Kvantitatív statisztikai módszerek
|
|
- Rebeka Barta
- 7 évvel ezelőtt
- Látták:
Átírás
1 Kvantitatív statisztikai módszerek 1. konzultáció tárgyjegyző Dr. Szilágyi Roland
2 Mérési skálák Számok meghatározott szabályok szerinti hozzárendelése jelenségekhez, bizonyos tulajdonságokhoz. 4 féle szabály alapján (erősségi fokozat szerint): - nominális skála - sorrendi skála - intervallum skála (különbség skála) - arány skála
3 1. Nominális skála (névleges) Számok kötetlen hozzárendelése Területi, minőségi ismérvek megfigyelésekor A szám csak azonosító Pl. rendszám, irányítószám Pl: kódolás: Szőke: 1, barna:, vörös: 3, fekete: 4 Férfi: 1, nő:
4 . Ordinális, sorrendi skála A sokaság egyedeinek egy közös tulajdonság alapján való sorba rendezése. A skálán az egyes egyedek nem feltétlen egyforma távolságra helyezkednek el egymástól. Pl. hallgatók osztályzata, országok hitelképességének sorrendje
5 3. Intervallum skála A két adat különbsége értelmezett, valós adat. Zérus pontja önkényes. A zérus pont nem jelenti azt, hogy az adott egyed nem rendelkezik az adott tulajdonsággal. De: nem értelmezhető a két adat összege, aránya, különbsége. Pl. Celsius fok
6 4. Arány skála A legerősebb mérési skála Zérus pontja természetesen adódik Bármely két érték aránya független a mértékegységtől Értelmezhető a két adat összege, aránya is Pl. hosszúság, pontszám
7 Összefüggés vizsgálat
8 Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az Y szerinti hovatartozásról. Sztochasztikus: Az egyik ismérv hatással van a másikra, de nem határozza meg egyértelműen annak értékeit/változatait. Függvényszerű (determinisztikus): A vizsgált egységek X szerinti hovatartozásának ismeretében egyértelműen megmondható azok Y szerinti hovatartozása is.
9 Sztochasztikus kapcsolatok fajtái Asszociáció (mindkét ismérv minőségi/területi ismérv, nominális skálán mérve). Vegyes (egyik ismérv mennyiségi, másik területi/minőségi, intervallum/arány és nominális skálán mérve. Korreláció (mindkét ismérv mennyiségi, intervallum/arány skálán mérve). Rangkorreláció (mindkét változó sorrendi skálán mérhető).
10 Az összefüggés vizsgálat eszközei Két nominális változó közötti kapcsolatot az asszociációs mérőszámokkal jellemezzük. Ordinális típusú változók összefüggését a rangkorrelációs mutatók mérik. Arány skála típusú változók összefüggését korreláció- és regresszió-analízissel elemezzük. Intervallum/arány és nominális skálán mért változók közötti összefüggést H;
11 A kapcsolatszorossági mutatókkal szemben támasztott követelmények Egyértelmű definíció Zárt intervallumban mozogjon Célszerű, ha: 0 < mutató < 1 0: teljes függetlenség 1: függvényszerű (determinisztikus) a kapcs. Monotonitás
12 Cramer asszociációs együttható B P A P B A P n f f f f f f χ 1 t 1 s n χ T j i * i r 1 i * i * i i A függetlenség feltételezésével számított gyakoriságokból indul ki. Csuprov mutató
13 T max 4 s 1 s t t 1 Cramer mutató C T T max n χ s 1
14 Egy vállalat dolgozóinak szakképzettség szerinti csoportosítása Szakképzettség Férfiak (fő) Nők (fő) Összesen (fő) Clerical Custodial Manager Összesen
15 Output Symmetric Measures Nominal by Nominal N of Valid Cases Phi Cramer's V a. Not assuming the null hy pothesis. b. Value Approx. Sig.,409,000,409, Using t he asy mptotic standard error assuming the null hy pothesis. 0 C 0,3 gyenge kapcsolat 0,3 C 0,7 közepesen erős kapcsolat 0,7 C 1 erős kapcsolat Közepesen erős a kapcsolat a nem és a munka típusa között.
16 Output A nők 4,6%-a menedzser. A dolgozók 33,1%-a férfi hivatalnok. Minden custodial férfi. Elemszám (itt: dolgozói létszám)
17 Vegyes kapcsolatok szorosságának elemzése Szóráshányados: a kapcsolat szorosságának mérőszáma S k σk Szórásnégyzet-hányados: A mennyiségi ismérv szóródását mennyiben befolyásolja a csoportosító ismérv szerinti hovatartozás. H=H =0 függetlenség H=H =1 függvényszerű (determinisztikus) kapcsolat H H S Sk S σ σ σ k
18 H SS SS K σ σ K Szóráshányados: a kapcsolat szorosságát 0-1 közötti értékkel méri Vegyes kapcsolat vagy Ahol: H = H = 0 - függetlenség (nincs kapcsolat) H = H = 1 - függvényszerű kapcsolat 0 H 1 - sztochasztikus kapcsolat 0 H 0,3 gyenge kapcsolat 0,3 H 0,7 közepesen erős kapcsolat 0,7 H 1 erős kapcsolat 0 H 1 H SS SS K σ σ K Megmutatja, hogy a csoportosító (minőségi/területi) ismérv milyen hányadban, hány százalékban magyarázza a vizsgált mennyiségi ismérv szóródását.
19 Output Current Salary Gender Female Male Total Report Mean N Std. Dev iation $6, $7, $41, $19, $34, $17, Ez a táblázat a függő változó (current salary) középértékeit & szóródási mutatóit mutatja a független változó (nem) szerint csoportosítva. ANOVA Table Current Salary * Gender Between Groups Within Groups Total (S) (S B ) (Combined) (S K ) Sum of Squares df Mean Square F Sig.,8E+010 1,79E ,798,000 1,1E ,5 1,4E Measures of Association Current Salary * Gender Közepesen erős a kapcsolat a nem és a jelenlegi fizetés között. H Eta Eta Squared,450,0 H S S K %; hány százalékban magyarázza a független változó (nem) a függő változó (fizetés) szóródását
20 Korrelációs kapcsolat elemzése Van-e összefüggés az ismérvek között? Milyen irányú az összefüggés? Mennyire szoros a kapcsolat? Az egyik ismérv változása milyen hatással van a másik ismérv változására?
21 Alapfogalmak I. A mennyiségi ismérvek közötti kapcsolatot korrelációnak nevezzük. A korrelációszámítás: a mennyiségi ismérvek közötti kapcsolat szorosságának mérése. A regressziószámítás: a mennyiségi ismérvek egymásra gyakorolt hatásának számszerűsítésével, e hatások irányának és mértékének megállapításával foglalkozik.
22 Alapfogalmak II. Ha a korreláció mögött egyirányú okozati összefüggés állapítható meg: az ok szerepét betöltő ismérvet tényezőváltozónak, magyarázó-, független változónak (X), az okozat szerepét játszó ismérvet pedig eredményváltozónak, függő változónak (Y) nevezzük.
23 A korreláció fontosabb típusai
24 Korreláció hiánya A regresszió-függvény bármely X helyen azonos (közel azonos) értéket vesz fel. A függvény képe vízszintes vonal. ( Y független X-től, X nem befolyásolja Y értékét.)
25 A korreláció hiánya Y = E X 3 R - S q = 3. 4 % N i n c s k o r r e lá c i ó
26 Függvényszerű kapcsolat A korreláció hiányának logikai ellentéte a függvényszerű kapcsolat. Egy adott X értékhez csupán egyetlen Y érték tartozhat. Ilyenkor a pontdiagram pontjai a regresszió-vonalhoz illeszkednek, azaz a regresszióvonal körül nincs szóródás.
