Statisztikai alapfogalmak
|
|
- Nóra Kelemen
- 9 évvel ezelőtt
- Látták:
Átírás
1 Statisztika I. KÉPLETEK es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt szignifikáns számjegy helyértéke Viszonyszámok Viszonyszám: Viszonyszámok fajtái Megoszlási viszonyszám:, ahol A: a viszonyítás tárgya (viszonyítandó adat) B: a viszonyítás alapja Koordinációs viszonyszám: 1
2 Dinamikus viszonyszámok Bázisviszonyszám: Dinamikus viszonyszámok Viszonyszámok közötti összefüggések: Láncból bázis: Láncviszonyszám: Bázisból lánc: Viszonyszámok fajtái Feladatmutató viszonyszám: Viszonyszámok fajtái Területi összehasonlító viszonyszám: Teljesítménymutató viszonyszám: 1) Középértékek Mennyiségi ismérv szerinti elemzés Számított középértékek (átlagok) számtani átlag harmonikus átlag mértani átlag négyzetes átlag Helyzeti középértékek: módusz medián kvartilisek 2
3 Átlagok Medián Számtani Súlyozatlan Súlyozott Harmonikus Mértani Módusz Négyzetes Kvartilisek Szóródási mérőszámok Alsó kvartilis: Felső kvartilis: A legfontosabb szóródási mérőszámok: 1. Terjedelem, R (vagy IQR) 2. Átlagos eltérés, δ 3. Szórás, б (vagy s) 4. Relatív szórás, V 5. (Átlagos különbség, G) Szóródási mérőszámok 1) Terjedelem: Szóródási mérőszámok 2) Átlagos eltérés (egyszerű és súlyozott): Interkvartilis terjedelem (IQR): 3
4 Szóródási mérőszámok 3) Szórás (egyszerű és súlyozott): Szóródási mérőszámok 4) Relatív szórás 5) Átlagos különbség, G (Gini-féle mutató, egyszerű és súlyozott): A szórás négyzetét varianciának hívjuk. Aszimmetria mutatók Idősorok elemzése átlagokkal A-mutató Pearson-féle mutatószám: F- mutató Tapasztalati idősor: időtényező: megfigyelt érték: Idősorok elemzése átlagokkal Idősorok elemzése átlagokkal Időegységre számított átlagok Változások átlaga Stock típusú idősor esetén: (számtani átlag) Flow típusú idősor esetén: (kronologikus átlag) Átlagos abszolút változás Átlagos relatív változás 4
5 Asszociációs kapcsolat szorosságának mérése Sztochasztikus kapcsolatok 1) Alternatív ismérvek esetén: Yule együttható (Y): Asszociációs kapcsolat szorosságának mérése 2) Általánosan alkalmazható mutatószám (alternatív és két ismérvváltozatnál több változattal rendelkező ismérvek esetén egyaránt): (ahol s az egyik ismérv változatainak, míg t a másik ismérv változatainak a számát jelenti): Csuprov-mutató (T): Asszociációs kapcsolat szorosságának mérése A Csuprov-mutató tulajdonságai: esetén a Cramer-mutatót (C) használjuk:,ahol,ahol Esetén Y és T mutatók is alkalmazhatók, a T mutató alakja ebben az esetben: Heterogén sokaságok Szórásnégyzetek kiszámítása S: teljes eltérésnégyzetösszeg SB: belső eltérésnégyzetösszeg SK: külső eltérésnégyzetösszeg 5
6 Összefüggések A vegyes kapcsolat mutatószámai Szórásnégyzet-hányados: Teljes eltérés Belső eltérés Külső eltérés Teljes szórásnégyzet Belső szórásnégyzet Külső szórásnégyzet Szóráshányados: Teljes eltérés négyzet összeg Belső eltérés négyzet összeg Külső eltérés négyzet összeg Egyedi indexek (egy jószágcsoportra egyfajta termékre vonatkozó indexek) Egyedi árindex: Indexszámítás Egyedi volumenindex: Egyedi értékindex: Együttes indexek aggregát formái (heterogén jószágcsoportra többféle termékre vonatkozó indexek) Értékindex-számítás Értékindex: Árindex: Az értékindex átlagformái: Volumenindex: 6
7 Árindex-számítás Az árindex átlagformái (árindexszámítás egyedi árindexekből) Laspeyres árindex (bázisidőszaki súlyozású) : Paashe árindex (tárgyidőszaki súlyozású) : Fisher árindex: Volumenindex-számítás A volumenindex átlagformái (volumenindexszámítás egyedi volumenindexekből) Laspeyres volumenindex (bázisidőszaki súlyozású) : Paashe volumenindex (tárgyidőszaki súlyozású) : Fisher volumenindex: Az érték-, volumen- és árindex közötti összefüggés Különbségfelbontás Összefüggések: 7
8 Ez a kép most nem jeleníthető meg. Területi volumenindex Területi árindex Volumenindexsorok: Bázis Állandó súlyozású Változó súlyozású (B,T) Lánc Állandó súlyozású Változó súlyozású (B,T) Értékindexsorok: Bázis Lánc Árindexsorok: Bázis Állandó súlyozású Változó súlyozású (B,T) Lánc Állandó súlyozású Változó súlyozású (B,T) Értékindexsorok: Bázis-értékindexsor (0. év a bázis) (100%) Lánc-értékindexsor Bázis volumenindexsorok: Állandó súlyozású bázis-volumenindexsor: (bázis: a 0. időszak mennyisége, állandó súly: a 0. időszak ára) Lánc volumenindexsorok: Állandó súlyozású lánc-volumenindexsor: (állandó súly: a 0. időszak ára) Változó súlyozású bázis-volumenindexsor (bázis: 0. év) - (B) Változó súlyozású lánc-volumenindexsor - (B) Változó súlyozású bázis-volumenindexsor (bázis: 0. év) - (T) Változó súlyozású lánc-volumenindexsor - (T) 8
9 Bázis árindexsorok: Állandó súlyozású bázis-árindexsor: (bázis: a 0. időszak mennyisége, állandó súly: a 0. időszak ára) Lánc árindexindexsorok: Állandó súlyozású lánc-árindexsor: (állandó súly: a 0. időszak ára) Változó súlyozású bázis-árindexsor (bázis: 0. év) - (B) Változó súlyozású lánc-árindexsor - (B) Változó súlyozású bázis-árindexsor (bázis: 0. év) - (T) Változó súlyozású lánc-árindexsor - (T) 9
KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység
KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
[GVMGS11MNC] Gazdaságstatisztika
[GVMGS11MNC] Gazdaságstatisztika 5. előadás Érték-, ár-, és volumenindexek http://uni-obuda.hu/users/koczyl/gazdasagstatisztika.htm Kóczy Á. László KGK-VMI Az indexszám fogalma Gazdasági elemzésben fontos
STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.
Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
Statisztikai alapfogalmak. Statisztika I. GZM, EE, TV szakok (LEVELEZŐ tagozat) Témakörök. Statisztikai alapfogalmak. Kötelező és ajánlott irodalmak
Témakörök Statisztika I. GZM, EE, TV szakok (LEVELEZŐ tagozat) 2011-2012-es tanév I. félév Oktató: Dr. Csáfor Hajnalka tanszékvezető főiskolai docens Regionális és Környezetgazdaságtan Tsz. E-mail: hcsafor@ektf.hu
Statisztikai alapfogalmak (2011. szeptember ) Statisztika I. GZM, EE, TV szakok (nappali tagozat) Témakörök. Statisztikai alapfogalmak
Témakörök Statisztika I. GZM, EE, TV szakok (nappali tagozat) 2011-2012-es tanév I. félév Oktató: Dr. Csáfor Hajnalka tanszékvezető főiskolai docens Regionális és Környezetgazdaságtan Tsz. E-mail: hcsafor@ektf.hu
Viszonyszám A B. Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a. viszonyítadóadat
Viszonyszámok Viszonyszám Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a viszonyítandó adat Viszonyítás tárgya (viszonyítandó adat) B: a viszonyítás alapja V viszonyítadóadat
1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő
Figyelem! A példasor nem tartalmazza valamennyi típuspéldát. A dolgozatban az órán leadott feladatok közül bármely típusú előfordulhat. A példasor már a második dolgozat anyagát gyakorló feladatokat is
Statisztika I. 7. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 7. előadás Előadó: Dr. Ertsey Imre STATISZTIKAI INDEXEK STATISZTIKAI INDEXEK Index: latin eredetű szó, egyszerűen mutatót jelent A statisztikai indexszám: - komplexebb tartalmú, - többet
Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot
Nappali tagozat. Statisztika és Valószínűségszámítási alapok Tantárgyi útmutató
Módszetani Intézet Alkalmazott Kvantitatív Módszertan Tanszék Nappali tagozat Statisztika és Valószínűségszámítási alapok Tantárgyi útmutató 2018/19. tanév I. félév 1 Tantárgy megnevezése: Statisztika
STATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása
A változók mérési szintjei STATISZTIKA I. 3. Előadás Az adatok mérési szintjei, Viszonyszámok A változók az alábbi típusba tartozhatnak: Nominális (kategorikus és diszkrét) Ordinális Intervallum skála
Statisztika összefoglalás
Statisztika összefoglalás 1 / 18. oldal 1. Alapfogalmak Statisztika: a tömegesen előforduló jelenségek vizsgálatával foglalkozik, ezekre vonatkozóan adatokat gyűjt, feldolgoz, elemez és közzé tesz. o a
Áruforgalom tervezése. 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok
Áruforgalom tervezése 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok Alapvető gazdasági számítások 1. Egy vállalkozás tevékenysége nagyon összetett. Szükség van arra, hogy ismerjük
1. óra: Területi statisztikai alapok viszonyszámok, középértékek
1. óra: Területi statisztikai alapok viszonyszámok, középértékek Tér és társadalom (TGME0405-GY) gyakorlat 2018-2019. tanév Viszonyszámok Viszonyszá m Viszonyítandó adat (A) Viszonyítási alap (B) 1. Megoszlási
Bevezető Mi a statisztika? Mérés Csoportosítás
Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető
STATISZTIKA I. 3. rész. T.Nagy Judit
STATSZTKA. 3. rész T.Nagy Judit tnagy.judit@hjf.hu Standardizálás és standardizáláson alauló indexszámítás nhomogén (heterogén) sokaságokra vonatkozó átlagok; intenzitási viszonyszámok (átlagbérek, átlagos
TANTÁRGYI ÚTMUTATÓ. Statisztika 1.
I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Statisztika 1. TÁVOKTATÁS Tanév 2014/2015 II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Statisztika 1. Tanszék: Módszertani Tantárgyfelelős neve: Sándorné Dr. Kriszt
[GVMGS11MNC] Gazdaságstatisztika
[GVMGS11MNC] Gazdaságstatisztika 1. előadás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.uni-obuda.hu)
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I.
Statisztika I. 1. előadás: A statisztika alapfogalmai Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem A kurzusról A kurzus célja
Foglalkozási napló. Vasútforgalmi szolgálattevő
Foglalkozási ló a 20 /20. tanévre Vasútforgalmi szolgálattevő (OKJ száma: 54 41 05) szakma gyakorlati oktatásához 13. évfolyam A ló vezetéséért felelős: A ló megnyitásának dátuma: A ló lezárásának dátuma:
STATISZTIKA. Gyakorló feladatok az első zh-ra
STATISZTIKA Gyakorló feladatok az első zh-ra A változás átlagos üteme év Kenyér Ft/ kg bázisindex % 2002 151 100,0 2003 156 103,3 2004 178 117,9 2005 173 114,6 2006 179 118,5 2007 215 142,4 I = n 1 l i
Függetlenségvizsgálat, Illeszkedésvizsgálat
Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata
6. A kereskedelmi készletek elszámoltatása, az értékesítés elszámoltatása 46. Összefoglaló feladatok 48.
Tartalomjegyzék 1. Alapvető gazdasági számítások 4. 1.1. A gazdasági számítások jelentősége egy vállalkozás életében 4. 1.2. A gazdasági számításokkal szemben támasztott követelmények 4. 1.3. Milyen feladatokat
STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
2013 ŐSZ. 1. Ismertesse a mérési skálák tulajdonságait és a közöttük lévő összefüggéseket.
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK AZ 1. ZH-HOZ 2013 ŐSZ (Jelen kérdések az első zh összes elméleti témakörét összegzik, melyeket egymásra épülő sorrendben, illetve tematika szerinti bontásban
STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
Nem Fő (f) % (g) -160 100 161-180 150 181-200 50 Z 300. Férfi 180 60% Nő 120 40% Z 300 100%
IX. 08. előadás Statisztikai sokaság: amire a megfigyelés irányul. Statisztikai ismérv: vizsgálati szempont, tulajdonság. Van közös (körülhatárolja a sokaságot) és megkülönböztető: területi {pl: születési
Idősorok elemzése [leíró statisztikai eszközök] I
Leíró és matematikai statisztika Matematika alapszak, matematikai elemző szakirány Zempléni András Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
Korrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
Indexszámítási módszerek; Simpson-paradoxon
Indexszámítási módszerek; Simpson-paradoxon Vida Balázs 2018. március 7. Vida Balázs Indexszám; SP 2018. március 7. 1 / 22 Bevezetés Mir l lesz szó? 1 Index(szám) fogalma, példák 2 Érték-, ár- és volumenindexek
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
Statisztika I. 2. előadás: Statisztikai táblák elemzése. Kóczy Á. László. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem
Statisztika I 2 előadás: Statisztikai táblák elemzése Kóczy Á László koczylaszlo@kgkuni-obudahu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Eddig statisztikai alapfogalmak
2. előadás. Viszonyszámok típusai
2. előadás Viszonyszámok típusai Mérési skálák Nominális /névleges skála: kötetlen hozzárendelése a számoknak Sorrendi / Ordinális skála: sokaság egyedeinek egy közös tulajdonság szerinti sorbarendezése
Statisztika I. GZM, EE, TV, GI szakok (BA és FOSZ) (nappali tagozat)
Statisztika I. GZM, EE, TV, GI szakok (BA és FOSZ) (naali tagozat) 27-28-as tanév II. félév Oktató: Dr. Csáfor Hajnalka intézetigazgató egyetemi docens, dékán Dr. Csugány Julianna adjunktus Gazdaságtudományi
Statisztika példatár
Statisztika példatár v0.02 A példatár folyamatosan b vül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a letölthet példatárak közt. Országh Tamás Budapest, 2006 Mottó: Ki kéne vágni minden
Statisztika I. GZM, EE, TV szakok (nappali tagozat)
Statisztika I. GZM, EE, TV szakok (naali tagozat) 22-23-as tanév I. félév Oktató: Dr. Csáfor Hajnalka tanszékvezető főiskolai docens Regionális és Környezetgazdaságtan Tsz. E-mail: hcsafor@ektf.hu Témakörök
Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások
Módszertani Intézeti Tanszéki Osztály
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012. Név:... Kód:...... Eredmény:..... STATISZTIKA I. VIZSGA; NG KM ÉS KG TQM SZAKOKON MINTAVIZSGA Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető
A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos
Középérték Középérték A középérték a statisztikai adatok tömör számszerű jellemzése. helyzeti középérték: módusz medián számított középérték: számtani átlag kronológikus átlag harmonikus átlag mértani
Statisztikai. Statisztika Üzleti szakügyintéző felsőfokú szakképzés I. évfolyam VS 210-4 (NFG ÜS302G4) 2010-2011-es tanév I. félév
Statisztika Üzleti szakügyintéző felsőfokú szakképzés I évfolyam VS 210-4 (NFG ÜS302G4) 2010-2011-es tanév I félév Statisztikai alapfogalmak Oktató: Dr Csáfor Hajnalka főiskolai docens Vállalkozás-gazdaságtan
A sokaság/minta eloszlásának jellemzése
3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,
STATISZTIKA 1. PÉLDATÁR. alapfogalmak egy ismérv szerinti elemzés két ismérv szerinti elemzés standardizálás indexszámítás idősorok
STATISZTIKA 1. PÉLDATÁR alapfogalmak egy ismérv szerinti elemzés két ismérv szerinti elemzés standardizálás indexszámítás idősorok 1. ALAPFOGALMAK 1.1. Egy iskolai büfé napi vevőszámának alakulása az elmúlt
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
Matematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika
Középértékszámítás egy megértési teszt eredményei
Középértékszámítás egy megértési teszt eredményei Debrenti Edith Partiumi Keresztény Egyetem, Nagyvárad edit.debrenti@gmail.com Ha arra keressük a választ, hogy az iskolában megszerzett matematikatudás
KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység
KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2143-06 Statisztikai feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése: A statisztikai elemzés
MUNKAANYAG. Bernáth Julianna. Alapvető statisztikai módszerek a vállalkozás tevékenységét érintő javaslatok előkészítéséhez
Bernáth Julianna Alapvető statisztikai módszerek a vállalkozás tevékenységét érintő javaslatok előkészítéséhez A követelménymodul megnevezése: A beszerzés és az értékesítés előkészítése, megszervezése
A területi polarizáltság mérőszámai
A területi polarizáltság mérőszámai Duál mutató A területi polarizáltság mérőszámai: Relatív range, range arány Duál mutató Duál mutató Az adatsor 2 részcsoportja átlagainak hányadosa Egyszerű, világos
Matematikai statisztikai elemzések 2.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 2. MSTE2 modul Helyzetmutatók, átlagok, kvantilisek. A szórás és szóródás egyéb mérőszámai.
MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:
1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze
-100 10 100-150 33 150-200 26 200-250 19 250-300 16 300-8
1. A sokaság egy ismérv szerinti vizsgálata (1) Egy hallgató a szakdolgozatához kérdőíves felmérést készített. A kérdőívet 112-en töltötték ki. A havi nettó jövedelemre vonatkozó kérdésnél az alábbi válaszok
Elemi statisztika fizikusoknak
1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
Statisztika. Dr Gősi Zsuzsanna. Egyetemi adjunktus. Sportmenedzsment Tanszék
Statisztika Dr Gősi Zsuzsanna Egyetemi adjunktus Sportmenedzsment Tanszék Kötelező irodalom - Számonkérés Pintér József Ács Pongrác Bevezetés a sportstatisztikába Dialóg Campus Kiadó 2007 Honlap: www.dialog-kiado.hu
Adatsorok jellegadó értékei
Adatsorok jellegadó értéke Varga Ágnes egyetem tanársegéd varga.ag14@gmal.com Terület és térnformatka kvanttatív elemzés módszerek BCE Geo Intézet Terület elemzés forgatókönyve vacsora hasonlat Terület
A lánc viszonyszám: A lánc viszonyszám számítási képlete:
A lánc viszonyszám: Az idősor minden egyes tagját a közvetlenül megelőzővel osztjuk, vagyis az idősor első évének, vagy időszakának láncviszonyszáma nem számítható. A lánc viszonyszám számítási képlete:
STATISZTIKAI ÉS GAZDASÁGI ÜGYINTÉZŐ SZAKKÉPESÍTÉS SZAKMAI ÉS VIZSGAKÖVETELMÉNYEI I. AZ ORSZÁGOS KÉPZÉSI JEGYZÉKBEN SZEREPLŐ ADATOK
STATISZTIKAI ÉS GAZDASÁGI ÜGYINTÉZŐ SZAKKÉPESÍTÉS SZAKMAI ÉS VIZSGAKÖVETELMÉNYEI I. AZ ORSZÁGOS KÉPZÉSI JEGYZÉKBEN SZEREPLŐ ADATOK 1. A szakképesítés azonosító száma: 52 462 01 1000 00 00 2. A szakképesítés
Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
Gazdasági elemzés 1. 4 alkalom. Budaházy György
Gazdasági elemzés 1. Termelés és értékesítés 4 alkalom Budaházy György A termelı és szolgáltató tevékenység elemzése 1. A tevékenység besorolása (TEAOR) 2. A termelés mérése 3. A termelési érték elemzése
55 345 01 0010 55 01 Európai Uniós üzleti
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
A leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat
Szent István Egyetem Gazdaság- és Társadalomtudományi Kar Statisztika I. Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat Boros Daniella OIPGB9 Kereskedelem és marketing I. évfolyam BA,
Statisztikai alapfogalmak
i alapfogalmak statisztikai sokaság: a megfigyelés tárgyát képező egyedek összessége 2 csoportja van: álló sokaság: mindig vmiféle állapotot, állományt fejez ki, adatai egy adott időpontban értelmezhetők
Határozza meg és jellemezze az ár-, érték- és volumenváltozást %-ban és forintban!
1. Egy fúvós hangszereket forgalmazó cégről a következő adatok ismertek: Termékcsoportok Forgalom 2003-ban A volumen változása Fafúvós 50 +50 Rézfúvós 30 +30 Egyéb +10 Összesen: Továbbá ismert, hogy a
Matematikai statisztikai elemzések 5.
Matematikai statisztikai elemzések 5. Kapcsolatvizsgálat: asszociáció, vegyes kapcsolat, korrelációszámítás. Varianciaanalízis Prof. Dr. Závoti, József Matematikai statisztikai elemzések 5.: Kapcsolatvizsgálat:
Vizsgáljuk elôször, hogy egy embernek mekkora esélye van, hogy a saját
376 Statisztika, valószínûség-számítás 1500. Az elsô kérdésre egyszerû válaszolni, elég egy ellenpélda, és biztosan nem lehet akkor így kiszámolni. Pl. legyen a három szám a 3; 5;. A két kisebb szám átlaga
STATISZTIKA. Mit nevezünk idősornak? Az idősorok elemzésének módszertana. Az idősorelemzés célja. Determinisztikus idősorelemzés
Mit nevezünk idősornak? STATISZTIKA 10. Előadás Idősorok analízise Egyenlő időközökben végzett megfigyelések A sorrend kötött, y 1, y 2 y t y N N= időpontok száma Minden időponthoz egy adat, reprodukálhatatlanság
SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA
1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal
Sta t ti t s i zt z i t k i a 3. előadás
Statisztika 3. előadás Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan A statisztika, mint gyakorlati tevékenység a tömegesen előforduló jelenségek egyedeire vonatkozó információk
Statisztika 1. Tantárgyi útmutató
Módszertani Intézeti Tanszék Nappali tagozat Statisztika 1. Tantárgyi útmutató 2015/16 tanév II. félév 1/6 Tantárgy megnevezése: Statisztika 1. Tantárgy kódja: STAT1KAMEMM Tanterv szerinti óraszám: 2+2
Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft
Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az
Témakörök pótvizsgára Üzleti gazdaságtan 12. évfolyam 2012/13
Témakörök pótvizsgára Üzleti gazdaságtan 12. évfolyam 2012/13 1. Vállalkozási alapismeretek a. Szükségletek, jogi alapfogalmak, információs rendszer, a vállalkozás környezete, társasági formák 2. A vállalat
A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015
A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel
STATISZTIKA 1. alapfogalmak egy ismérv szerinti elemzés két ismérv szerinti elemzés standardizálás indexszámítás idősorok PÉLDATÁR
STATISZTIKA 1. PÉLDATÁR alapfogalmak egy ismérv szerinti elemzés két ismérv szerinti elemzés standardizálás indexszámítás idősorok A FELADATOK MEGOLDÁSAIT A www.mateking.hu OLDALON A STATISZTIKA 1 MENÜPONTBAN
Segítség az outputok értelmezéséhez
Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
A(a; b) = 2. A(a; b) = a+b. Példák A(37; 49) = x 2x = x = : 2 x = x = x
10. osztály:nevezetes középértékek Összeállította:Keszeg ttila 1 1 számtani közép efiníció 1. (Két nemnegatív szám számtani közepe) Két nemnegatív szám számtani közepének a két szám összegének a felét
55 345 01 0010 55 01 Európai Uniós üzleti
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény
9.3. Külkereskedelmi statisztika...77 9.4. Pénzügystatisztika, az államháztartás információs rendszere...77 9.5. Agrárstatisztikai információs
Kovács Péter Statisztikai alapismeretek Tartalomjegyzék BEVEZETÉS...4. A STATISZTIKA ALAPFOGALMAI...5.. A statisztika tárgy, tudományági besorolása...5.. Alapfogalmak...6.3. A statisztikai munka fázisai...8.4.
Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja
Megoldások 1. feladat A sokaság: 2007. szeptember 12-én a Miskolci Egyetem GT-204-es tankör statisztika óráján lévő tagjai az A 1 épület III. em. 53-as teremben 8-10-ig. Közös ismérv Megkülönböztető ismérv
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
GRADUÁLIS BIOSTATISZTIKAI KURZUS február hó 22. Dr. Dinya Elek egyetemi docens
GRADUÁLIS BIOSTATISZTIKAI KURZUS 2012. február hó 22. Dr. Dinya Elek egyetemi docens Biometria fogalma The active pursuit of biological knowledge by quantitative methods Sir R. A. Fisher, 1948 BIOMETRIA
7, 6, 0, 4, 0, 1, 5, 2, 2, 16, 1, 0, 2, 3, 9, 2, 4, 10, 3, 1, 2, 12, 4, 1
52. feladat Stat Jenő egyetemi hallgató autóbusszal jár az egyetemre. Néhány napon át megmérte, hogy mennyit kell várnia az első egyetem felé közlekedő autóbuszra. A következő időket tapasztalta (percben):
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH
Idősorok Idősor Statisztikai szempontból: az egyes időpontokhoz rendelt valószínűségi változók összessége. Speciális sztochasztikus kapcsolat; a magyarázóváltozó az idő Determinisztikus idősorelemzés esetén
TANMENET. a matematika tantárgy tanításához 10. E.osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 10. E.osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. A fős osztály dolgozatot írt matematikából és a következő jegyek születtek: 6 darab jeles, 9 darab jó, 8 darab közepes, darab elégséges és darab elégtelen. Készíts gyakorisági táblázatot,
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
Kvantitatív elemzési módszerek
Kvantitatív elemzési módszerek Dr. Szilágyi Roland Dr. Varga Beatrix Bevezetés 2 A statisztika fogalma gyakorlati tevékenység, amelynek eredményeképpen statisztikai adatokhoz jutunk; e tevékenység eredményeképpen
7. A létszám- és bérgazdálkodás
636. Egy áruház február havi létszáma: 7. A létszám- és bérgazdálkodás Nap Felvétel Kilépés Állományi tétszám Szabadság Betegállomány Dolgozói létszám 1 - - 342 2 3 337 2 1-343 2 3 338 3-2 341 4 2 335
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati