerinti óraszám: 2+2

Részletesebben

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú

Részletesebben

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

Mi az adat? Az adat elemi ismeret. Az adatokból információkat Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás

Részletesebben

9.3. Külkereskedelmi statisztika...77 9.4. Pénzügystatisztika, az államháztartás információs rendszere...77 9.5. Agrárstatisztikai információs

9.3. Külkereskedelmi statisztika...77 9.4. Pénzügystatisztika, az államháztartás információs rendszere...77 9.5. Agrárstatisztikai információs Kovács Péter Statisztikai alapismeretek Tartalomjegyzék BEVEZETÉS...4. A STATISZTIKA ALAPFOGALMAI...5.. A statisztika tárgy, tudományági besorolása...5.. Alapfogalmak...6.3. A statisztikai munka fázisai...8.4.

Részletesebben

1. Előadás. Statisztikai alapfogalmak. A statisztikai munka fázisai. Statisztikai adatok csoportosításának lehetőségei. Statisztikai sorok, táblák.

1. Előadás. Statisztikai alapfogalmak. A statisztikai munka fázisai. Statisztikai adatok csoportosításának lehetőségei. Statisztikai sorok, táblák. 1. Előadás Statisztikai alapfogalmak. A statisztikai munka fázisai. Statisztikai adatok csoportosításának lehetőségei. Statisztikai sorok, táblák. A statisztika fogalma gyakorlati tevékenység, amelynek

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Statisztika 1.

TANTÁRGYI ÚTMUTATÓ. Statisztika 1. I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Statisztika 1. TÁVOKTATÁS Tanév 2014/2015 II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Statisztika 1. Tanszék: Módszertani Tantárgyfelelős neve: Sándorné Dr. Kriszt

Részletesebben

Statisztikai. Statisztika Üzleti szakügyintéző felsőfokú szakképzés I. évfolyam VS 210-4 (NFG ÜS302G4) 2010-2011-es tanév I. félév

Statisztikai. Statisztika Üzleti szakügyintéző felsőfokú szakképzés I. évfolyam VS 210-4 (NFG ÜS302G4) 2010-2011-es tanév I. félév Statisztika Üzleti szakügyintéző felsőfokú szakképzés I évfolyam VS 210-4 (NFG ÜS302G4) 2010-2011-es tanév I félév Statisztikai alapfogalmak Oktató: Dr Csáfor Hajnalka főiskolai docens Vállalkozás-gazdaságtan

Részletesebben

2013 ŐSZ. 1. Ismertesse a mérési skálák tulajdonságait és a közöttük lévő összefüggéseket.

2013 ŐSZ. 1. Ismertesse a mérési skálák tulajdonságait és a közöttük lévő összefüggéseket. GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK AZ 1. ZH-HOZ 2013 ŐSZ (Jelen kérdések az első zh összes elméleti témakörét összegzik, melyeket egymásra épülő sorrendben, illetve tematika szerinti bontásban

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze. Célja: - a sokaságot

Részletesebben

Bevezetés az SPSS program használatába

Bevezetés az SPSS program használatába Bevezetés az SPSS program használatába Statisztikai szoftver alkalmazás Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable View Output Viewer Sintax

Részletesebben

Korrelációs kapcsolatok elemzése

Korrelációs kapcsolatok elemzése Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az

Részletesebben

Tudnivalók a tantárgyról. Leíró és matematikai statisztika. Tudnivalók a tantárgyról/2. A tananyagról. Honlap: zempleni.elte.hu

Tudnivalók a tantárgyról. Leíró és matematikai statisztika. Tudnivalók a tantárgyról/2. A tananyagról. Honlap: zempleni.elte.hu Leíró és matematikai statisztika Matematika alapszak, matematikai elemző szakirány Zempléni András Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás

Részletesebben

1. óra: Területi statisztikai alapok viszonyszámok, középértékek

1. óra: Területi statisztikai alapok viszonyszámok, középértékek 1. óra: Területi statisztikai alapok viszonyszámok, középértékek Tér és társadalom (TGME0405-GY) gyakorlat 2018-2019. tanév Viszonyszámok Viszonyszá m Viszonyítandó adat (A) Viszonyítási alap (B) 1. Megoszlási

Részletesebben

A statisztika alapjai - Bevezetés az SPSS-be -

A statisztika alapjai - Bevezetés az SPSS-be - A statisztika alapjai - Bevezetés az SPSS-be - Kvantitatív statisztikai módszerek Petrovics Petra, Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable

Részletesebben

Függetlenségvizsgálat, Illeszkedésvizsgálat

Függetlenségvizsgálat, Illeszkedésvizsgálat Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata

Részletesebben

Matematikai statisztikai elemzések 2.

Matematikai statisztikai elemzések 2. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 2. MSTE2 modul Helyzetmutatók, átlagok, kvantilisek. A szórás és szóródás egyéb mérőszámai.

Részletesebben

Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 2. előadás Előadó: Dr. Ertsey Imre Statisztikai sorok Meghatározott szempontok szerint kiválasztott két vagy több logikailag összetartozó statisztikai adat, statisztikai sort képez. általában

Részletesebben

Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/ félév Arató Miklós

Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/ félév Arató Miklós Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév Arató Miklós 1. elıadás: Bevezetés Irodalom, követelmények A félév célja Matematikai statisztika tárgya Történet

Részletesebben

MUNKAANYAG. Bernáth Julianna. Alapvető statisztikai módszerek a vállalkozás tevékenységét érintő javaslatok előkészítéséhez

MUNKAANYAG. Bernáth Julianna. Alapvető statisztikai módszerek a vállalkozás tevékenységét érintő javaslatok előkészítéséhez Bernáth Julianna Alapvető statisztikai módszerek a vállalkozás tevékenységét érintő javaslatok előkészítéséhez A követelménymodul megnevezése: A beszerzés és az értékesítés előkészítése, megszervezése

Részletesebben

A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos

A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos Középérték Középérték A középérték a statisztikai adatok tömör számszerű jellemzése. helyzeti középérték: módusz medián számított középérték: számtani átlag kronológikus átlag harmonikus átlag mértani

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul

Részletesebben

A statisztika alapjai - Bevezetés az SPSS-be -

A statisztika alapjai - Bevezetés az SPSS-be - A statisztika alapjai - Bevezetés az SPSS-be - Petrovics Petra PhD Hallgató SPSS (Statistical Package for the Social Sciences ) 2 file: XY.sav - Data View XY.spv - Output Ez lehet hosszabb név is Rövid

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

A sokaság/minta eloszlásának jellemzése

A sokaság/minta eloszlásának jellemzése 3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,

Részletesebben

Statisztika I. 7. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 7. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 7. előadás Előadó: Dr. Ertsey Imre STATISZTIKAI INDEXEK STATISZTIKAI INDEXEK Index: latin eredetű szó, egyszerűen mutatót jelent A statisztikai indexszám: - komplexebb tartalmú, - többet

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában

Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában Statisztikai alapok Leíró statisztika Lineáris módszerek a statisztikában Tudományosan és statisztikailag tesztelhető állítások? A keserűcsokoládé finomabb, mint a tejcsoki. A patkány a legrondább állat,

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 5. előadás Érték-, ár-, és volumenindexek http://uni-obuda.hu/users/koczyl/gazdasagstatisztika.htm Kóczy Á. László KGK-VMI Az indexszám fogalma Gazdasági elemzésben fontos

Részletesebben

Az értékelés során következtetést fogalmazhatunk meg a

Az értékelés során következtetést fogalmazhatunk meg a Az értékelés során következtetést fogalmazhatunk meg a a tanuló teljesítményére, a tanulási folyamatra, a célokra és követelményekre a szülők teljesítményére, a tanulási folyamatra, a célokra és követelményekre

Részletesebben

Statisztika I. 2. előadás: Statisztikai táblák elemzése. Kóczy Á. László. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem

Statisztika I. 2. előadás: Statisztikai táblák elemzése. Kóczy Á. László. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Statisztika I 2 előadás: Statisztikai táblák elemzése Kóczy Á László koczylaszlo@kgkuni-obudahu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Eddig statisztikai alapfogalmak

Részletesebben

GAZDASÁGI STATISZTIKA

GAZDASÁGI STATISZTIKA GAZDASÁGI STATISZTIKA Dr. Kun István GÁBOR DÉNES FŐISKOLA Tantárgy: Gazdasági statisztika Kódszám: 224 Lapszám: 1 TÉMAKÖRÖK A STATISZTIKA ALAPFOGALMAI STATISZTIKAI SOROK STATISZTIKAI TÁBLÁK ÖSSZETETT VISZONYSZÁMOK

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Kvantitatív statisztikai módszerek

Kvantitatív statisztikai módszerek Kvantitatív statisztikai módszerek 1. konzultáció tárgyjegyző Dr. Szilágyi Roland Mérési skálák Számok meghatározott szabályok szerinti hozzárendelése jelenségekhez, bizonyos tulajdonságokhoz. 4 féle szabály

Részletesebben

Általános és gazdasági statisztika. Csugány Julianna

Általános és gazdasági statisztika. Csugány Julianna Általános és gazdasági statisztika Csugány Julianna MÉDIAINFORMATIKAI KIADVÁNYOK Általános és gazdasági statisztika Csugány Julianna Eger, 2015 Hungarian Online University Ágazati informatikai együttműködés

Részletesebben

Statisztika összefoglalás

Statisztika összefoglalás Statisztika összefoglalás 1 / 18. oldal 1. Alapfogalmak Statisztika: a tömegesen előforduló jelenségek vizsgálatával foglalkozik, ezekre vonatkozóan adatokat gyűjt, feldolgoz, elemez és közzé tesz. o a

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Méréselmélet MI BSc 1

Méréselmélet MI BSc 1 Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

KÖVETELMÉNYEK 2018/ FÉLÉV. 1. hét Szervezési feladatok. Tematika, követelmények.

KÖVETELMÉNYEK 2018/ FÉLÉV. 1. hét Szervezési feladatok. Tematika, követelmények. KÖVETELMÉNYEK 2018/19. 1. FÉLÉV A tantárgy kódja: BOV1114 A tantárgy neve: Matematikai nevelés és módszertana II. Kredit: 3 Kontakt óraszám: 2 óra/hét Féléves tematika: 1. hét Szervezési feladatok. Tematika,

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben

Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot

Részletesebben

TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS

TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve ÉPÍTŐMÉRNÖKI INFORMATIKA 1.2 Azonosító (tantárgykód) BMEEOFTAT42 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus óraszám

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

Mérés és modellezés Méréstechnika VM, GM, MM 1

Mérés és modellezés Méréstechnika VM, GM, MM 1 Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni

Részletesebben

TANTÁRGY ADATLAP és tantárgykövetelmények Cím:

TANTÁRGY ADATLAP és tantárgykövetelmények Cím: TANTÁRGY ADATLAP és tantárgykövetelmények Cím: ACÉLSZERKEZETEK Tárgykód: PMKSTNE050 Heti óraszám 1 : 2 ea, 2 / 1 gy, 0 lab Kreditpont: 4 / 4 / 3 / 2 Szak(ok)/ típus 2 : Építőmérnök BSc / Gépészmérnök BSc.,

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Alkalmazott számítástechnika. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Alkalmazott számítástechnika. tanulmányokhoz 2. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Alkalmazott számítástechnika tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) 1. félév A KURZUS ALAPADATAI Tárgy megnevezése: Alkalmazott Számítástechnika Tanszék:

Részletesebben

Matematika G1 és A1a-Analízis tárgyak (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar

Matematika G1 és A1a-Analízis tárgyak (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar Matematika G1 és A1a-Analízis tárgyak (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar Tárgykódok: BMETE93BG01, BMETE94BG01, BMETE90AX00 Kurzuskódok: G00, G01, G02, H0, H1, HV Követelmény: 4/2/0/V/6;

Részletesebben

Villamosenergetikai Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Energiagazdálkodás KVEEG11ONC Kreditérték: 6

Villamosenergetikai Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Energiagazdálkodás KVEEG11ONC Kreditérték: 6 Óbudai Egyetem Villamosenergetikai Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Energiagazdálkodás KVEEGONC Kreditérték: 6 nappali 6. félév Szakok melyeken a tárgyat oktatják: Villamosmérnöki

Részletesebben

18. modul: STATISZTIKA

18. modul: STATISZTIKA MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret

Részletesebben

3/29/12. Biomatematika 2. előadás. Biostatisztika = Biometria = Orvosi statisztika. Néhány egyszerű definíció:

3/29/12. Biomatematika 2. előadás. Biostatisztika = Biometria = Orvosi statisztika. Néhány egyszerű definíció: Biostatisztika = Biometria = Orvosi statisztika Biomatematika 2. előadás Néhány egyszerű definíció: A statisztika olyan tudomány, amely a tömegjelenségekkel kapcsolatos tapasztalati törvényeket megfigyelések

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

Nappali tagozat. Statisztika és Valószínűségszámítási alapok Tantárgyi útmutató

Nappali tagozat. Statisztika és Valószínűségszámítási alapok Tantárgyi útmutató Módszetani Intézet Alkalmazott Kvantitatív Módszertan Tanszék Nappali tagozat Statisztika és Valószínűségszámítási alapok Tantárgyi útmutató 2018/19. tanév I. félév 1 Tantárgy megnevezése: Statisztika

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

STATISZTIKA I. 3. rész. T.Nagy Judit

STATISZTIKA I. 3. rész. T.Nagy Judit STATSZTKA. 3. rész T.Nagy Judit tnagy.judit@hjf.hu Standardizálás és standardizáláson alauló indexszámítás nhomogén (heterogén) sokaságokra vonatkozó átlagok; intenzitási viszonyszámok (átlagbérek, átlagos

Részletesebben

Elemi statisztika fizikusoknak

Elemi statisztika fizikusoknak 1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Tudnivalók 2. oldal Év utolsó órája: ZH, jegy 50% projekt feladat: 5 perc(10fólia) iskolás fokú előadás egymásnak

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Vizsgáljuk elôször, hogy egy embernek mekkora esélye van, hogy a saját

Vizsgáljuk elôször, hogy egy embernek mekkora esélye van, hogy a saját 376 Statisztika, valószínûség-számítás 1500. Az elsô kérdésre egyszerû válaszolni, elég egy ellenpélda, és biztosan nem lehet akkor így kiszámolni. Pl. legyen a három szám a 3; 5;. A két kisebb szám átlaga

Részletesebben

Játékelmélet és stratégiai gondolkodás

Játékelmélet és stratégiai gondolkodás Nyomtatás Játékelmélet és stratégiai gondolkodás Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Szociológia és Kommunikáció Tanszék TANTÁRGYI ADATLAP 0 I. Tantárgyleírás

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő

1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő Figyelem! A példasor nem tartalmazza valamennyi típuspéldát. A dolgozatban az órán leadott feladatok közül bármely típusú előfordulhat. A példasor már a második dolgozat anyagát gyakorló feladatokat is

Részletesebben

Gazdasági matematika

Gazdasági matematika Gazdasági matematika Tantárgyi útmutató Pénzügy és számvitel, Gazdálkodási és menedzsment, Emberi erőforrások alapképzési szakok nappali tagozat új tanrendűek számára 2017/18 tanév II. félév 1 Tantárgy

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Matematika A1a-Analízis (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar

Matematika A1a-Analízis (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar Matematika A1a-Analízis (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar Kód: BMETE90AX00; Követelmény: 4/2/0/V/6; Félév: 2016/17/2; Nyelv: magyar; Előadó: Dr. Fülöp Ottilia Gyakorlatvezető: Dr. Fülöp

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

Stratégiai és Üzleti Tervezés

Stratégiai és Üzleti Tervezés Számvitel Intézeti Tanszék /fax: 06-1-383-8480 Cím: Budapest 72. Pf.: 35. 1426 TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT Stratégiai és Üzleti Tervezés c. tárgy tanulmányozásához 2013/2014.tanév I. félév 1 A tantárgy

Részletesebben

Mérés és skálaképzés. Kovács István. BME Menedzsment és Vállalatgazdaságtan Tanszék

Mérés és skálaképzés. Kovács István. BME Menedzsment és Vállalatgazdaságtan Tanszék Mérés és skálaképzés Kovács István BME Menedzsment és Vállalatgazdaságtan Tanszék Miröl is lesz ma szó? Mi is az a mérés? A skálaképzés alapjai A skálaképzés technikái Összehasonlító skálák Nem összehasonlító

Részletesebben