27 Pozitív korreláció Általában a regressziógörbe körül van szóródás. A regressziógörbe alakja a korreláció tartalmát fejezi ki. Ha nagyobb X értékekhez általában nagyobb Y értékek tartoznak, vagyis a tényezőváltozó növelése az eredményváltozó nagyságát növeli.
28 Pozitív korreláció Y = E X 3 R -S q = 6. 5 % P o z i t ív k o r r e l á c i ó
29 Negatív korreláció Az előbbi kapcsolat ellentéte természetesen a negatív korreláció, amelyet a regressziófüggvény ugyancsak szemléletesen jelez.
30 Negatív korreláció Y = E X 3 R - S q = % N e g a t ív k o r r e lá c i ó
31 Görbevonalú kapcsolat A lineáristól eltérő típust görbe vonalú (nemlineáris) kapcsolatnak nevezzük. A nemlineáris kapcsolatok egy részénél továbbra is van értelme pozitív, vagy negatív irányzatról beszélni, feltéve, hogy a görbe monoton növekvő, illetve csökkenő irányzatot mutat az értelmezési tartományon belül. Nem lehet azonban pozitív vagy negatív irányról beszélni, ha a regresszió irányt változtat.
32 Görbevonalú kapcsolat Y = X X * * 4 0 R - S q = % N e m l i n e á r i s k o r r e lá c i ó
33 A kapcsolat szorosságának mérőszámai
34 A kovariancia Az X és Y mennyiségi változók közötti kapcsolat irányát mutatja meg. A megfelelő átlagtól vett ( x - x) és ( y - y) eltéréseken alapszik. C = d x d n -1 y = xy n -1 - x y C r s x s y
35 Kovariancia tulajdonságai A kovariancia nulla, ha a pozitív és a negatív előjelű eltérésszorzatok összege kiegyenlíti egymást. Kovariancia előjele a kapcsolat irányát mutatja. A kovariancia abszolút mértékének nincs határozott felső korlátja. A kovariancia a két változóban szimmetrikus, X és Y szerepe a formulában felcserélhető.
36 Dolgozó Egy vállalat dolgozóinak keresete és havi megtakarítása Bér (Ft/fő) Havi megtakarítás (Ft/hó) d x d y d x d y d x d y Összesen
37 Kovariancia C = d x d n -1 y = xy n -1 - x y ,8 Értelmezés: a dolgozók keresete és a havi megtakarított összege közötti kapcsolat pozitív irányú.
38 A korrelációs együttható A korrelációs együttható a lineáris korreláció szorosságának legfontosabb mérőszáma. A kapcsolat hiányát (korrelálatlanság) az r = 0 érték jelzi. Az r előjele a korreláció irányát mutatja. Tökéletes (függvényszerű) lineáris kapcsolatnak - az iránytól függően - az r = +1, illetve r = -1 értékek felelnek meg. A szélsőséges helyzetek között az együttható abszolút értéke a kapcsolat szorosságáról tájékoztat.
39 Lineáris korrelációs együttható (Pearson) d d = xy - n x y x y d = x n x x d = y n y y ) )( ( y x y x y x y n y x n x y x xy- n d d d d C = r s s
40 Lineáris korrelációs együttható Dolgozó Bér (Ft/fő) Havi megtakarítás (Ft/hó) d x d y d x d y d x d y Összesen r = s x C dxd y s y dx d y ,954 Értelmezés: a dolgozók keresete és a havi megtakarított összege közötti kapcsolat pozitív irányú és erős.
41 Determinációs együttható A determinációs együttható megmutatja, hogy a magyarázóváltozó hány %-ban befolyásolja az eredményváltozó szóródását. Jele: r A determinációs együttható jellemzi: A regressziós függvény illeszkedését, A modell magyarázó erejét.
42 Determinációs együttható r 0,954 0, ,98% Értelmezés: a dolgozók keresete 90,98%- ban befolyásolja a havi megtakarított összeg szóródását.
43 A rangkorreláció Létezhetnek a statisztikai sokaság egységeinek olyan kvantitatív jellegű tulajdonságai, amelyek számszerűen egyáltalán nem, vagy csak nehezen mérhetők. A mutatószám értéke r-hez hasonlóan természetesen -1 és 1 között helyezkedik el. Ha a kétféle rangsorszám rendre megegyezik, akkor = 1, ha a sorszámok a két ismérv szerint következetesen ellentétesen alakulnak, akkor = -1. 6di = 1- n(n 1)
44 Rangkorreláció Egy régió vállalatainak gazdálkodására vonatkozó adatok Régió Árbevétel (MFt) Nyereség (MFt) 16 10, x y d d di 646 = 1-1 0,71 n(n 1) Értelmezés: a vállalatok árbevétele és nyeresége között közepesnél szorosabb, pozitív irányú kapcsolat van.
45 Köszönöm a figyelmet! roland.szilagyi@uni-miskolc.hu
Korrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
Sztochasztikus kapcsolatok
Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.
A statisztika alapjai - Bevezetés az SPSS-be -
A statisztika alapjai - Bevezetés az SPSS-be - Petrovics Petra PhD Hallgató SPSS (Statistical Package for the Social Sciences ) 2 file: XY.sav - Data View XY.spv - Output Ez lehet hosszabb név is Rövid
Korreláció számítás az SPSSben
Korreláció számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi
A statisztika alapjai - Bevezetés az SPSS-be -
A statisztika alapjai - Bevezetés az SPSS-be - Kvantitatív statisztikai módszerek Petrovics Petra, Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable
Bevezetés az SPSS program használatába
Bevezetés az SPSS program használatába Statisztikai szoftver alkalmazás Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable View Output Viewer Sintax
Bevezetés a Korreláció &
Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv
Statistical Dependence
Statistical Dependence Petra Petrovics Statistical Dependence Deinition: Statistical dependence exists when the value o some variable is dependent upon or aected by the value o some other variable. Independent
Függetlenségvizsgálat, Illeszkedésvizsgálat
Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata
Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
Diszkriminancia-analízis
Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független
Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr.
Korrelácó-számítás 1. előadás Döntéselőkészítés módszertana Dr. Varga Beatr Két változó között kapcsolat Függetlenség: Az X smérv szernt hovatartozás smerete nem ad semmlen többletnformácót az Y szernt
Regresszió számítás az SPSSben
Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs
GVMST22GNC Statisztika II.
GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás
KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység
KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:
2. előadás. Viszonyszámok típusai
2. előadás Viszonyszámok típusai Mérési skálák Nominális /névleges skála: kötetlen hozzárendelése a számoknak Sorrendi / Ordinális skála: sokaság egyedeinek egy közös tulajdonság szerinti sorbarendezése
Kvantitatív elemzési módszerek
Kvantitatív elemzési módszerek Dr. Szilágyi Roland Dr. Varga Beatrix Bevezetés 2 A statisztika fogalma gyakorlati tevékenység, amelynek eredményeképpen statisztikai adatokhoz jutunk; e tevékenység eredményeképpen
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
Statisztika I. 2. előadás: Statisztikai táblák elemzése. Kóczy Á. László. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem
Statisztika I 2 előadás: Statisztikai táblák elemzése Kóczy Á László koczylaszlo@kgkuni-obudahu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Eddig statisztikai alapfogalmak
Segítség az outputok értelmezéséhez
Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
Korreláció és lineáris regresszió
Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.
Khi-négyzet eloszlás. Statisztika II., 3. alkalom
Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként
Varianciaanalízis 4/24/12
1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
Bevezető Mi a statisztika? Mérés Csoportosítás
Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015
A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel
[GVMGS11MNC] Gazdaságstatisztika
[GVMGS11MNC] Gazdaságstatisztika 1. előadás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.uni-obuda.hu)
Statisztika. Dr Gősi Zsuzsanna. Egyetemi adjunktus. Sportmenedzsment Tanszék
Statisztika Dr Gősi Zsuzsanna Egyetemi adjunktus Sportmenedzsment Tanszék Kötelező irodalom - Számonkérés Pintér József Ács Pongrác Bevezetés a sportstatisztikába Dialóg Campus Kiadó 2007 Honlap: www.dialog-kiado.hu
Van-e kapcsolat a változók között? (példák: fizetés-távolság; felvételi pontszám - görgetett átlag)
, rangkorreláció Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
III. Kvantitatív változók kapcsolata (korreláció, regresszió)
III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással
Többváltozós Regresszió-számítás
Töváltozós Regresszió-számítás 3. előadás Döntéselőkészítés módszertana Dr. Szilágyi Roland Korreláció Célja a kacsolat szorosságának mérése. Regresszió Célja a kacsolatan megfigyelhető törvényszerűség
Nem. Cumulative Percent 1,00 férfi ,9 25,9 25,9 2,00 nı ,1 73,1 99,0 99,00 adathiány 27 1,0 1,0 100,0 Total ,0 100,0
Függelék II. Demográfia Nem Frequency Percent Percent Cumulative Percent 1,00 férfi 727 25,9 25,9 25,9 2,00 nı 2053 73,1 73,1 99,0 99,00 adathiány 27 1,0 1,0 100,0 Korcsoport Frequency Percent Percent
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
TANTÁRGYI ÚTMUTATÓ. Statisztika 1.
I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Statisztika 1. TÁVOKTATÁS Tanév 2014/2015 II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Statisztika 1. Tanszék: Módszertani Tantárgyfelelős neve: Sándorné Dr. Kriszt
Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja
Megoldások 1. feladat A sokaság: 2007. szeptember 12-én a Miskolci Egyetem GT-204-es tankör statisztika óráján lévő tagjai az A 1 épület III. em. 53-as teremben 8-10-ig. Közös ismérv Megkülönböztető ismérv
Korreláció és Regresszió
Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat
Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért november 15.
Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért 2018. november 15. PÉNZ a boldogság bitorlója? A jövedelemegyenlőtlenség természetes határa A boldog ember gondolata a
Többváltozós lineáris regressziós modell feltételeinek tesztelése II.
Többváltozós lineáris regressziós modell feltételeinek tesztelése II. - A magyarázó változóra vonatkozó feltételek tesztelése - Optimális regressziós modell kialakítása - Kvantitatív statisztikai módszerek
GRADUÁLIS BIOSTATISZTIKAI KURZUS február hó 22. Dr. Dinya Elek egyetemi docens
GRADUÁLIS BIOSTATISZTIKAI KURZUS 2012. február hó 22. Dr. Dinya Elek egyetemi docens Biometria fogalma The active pursuit of biological knowledge by quantitative methods Sir R. A. Fisher, 1948 BIOMETRIA
STATISZTIKA. Fogalom. A standard lineáris regressziós modell mátrixalgebrai jelölése. A standard lineáris modell. Eredménytáblázat
Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
Statisztikai alapfogalmak
Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt
Lineáris regressziószámítás 1. - kétváltozós eset
Lineáris regressziószámítás 1. - kétváltozós eset Orlovits Zsanett 2019. február 6. Adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó
MINDEN FELADATOT A FELADATOT TARTALMAZÓ LAPON OLD- JONMEG!
NÉV: ERA kód: évf.: gyak. vez.: MINDEN FELADATOT A FELADATOT TARTALMAZÓ LAPON OLD- JONMEG! Al. (a) Definiálja a mo ment um és a centrális momentum fogalmát (általában) (4 pont)! Egy megyében egy vizsgált
Matematikai statisztikai elemzések 5.
Matematikai statisztikai elemzések 5. Kapcsolatvizsgálat: asszociáció, vegyes kapcsolat, korrelációszámítás. Varianciaanalízis Prof. Dr. Závoti, József Matematikai statisztikai elemzések 5.: Kapcsolatvizsgálat:
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
Matematikai statisztikai elemzések 5.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések. MSTE modul Kapcsolatvizsgálat: asszociáció vegyes kapcsolat korrelációszámítás. Varianciaanalízis
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Emlékkonferencia Farkas Ferenc tiszteletére Tudomány napi konferencia, november 15. MAGYAR TUDOMÁNYOS AKADÉMIA
Emlékkonferencia Farkas Ferenc tiszteletére Tudomány napi konferencia, 2016. november 15. MAGYAR TUDOMÁNYOS AKADÉMIA MAGYAR TUDOMÁNYOS AKADÉMIA Gazdaság-és Jogtudományok Osztálya Gazdálkodástudományi Bizottság
Geokémia gyakorlat. 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek. Geológus szakirány (BSc) Dr. Lukács Réka
Geokémia gyakorlat 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek Geológus szakirány (BSc) Dr. Lukács Réka MTA-ELTE Vulkanológiai Kutatócsoport e-mail: reka.harangi@gmail.com ALAPFOGALMAK:
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Logisztikus regresszió
Logisztikus regresszió 9. előadás Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó () Nem metrikus Metrikus Kereszttábla
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Fogalom STATISZTIKA. Alkalmazhatósági feltételek. A standard lineáris modell. Projekciós mátrix, P
Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Faktoranalízis előadás. Kvantitatív statisztikai módszerek
Faktoranalízis 6.-7. előadás Kvantitatív statisztikai módszerek Faktoranalízis Olyan többváltozós statisztikai módszer, amely adattömörítésre, a változók számának csökkentésére, az adatstruktúra feltárására
E-tananyag Matematika 9. évfolyam 2014. Függvények
Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést
Mérési adatok illesztése, korreláció, regresszió
Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,
STATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása
A változók mérési szintjei STATISZTIKA I. 3. Előadás Az adatok mérési szintjei, Viszonyszámok A változók az alábbi típusba tartozhatnak: Nominális (kategorikus és diszkrét) Ordinális Intervallum skála
Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?
Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
Változók közötti kapcsolat III.: a folytonos eset. Regresszió és korreláció.
http://statisztika.szoc.elte.hu/tarsstat Társadalomstatisztika, 003/004 I. félév. November 5. Mai tematika: Változók közötti kapcsolat III.: a folytonos eset. Regresszió és korreláció. Bevezetés Együttes
A sokaság/minta eloszlásának jellemzése
3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,
Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft
Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
Logisztikus regresszió
Logisztikus regresszió Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó (x) Nem metrikus Metrikus Kereszttábla elemzés
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Descartes-féle, derékszögű koordináta-rendszer
Descartes-féle, derékszögű koordináta-rendszer A derékszögű koordináta-rendszerben a sík minden pontjához egy rendezett valós számpár rendelhető. A számpár első tagja (abszcissza) a pont y tengelytől mért
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet
Fkt Faktoranalízis líi Olyan többváltozós statisztikai módszer, amely adattömörítésre, a változók számának csökkentésére, az adatstruktúra feltárására szolgál. A kiinduló változók számát úgynevezett faktorváltozókba
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
Ökonometriai modellek paraméterei: számítás és értelmezés
Ökonometriai modellek paraméterei: számítás és értelmezés Írta: Werger Adrienn, Renczes Nóra, Pereszta Júlia, Vörösházi Ágota, Őzse Adrienn Javította és szerkesztette: Ferenci Tamás (tamas.ferenci@medstat.hu)
Statisztikai alapfogalmak
i alapfogalmak statisztikai sokaság: a megfigyelés tárgyát képező egyedek összessége 2 csoportja van: álló sokaság: mindig vmiféle állapotot, állományt fejez ki, adatai egy adott időpontban értelmezhetők
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Gyakorló feladatok a kétváltozós regresszióhoz 2. Nemlineáris regresszió
Gyakorló feladatok a kétváltozós regresszióhoz 2. Nemlineáris regresszió 1. A fizetés (Y, órabér dollárban) és iskolázottság (X, elvégzett iskolai év) közti kapcsolatot vizsgáljuk az Y t α + β X 2 t +
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük