MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:
|
|
- Karola Péter
- 9 évvel ezelőtt
- Látták:
Átírás
1 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% % 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze meg az alábbi görbét! Egészítse ki az ábrát a hiányzó kellékekkel! b) Elemezze a koncentráció változását! c) Szemléltesse az ábrán: 2012-ben kisebb koncentráció várható, mint 2010-ben. 2. Egy főiskola első évfolyamán a hallgatók éves beiskolázási költsége az alábbiak szerint alakult 2010-ben: Beiskolázási költség nagysága Hallgatók száma f g' s (ezer forint/fő) (fő) 20,0 0,1 20,1 40, ,1 50,0 0,42 50,1 60, ,1 100,0 0,9 100,1 Összesen Egymóduszú eloszlás! a) Töltse ki a táblázat minden rovatát! Közölje a részletszámításokat! b) Jellemezze szövegesen megfelelő mutatószámok kiszámítása (középértékek, szóródás, aszimmetria) alapján a beiskolázási költség eloszlását!
2 3. Egy autókereskedés árbevétele az alábbiak szerint alakult az elmúlt öt évben: Az árbevétel változása Időszak 2007=100% 2009=100% Előző év=100% Változás az előző évhez képest (%) ,25 a.) Töltse ki a táblázat minden rovatát, ha ismert, hogy az árbevétel a gazdasági világválság hatására 2008-ról 2009-re 21,875%-kal, azaz 22,4 százalékponttal csökkent, de 2011-ben az árbevétel újból a 2009-es árbevétellel egyezett meg. b.) Hány százalékos volt az árbevétel éves átlagos változása a vizsgált időszakban? A fejlődés átlagos ütemét (átlagos relatív változást) számítsa! 4. Egy véletlenszerűen kiválasztott csoportban végzett felmérés szerint feljegyezték a megkérdezettek internetezéssel töltött átlagos idejét (perc/nap). A megfigyelési adatokat az alábbi táblázat tartalmazza: internetezéssel töltött idő (p) f i f i ' g i g i ' s i , , , Összesen Véletlenszerűen vett minta, korrigált szórást kell használni! a) Töltse ki a táblázat minden rovatát! Közölje a részletszámításokat! b) Jellemezze szövegesen megfelelő mutatószámok kiszámítása (középértékek, szóródás, aszimmetria) alapján a beiskolázási költség eloszlását!
3 5. Egy mosógépek forgalmazásával foglalkozó cég bevétele az alábbiak szerint alakult 2011 első felében: Időszak Bevétel (eft) Január=100% Változás az előző időszakhoz Előző hónap=100% képest (eft) Január Február 110 Március + 10 Árpilis 120 Május 5 Június a.) Töltse ki a táblázatot, ha ismert, hogy a bevétel januárról júniusra 20%-kal, azaz forinttal nőtt! b.) Hány ezer forint volt a bevétel havi átlagos változása a vizsgált időszakban? A fejlődés átlagos mértékét (átlagos abszolút változást) számítsa! 6. Az alábbi táblázat egy vállalat dolgozóinak béreinek eloszlását mutatja: bér dolgozók száma (e Ft/fő) (fő) f i g i (%) s i 90,0 90,1 100, ,1 150,0 42 * ,1 250, ** 250,1 530, *** 530,1 Összesen a.) Töltse ki a táblázat minden rovatát! Közölje a részletszámításokat! b.) Jellemezze szövegesen megfelelő mutatószámok kiszámítása (középértékek, szó ródás, aszimmetria) alapján a bérek eloszlását! c.) Nevezze meg és értelmezze a *-gal jelölt értékeket! * Neve: ** Neve: *** Neve: d.) A bérek vizsgálata során további mutatókat is meghatároztak. Nevezze meg és értelmezze az alábbiakat! T 1 = 85
4 Q 3 = 140 K 3 = 120 D 9 = 200 G = 77,09 e.) Ha minden dolgozó 5%-os béremelést kapna, hogyan alakulnának az eloszlásjellemzők? Átlag.. Módusz Medián Szórás. Relatívszórás.. A mutató. f.) Ha minden dolgozónak az új adózási szabályok szerint forinttal lenne kevesebb a bére, hogyan alakulnának az eloszlásjellemzők? Átlag.. Módusz Medián Szórás. Relatívszórás.. A mutató.
5 g.) Nevezze meg az alábbi görbét! Egészítse ki az ábrát a hiányzó kellékekkel! Értelmezze a feladat adatai alapján grafikon bekarikázott pontját! Nevezze meg és értelmezze az alábbi mutatót: K=0,2142! 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, ,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
6 7. Egy 100 főt foglalkoztató vállalatnál a dolgozók prémiumai a eft intervallumban szóródtak 200 eft átlaggal, IQR = forint. A legtöbben 160 eft-ot kaptak, míg a dolgozók fele legalább 180 eft-ot. A prémiumok szórása forint volt. a.) Határozza meg az F-mutatót, ha ismert, hogy a 160 eft alattiak mediánja 100 eft volt! b.) Egy 50 eft prémiumot kapó dolgozóról kiderült, hogy nem vették számításba az egyik évvégén kötött a vállalatnak nagy hasznot hozó üzletét, amiért utólag további 110 eftot kapott. Hogyan alakultak ezután az alábbi mutatók? Válaszát indokolja! Átlag: Módusz:. Medián:.. Szórás: c.) Ha minden dolgozó 10 ezer forinttal több prémiumot kapna, hogyan alakulnának az alábbi mutatók? Átlag: Módusz:. Medián:.. Q 1 :.. Q 3 :.. Szórás: IQR:. F: 8. Az alábbi táblázat egy ZH pontszámainak eloszlását mutatja: eredmény hallgatók száma (pont) (fő) f i g i ' (%) s i 5 20 * ** *** Összesen Kétmóduszú eloszlás! x Me A 3 a.) Töltse ki a táblázat minden rovatát! Közölje a részletszámításokat! b.) Jellemezze szövegesen megfelelő mutatószámok kiszámítása (középértékek, szó ródás, aszimmetria) alapján az eredmény eloszlását! c.) Nevezze meg és értelmezze a *-gal jelölt értékeket! * Neve:
7 ** Neve: *** Neve: d.) Az eredmények vizsgálata során további mutatókat is meghatároztak. Nevezze meg és értelmezze az alábbiakat! T 2 = 35 Q 1 = 3 K 4 = 47 D 7 = 40 G = 20,57 e.) Ha minden hallgató teljesítménye 20%-kal jobb lenne, hogyan alakulnának az eloszlásjellemzők? Átlag.. Módusz Medián Szórás. Relatívszórás.. A mutató. f.) Ha minden hallgató véradásért 1 plusz pontot kapna, hogyan alakulnának az eloszlásjellemzők? Átlag.. Módusz Medián Szórás. Relatívszórás.. A mutató.
8 g.) Nevezze meg az alábbi görbét! Egészítse ki az ábrát a hiányzó kellékekkel! Értelmezze a feladat adatai alapján grafikon bekarikázott pontját! Nevezze meg és értelmezze az alábbi mutatót: K=0, ,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, ,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
7, 6, 0, 4, 0, 1, 5, 2, 2, 16, 1, 0, 2, 3, 9, 2, 4, 10, 3, 1, 2, 12, 4, 1
52. feladat Stat Jenő egyetemi hallgató autóbusszal jár az egyetemre. Néhány napon át megmérte, hogy mennyit kell várnia az első egyetem felé közlekedő autóbuszra. A következő időket tapasztalta (percben):
Módszertani Intézeti Tanszéki Osztály
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012. Név:... Kód:...... Eredmény:..... STATISZTIKA I. VIZSGA; NG KM ÉS KG TQM SZAKOKON MINTAVIZSGA Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető
1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő
Figyelem! A példasor nem tartalmazza valamennyi típuspéldát. A dolgozatban az órán leadott feladatok közül bármely típusú előfordulhat. A példasor már a második dolgozat anyagát gyakorló feladatokat is
Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22
Határozza meg és jellemezze az ár-, érték- és volumenváltozást %-ban és forintban!
1. Egy fúvós hangszereket forgalmazó cégről a következő adatok ismertek: Termékcsoportok Forgalom 2003-ban A volumen változása Fafúvós 50 +50 Rézfúvós 30 +30 Egyéb +10 Összesen: Továbbá ismert, hogy a
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos
Középérték Középérték A középérték a statisztikai adatok tömör számszerű jellemzése. helyzeti középérték: módusz medián számított középérték: számtani átlag kronológikus átlag harmonikus átlag mértani
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
KERESKEDELMI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK FELADATLAP
KERESKEDELMI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK FELADATLAP Jövedelmezőség 1. Jövedelmezőség tervezése 19 pont Egy papír-írószerbolt 2018. évi árbevétele 85 000 ezer Ft. Az üzlet 24%-os
Statisztikai alapfogalmak
Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
A sokaság/minta eloszlásának jellemzése
3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,
Vizsgafeladatok. 1. feladat (3+8+6=17 pont) (2014. január 7.)
Vizsgafeladatok 1. feladat (3+8+6=17 pont) (2014. január 7.) Az elmúlt négy év a 2010. I. és a 2013. IV. negyedéve között csapadék mennyiségének alakulásáról az alábbiakat ismerjük: Időszak Csapadék mennyiéség
MINDEN FELADATOT A FELADATOT TARTALMAZÓ LAPON OLD- JONMEG!
NÉV: ERA kód: évf.: gyak. vez.: MINDEN FELADATOT A FELADATOT TARTALMAZÓ LAPON OLD- JONMEG! Al. (a) Definiálja a mo ment um és a centrális momentum fogalmát (általában) (4 pont)! Egy megyében egy vizsgált
Viszonyszám A B. Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a. viszonyítadóadat
Viszonyszámok Viszonyszám Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a viszonyítandó adat Viszonyítás tárgya (viszonyítandó adat) B: a viszonyítás alapja V viszonyítadóadat
Matematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika
KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység
KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:
2. Adott a valós számok halmazán értelmezett f ( x) 3. Oldja meg a [ π; π] zárt intervallumon a. A \ B = { } 2 pont. függvény.
1. Az A halmaz elemei a ( 5)-nél nagyobb, de 2-nél kisebb egész számok. B a pozitív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! A \ B = { } 2. Adott a valós számok halmazán
A lánc viszonyszám: A lánc viszonyszám számítási képlete:
A lánc viszonyszám: Az idősor minden egyes tagját a közvetlenül megelőzővel osztjuk, vagyis az idősor első évének, vagy időszakának láncviszonyszáma nem számítható. A lánc viszonyszám számítási képlete:
Érettségi feladatok: Statisztika
Érettségi feladatok: Statisztika 2003. Próba 14. Bergengóciában az elmúlt 3 évben a kormány jelentése szerint kiemelt beruházás volt a bérlakások építése. Ezt az állítást az alábbi statisztikával támasztották
IV. Felkészítő feladatsor
IV. Felkészítő feladatsor 1. Az A halmaz elemei a (-7)-nél nagyobb, de 4-nél kisebb egész számok. B a nemnegatív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! I. 2. Adott a
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. A fős osztály dolgozatot írt matematikából és a következő jegyek születtek: 6 darab jeles, 9 darab jó, 8 darab közepes, darab elégséges és darab elégtelen. Készíts gyakorisági táblázatot,
Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások
2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!
1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Statisztika példatár
Statisztika példatár v0.02 A példatár folyamatosan b vül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a letölthet példatárak közt. Országh Tamás Budapest, 2006 Mottó: Ki kéne vágni minden
7. A vállalat költségei
7. A vállalat költségei Igaz-hamis állítások 1. Azokat a költségeket soroljuk be a stock típusú költségek csoportjába, melyek adott időpontban felmerülnek és megtérülnek, például az energia ára, rezsi
Biometria gyakorló feladatok BsC hallgatók számára
Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90
STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.
Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett
Ügyeljen a számítások kijelölésére, pontos kerekítésre és a mértékegységek megadására.
A 29/2016. (VIII. 26.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 341 01 Kereskedő Tájékoztató A vizsgázó az első lapra írja fel a nevét! Ha a
18. modul: STATISZTIKA
MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret
Pontszám Osztályzat jeles jó közepes elégséges 0 19 elégtelen
2003/14. Bergengóciában az elmúlt 3 évben a kormány jelentése szerint kiemelt beruházás volt a bérlakások építése. Ezt az állítást az alábbi statisztikával támasztották alá. Az egyes években a lakásépítésre
A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 35 811 02 Vendéglátó-üzletvezető Tájékoztató A vizsgázó az első lapra írja fel a
STATISZTIKA. Gyakorló feladatok az első zh-ra
STATISZTIKA Gyakorló feladatok az első zh-ra A változás átlagos üteme év Kenyér Ft/ kg bázisindex % 2002 151 100,0 2003 156 103,3 2004 178 117,9 2005 173 114,6 2006 179 118,5 2007 215 142,4 I = n 1 l i
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események
Statisztika a hétköznapokban
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. (: 27-317 - 077 (/fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Statisztika
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
5. Előadás. Grafikus ábrázolás Koncentráció elemzése
5. Előadás Grafikus ábrázolás Koncentráció elemzése Grafikus ábrázolás fontossága Grafikus ábrázolás során elkövethető hibák: Mondanivaló szempontjából nem megfelelő ábratípus kiválasztása Tárgynak megfelelő
A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 811 01 Vendéglátásszervező-vendéglős Tájékoztató A vizsgázó az első lapra írja
A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 35 811 02 Vendéglátó-üzletvezető Tájékoztató A vizsgázó az első lapra írja fel a
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Magyarország 1,2360 1,4622 1,6713 1,8384 2,0186 2,2043
370 Statisztika, valószínûség-számítás 1480. a) Nagy országok: Finnország, Olaszország, Nagy-Britannia, Franciaország, Spanyolország, Svédország, Lengyelország, Görögország, Kis országok: Ciprus, Málta,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Statisztika
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
Egy főiskolán 100 hallgatóra 5 számítógép jut. 300 számítógép van a főiskolán. A viszonyszám fajtája:
Statisztika 1 NG-KM I. évfolyam BGF KKK MINTA 2011. február 1. Nevezze meg az alábbi mondatokban értelmezett viszonyszám fajtáját, adja meg értékét, majd írja le szövegesen és számadatokkal, hogy mi van
Érettségi feladatok: Statisztika 1/13
Érettségi feladatok: Statisztika 1/13 2003. Próba 14. Bergengóciában az elmúlt 3 évben a kormány jelentése szerint kiemelt beruházás volt a bérlakások építése. Ezt az állítást az alábbi statisztikával
Statisztika példatár
MISKOLCI EGYETEM Gazdaságtudományi Kar Gazdaságelméleti és Módszertani Intézet Üzleti Statisztika és Előrejelzési Intézeti Tanszék Statisztika példatár (A szerzők engedélye nélkül tovább nem felhasználható!)
A 4.m osztálynak gyakorlásra a statisztika felmérőre
A 4.m osztálynak gyakorlásra a statisztika felmérőre 4. 2005. május, 8. feladat a), b) és c) része Az alábbi táblázat egy ország munkaképes lakosságának foglalkoztatottság szerinti megoszlását mutatja.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Statisztika
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Statisztika 1) Egy dolgozatnál az elérhető legmagasabb pontszám 100 volt. 15 tanuló eredményeit tartalmazza a következő táblázat: Elért pontszám 100 95 91
3. ELŐADÁS MUNKAVEZÉRLŐ LAP TÉNYEZŐKRE BONTÁS TÖBBTÉNYEZŐS GAZDASÁGI JELENSÉGEK ÖSSZEHASONLÍTÁSA, A TÉNYEZŐKRE BONTÁS MÓDSZEREI
BUDAPESTI GAZDASÁGI FŐISKOLA PÉNZÜGYI ÉS SZÁMVITELI KAR SZÁMVITELI INTÉZETI TANSZÉK ÖSSZEÁLLÍTOTTA: BLUMNÉ BÁN ERIKA ADJUNKTUS ELEMZÉS-ELLENŐRZÉS MÓDSZERTANA 3. ELŐADÁS MUNKAVEZÉRLŐ LAP TÉNYEZŐKRE BONTÁS
Vizsgáljuk elôször, hogy egy embernek mekkora esélye van, hogy a saját
376 Statisztika, valószínûség-számítás 1500. Az elsô kérdésre egyszerû válaszolni, elég egy ellenpélda, és biztosan nem lehet akkor így kiszámolni. Pl. legyen a három szám a 3; 5;. A két kisebb szám átlaga
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
KERESKEDELEMI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK FELADATLAP
KERESKEDELEMI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK FELADATLAP Jövedelmezőség 1. Jövedelmezőség tervezése 21 pont Egy kereskedő vállalkozó 2018-ban 308 600 ezer Ft forgalmat ért el 28%-os
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!
A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:
Módszertani Intézeti Tanszéki Osztály
BGF Módszertani ntézeti Tanszéki Osztály Budaest,. Név:... ód:...... Eredmény:..... STATSZTA. ZSGA; NG M ÉS G TQM SZAOON MNTAZSGA Feladatok.. 3. 4. 5. 6. Összesen Szerezhető ontszám 8 7 8 6 Elért ontszám
Vendéglátó üzletek elszámoltatása: A vendéglátásban az elszámoltatás munkaterületenként történik: RAKTÁR elszámoltatása
Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 1464-06 Előkészítés Vizsgarészhez rendelt vizsgafeladat megnevezése: 1464-06/1 Gazdálkodási számítások, veszteségszámítás, kapacitásszámítás
1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!
1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat! G H = H \ G = 2. Ha 1 kg szalámi ára 2800 Ft, akkor hány
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
KÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.
1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon
1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták.
1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták. a) Hozzon létre osztályközös gyakoriságot az alábbi osztályközökkel: - 100.000 100.000-150.000 150.000-200.000 200.000-250.000
KERESKEDELMI ÉS MARKETING ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. május 25. KERESKEDELMI ÉS MARKETING ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI
matematikai statisztika
Az újságokban, plakátokon, reklámkiadványokban sokszor találkozunk ilyen grafikonokkal, ezért szükséges, hogy megértsük, és jól tudjuk értelmezni őket. A második grafikon ismerős lehet, hiszen a függvények
Feladatok. Az adatokat tartalmazó munkafüzetet mentsük le saját számítógépünkre, majd onnan nyissuk meg az Excel programmal!
1. Feladat A táblázatunk négy légitársaság jegyeladását tartalmazza, negyedéves bontásban. Válaszoljunk a táblázat alatt lévő kérdésekre! Az eredmény IGAZ, vagy HAMIS legyen. Készítette: SZÁMALK Zrt, Szakképzési
Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László
Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,
1/8. Iskolai jelentés. 10.évfolyam matematika
1/8 2009 Iskolai jelentés 10.évfolyam matematika 2/8 Matematikai kompetenciaterület A fejlesztés célja A kidolgozásra kerülő programcsomagok az alább felsorolt készségek, képességek közül a számlálás,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Helyzetmutatók, szóródási mutatók, alakmutatók
Helyzetmutatók, szóródási mutatók, alakmutatók 1. A következ táblázat 48 darab 70 nm körüli budapesti lakás áráról 1995-ben összegy jtött információkat foglalja össze. Egészítse ki a táblázatot az alábbi
ELEMZŐ SZOFTVEREK. A tanárok elemző munkáját támogatja három, egyszerűen használható, minimális alkalmazói ismereteket igénylő Excel állomány.
ELEMZŐ SZOFTVEREK A tanárok elemző munkáját támogatja három, egyszerűen használható, minimális alkalmazói ismereteket igénylő Excel állomány. FELADAT-ITEMELEMZÉS munkalap A munkalapon a feladatok, feladatelemek
MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc
MATEMATIKA KISÉRETTSÉGI 2014. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont
Az egyszerűsítés utáni alak:
1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű
Korrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
Logika, gráfok. megtalált.
1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám és Tamás nézték meg figyelmesen az ábrákat: Ádám 11,
Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja
Megoldások 1. feladat A sokaság: 2007. szeptember 12-én a Miskolci Egyetem GT-204-es tankör statisztika óráján lévő tagjai az A 1 épület III. em. 53-as teremben 8-10-ig. Közös ismérv Megkülönböztető ismérv
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először
MATEMATIKA KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA 2012. 2014. április január 7. 18. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. 2014. április január 7. 18. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2014. január 18. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA
TIKMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Statisztika
TIKMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Statisztika 10. évfolyam. Adatsokaságok ábrázolása és diagramok értelmezése
Adatsokaságok ábrázolása és diagramok értelmezése A statisztikában adatsokaságnak (mintának) nevezik a vizsgálat tárgyát képező adatok összességét. Az adatokat összegyűjthetjük táblázatban és ábrázolhatjuk
KERESKEDELMI ÉS MARKETING ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2013. május 23. KERESKEDELMI ÉS MARKETING ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. május 23. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI
Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért november 15.
Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért 2018. november 15. PÉNZ a boldogság bitorlója? A jövedelemegyenlőtlenség természetes határa A boldog ember gondolata a
Iskolai jelentés. 10. évfolyam szövegértés
2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói
KERESKEDELMI ÉS MARKETING ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. május 19. KERESKEDELMI ÉS MARKETING ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI
Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész
2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
Szöveges feladatok a mátrixaritmetika alkalmazására
Szöveges feladatok a mátrixaritmetika alkalmazására Bevezetés: Tekintsük az alábbi -es mátrixot: A. Szorozzuk meg ezt jobbról egy alkalmas méretű (azaz -es) oszlopvektorral, amely az R tér kanonikus bázisának
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KERESKEDELEM ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK II. FELADATLAP
KERESKEDELEM ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK II. FELADATLAP Az áruforgalom és üzleti tevékenység elemzésének, tervezésének ismeretét és képességét mérő feladatlap I. Szöveges mintafeladatok
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft
Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az
MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 007. május 8. KÖZÉPSZINT ) Egyszerűsítse a következő törtet! (a; b valós szám, ab 0)! a b ab ab ab ( a ) a ab I. Összesen: pont ) Egy mértani sorozat második eleme 3, hatodik eleme.
Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2
Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű