STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.
|
|
- Győző Péter
- 8 évvel ezelőtt
- Látták:
Átírás
1 Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett sorából Helyzeti középértékek Helyzetük révén jellemzik a statisztikai sort Rangsorszám Legnagyobb gyakoriság centruma Számított középértékek Számítás eredménye 3/51 4/51 Módusz, Mo Bimodális eloszlás, U 5/51 6/51 1
2 Bimodális eloszlás, M A módusz meghatározása osztályközös gyakorisági sorból Osztályközös gyakorisági sorok esetén meg kell keresnünk a legnagyobb gyakoriságú osztályt, ez lesz a modális köz. A modális köz arányos osztásával határozhatjuk meg a móduszt: 7/51 8/51 Medián, Me Medián meghatározása minimum maximum 50% 50% 9/51 N = megfigyelések száma 10/51 Számtani átlag Számtani átlag tulajdonságai Ha az átlaggal helyettesítjük az alapadatokat, az értékösszeg nem változik Az alapadatok számtani átlagtól vett eltéréseinek összege nulla A számtani átlagtól vett eltérések négyzetösszege a legkisebb 11/51 12/51 2
3 Egyszerű számtani átlag Részátlagok Időszak Mennyiség mm Január 11 Február 36 Március 27 Április 24 Május 59 Június 45 Július 88 Augusztus 68 Szeptember 73 Október 39 November 38 December 25 Összesen 533 Átlag 44,42 A lehullott csapadék mennyisége Debrecenben (2002) ( )/12= 44,42 13/51 14/51 Súlyozott számtani átlag Súlyozott számtani átlag Az átlagolandó értékek gyakorisága különböző. Terület ha Termésátlag t/ha Termés (t) f i x i f i x i A1 tábla 25 3,6 90 A2 tábla 32 4,4 140,8 A3 tábla 14 5,1 71,4 B1 tábla 19 4,3 81,7 C tábla 33 3,7 122,1 Összesen /51 16/51 Súlyozott számtani részátlagok Az árbevétellel bővített adatbázis Számítsuk ki az áruházlánc eladott élelmiszereinek átlagárait évenként Buktatók!!! 17/51 18/51 3
4 Kimutatásrészlet Súlyozott számtani átlag 19/51 20/51 Kronologikus átlag Kronologikus átlag képlete Állapot idősor adataiból számított speciális számtani átlag Az adatok időben egyenlő távolságra helyezkednek el Feltételezzük, hogy egy időszak záró adata a következő időszak nyitóadata. 21/51 22/51 Raktárkészlet Módusz, medián és számtani átlag elhelyezkedése Módusz Minimum Medián Sz. átlag Maximum Minimum Módusz Medián Sz. átlag Maximum Minimum Sz. átlag Medián Módusz Maximum 23/51 24/51 4
5 Harmonikus átlag Harmonikus átlag képlete Viszonyszámok átlagolása esetén akkor, ha a számlálót tekintjük súlynak. Csak azonos súlyú adatok átlagolhatók! 25/51 26/51 Példa harmonikus átlagokra Átlagsebesség azonos útszakaszok esetén Átlagsűrűség azonos tömegek esetén Átlagos területteljesítmény azonos területek esetén Fordított teljesítménymutatók átlaga azonos időtartam esetén Stb. Példa harmonikus közép számítására 1. Sebesség (km/h) Úthossz (km) Mennyi az átlagos sebesség? 27/51 28/51 Példa harmonikus közép számítására 2. Súlyozott harmonikus átlag A piros fűnyíró 8 óra alatt, a kék 18 óra alatt vágja le a golfpálya gyepét. Együtt dolgozva hány óra alatt végeznek, ha egyszerre kezdenek? 29/51 30/51 5
6 Súlyozott harmonikus átlag, ha a számláló a súly Viszonyszámok esetén fontos! Tábla jele Összes termés (t) (f i ) (t/ha) (x i ) Súlyozott harmonikus átlag K B C /51 32/51 Súlyozott számtani vagy harmonikus átlag? Viszonyszámok esetén fontos! Tábla jele Tábla mérete (ha) Összes termés (t) (t/ha) K Intenzitási viszonyszám B C /51 34/51 Súlyozott számtani átlag, ha a nevező a súly Súlyozott számtani átlag Tábla jele Tábla mérete (ha) (f i ) (t/ha) (x i ) K B C /51 36/51 6
7 Súlyozott harmonikus átlag, ha a számláló a súly Viszonyszámok esetén fontos! Tábla jele Összes termés (t) (f i ) (t/ha) (x i ) Súlyozott harmonikus átlag K B C /51 38/51 Mértani közép Mértani közép képlete Átlagos növekedési ráta /51 40/51 Mértani átlag a gyakorlatban Idősorok elemzésénél, átlagos fejlődési ütem vizsgálata. Egy folyamat átlagos változásának a mérése. A változás átlagát leggyakrabban dinamikus viszonyszámokból határozzuk meg. Számolhatjuk súlyozatlan (egyszerű) és és súlyozott formában. 41/51 Példa mértani közép számítására Az Aral-tó szennyezettsége az első hónapban duplájára, a második hónapban nyolcszorosára, a harmadik hónapban szintén nyolcszorosára és a negyedik hónapban ismét duplájára nő. Mennyi az átlagos havi szennyezettség növekedési üteme a vizsgált időszakban? 42/51 7
8 Dinamikus viszonyszámok mértani átlaga Súlyozott mértani átlag Láncviszonyszámból: Akkor számoljuk, ha az időközök nem egyenletesek, az adatok eltérő gyakoriságúak Bázis viszonyszámból: 43/51 44/51 Súlyozott mértani átlag képlete Példa súlyozott mértani átlagra Az alkalmazottak bére az év első két hónapjában havi 2%-os, majd az év többi hónapjában havi 6%-os növekedést mutat. Mennyi az átlagos havi növekedés üteme? 45/51 46/51 Négyzetes átlag Négyzetes átlag képlete Periodikus jelenségek átlagolása Távolságok átlagolása Változékonyság és összefüggés vizsgálatok 47/51 48/51 8
9 Négyzetes átlagok 1. Négyzetes átlagok 2. 49/51 50/51 Az átlagok nagyságrendje 51/51 9
A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos
Középérték Középérték A középérték a statisztikai adatok tömör számszerű jellemzése. helyzeti középérték: módusz medián számított középérték: számtani átlag kronológikus átlag harmonikus átlag mértani
Statisztikai alapfogalmak
Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt
STATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása
A változók mérési szintjei STATISZTIKA I. 3. Előadás Az adatok mérési szintjei, Viszonyszámok A változók az alábbi típusba tartozhatnak: Nominális (kategorikus és diszkrét) Ordinális Intervallum skála
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
STATISZTIKA. ltozók. szintjei, tartozhatnak: 2. Előad. Intervallum skála. Az adatok mérési m. Az alacsony mérési m. Megszáml Gyakoriság módusz
A változv ltozók k mérés m sztje STATISZTIKA. Előad adás Az adatok mérés m sztje, Cetráls mutatók A változv ltozók k az alább típusba t tartozhatak: Nomáls (kategorkus és s dszkrét) Ordáls Itervallum skála
1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő
Figyelem! A példasor nem tartalmazza valamennyi típuspéldát. A dolgozatban az órán leadott feladatok közül bármely típusú előfordulhat. A példasor már a második dolgozat anyagát gyakorló feladatokat is
KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység
KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
Buktatók!!! = n. szátlagok. Súlyozott számtani. átlag. Kimutatásr
Medá megatároz rozása STATISZTIKA. gyakorlat mmum N mamum Cetráls mutatók 50% 50% N meggyelések száma Medá Forgalm adatok medája medá(forgalom) 5 kg Számta Forgalm adatok számta a 50 0 9 87 59 075 5 Részok
2. előadás. Viszonyszámok típusai
2. előadás Viszonyszámok típusai Mérési skálák Nominális /névleges skála: kötetlen hozzárendelése a számoknak Sorrendi / Ordinális skála: sokaság egyedeinek egy közös tulajdonság szerinti sorbarendezése
STATISZTIKA. Mit nevezünk idősornak? Az idősorok elemzésének módszertana. Az idősorelemzés célja. Determinisztikus idősorelemzés
Mit nevezünk idősornak? STATISZTIKA 10. Előadás Idősorok analízise Egyenlő időközökben végzett megfigyelések A sorrend kötött, y 1, y 2 y t y N N= időpontok száma Minden időponthoz egy adat, reprodukálhatatlanság
Viszonyszám A B. Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a. viszonyítadóadat
Viszonyszámok Viszonyszám Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a viszonyítandó adat Viszonyítás tárgya (viszonyítandó adat) B: a viszonyítás alapja V viszonyítadóadat
Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot
A sokaság/minta eloszlásának jellemzése
3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,
1. óra: Területi statisztikai alapok viszonyszámok, középértékek
1. óra: Területi statisztikai alapok viszonyszámok, középértékek Tér és társadalom (TGME0405-GY) gyakorlat 2018-2019. tanév Viszonyszámok Viszonyszá m Viszonyítandó adat (A) Viszonyítási alap (B) 1. Megoszlási
Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre
Statsztka I. 4. előadás Előadó: Dr. Ertsey Imre KÖZÉPÉRTÉKEK A statsztka sor általáos jellemzésére szolgálak, a statsztka sokaságot egy számmal jellemzk. Számított középértékek: matematka számítás eredméyekét
STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
Bevezető Mi a statisztika? Mérés Csoportosítás
Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető
[GVMGS11MNC] Gazdaságstatisztika
[GVMGS11MNC] Gazdaságstatisztika 1. előadás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.uni-obuda.hu)
Statisztikai alapfogalmak
i alapfogalmak statisztikai sokaság: a megfigyelés tárgyát képező egyedek összessége 2 csoportja van: álló sokaság: mindig vmiféle állapotot, állományt fejez ki, adatai egy adott időpontban értelmezhetők
STATISZTIKA. Gyakorló feladatok az első zh-ra
STATISZTIKA Gyakorló feladatok az első zh-ra A változás átlagos üteme év Kenyér Ft/ kg bázisindex % 2002 151 100,0 2003 156 103,3 2004 178 117,9 2005 173 114,6 2006 179 118,5 2007 215 142,4 I = n 1 l i
Statisztika I. 7. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 7. előadás Előadó: Dr. Ertsey Imre STATISZTIKAI INDEXEK STATISZTIKAI INDEXEK Index: latin eredetű szó, egyszerűen mutatót jelent A statisztikai indexszám: - komplexebb tartalmú, - többet
6. A kereskedelmi készletek elszámoltatása, az értékesítés elszámoltatása 46. Összefoglaló feladatok 48.
Tartalomjegyzék 1. Alapvető gazdasági számítások 4. 1.1. A gazdasági számítások jelentősége egy vállalkozás életében 4. 1.2. A gazdasági számításokkal szemben támasztott követelmények 4. 1.3. Milyen feladatokat
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. A fős osztály dolgozatot írt matematikából és a következő jegyek születtek: 6 darab jeles, 9 darab jó, 8 darab közepes, darab elégséges és darab elégtelen. Készíts gyakorisági táblázatot,
Áruforgalom tervezése. 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok
Áruforgalom tervezése 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok Alapvető gazdasági számítások 1. Egy vállalkozás tevékenysége nagyon összetett. Szükség van arra, hogy ismerjük
MINDEN FELADATOT A FELADATOT TARTALMAZÓ LAPON OLD- JONMEG!
NÉV: ERA kód: évf.: gyak. vez.: MINDEN FELADATOT A FELADATOT TARTALMAZÓ LAPON OLD- JONMEG! Al. (a) Definiálja a mo ment um és a centrális momentum fogalmát (általában) (4 pont)! Egy megyében egy vizsgált
Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre
Statisztika I. 13. előadás Idősorok elemzése Előadó: Dr. Ertse Imre A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Ezek a
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
Matematikai statisztikai elemzések 2.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 2. MSTE2 modul Helyzetmutatók, átlagok, kvantilisek. A szórás és szóródás egyéb mérőszámai.
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari
Microsoft Excel 2010. Gyakoriság
Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó
MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:
1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I.
Statisztika I. 1. előadás: A statisztika alapfogalmai Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem A kurzusról A kurzus célja
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
A(a; b) = 2. A(a; b) = a+b. Példák A(37; 49) = x 2x = x = : 2 x = x = x
10. osztály:nevezetes középértékek Összeállította:Keszeg ttila 1 1 számtani közép efiníció 1. (Két nemnegatív szám számtani közepe) Két nemnegatív szám számtani közepének a két szám összegének a felét
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Idősorok elemzése előadás. Előadó: Dr. Balogh Péter
Idősorok elemzése előadás Előadó: Dr. Balogh Péter Idősorok elemzése A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Az idősorokban
A területi koncentráció interpretálása: kitüntetett helyzetek
A területi koncentráció interpretálása: kitüntetett helyzetek Kitüntetett helyzetek Egy társadalmi-gazdasági jelenség területi elhelyezkedésének mérése, interpretálása Egy jelenség középponti koordinátáinak
A területi polarizáltság mérőszámai
A területi polarizáltság mérőszámai Duál mutató A területi polarizáltság mérőszámai: Relatív range, range arány Duál mutató Duál mutató Az adatsor 2 részcsoportja átlagainak hányadosa Egyszerű, világos
55 345 01 0010 55 01 Európai Uniós üzleti
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Melyik az a szám, amelynek a felét és az ötödét összeszorozva, a szám hétszeresét kapjuk? Legyen a keresett szám:. A szöveg alapján felírhatjuk a következő egyenletet: 1 1 = 7. 5 Ezt rendezve
7, 6, 0, 4, 0, 1, 5, 2, 2, 16, 1, 0, 2, 3, 9, 2, 4, 10, 3, 1, 2, 12, 4, 1
52. feladat Stat Jenő egyetemi hallgató autóbusszal jár az egyetemre. Néhány napon át megmérte, hogy mennyit kell várnia az első egyetem felé közlekedő autóbuszra. A következő időket tapasztalta (percben):
Matematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika
Feladatok MATEMATIKÁBÓL II.
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
STATISZTIKA I. 3. rész. T.Nagy Judit
STATSZTKA. 3. rész T.Nagy Judit tnagy.judit@hjf.hu Standardizálás és standardizáláson alauló indexszámítás nhomogén (heterogén) sokaságokra vonatkozó átlagok; intenzitási viszonyszámok (átlagbérek, átlagos
Statisztika I. 10. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 10. előadás Előadó: Dr. Ertsey Imre Varianciaanalízis A különböző tényezők okozta szórás illetőleg szórásnégyzet összetevőire bontásán alapszik Segítségével egyszerre több mintát hasonlíthatunk
KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység
KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2143-06 Statisztikai feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése: A statisztikai elemzés
Tábla, Projektorral kivetített tananyag. Az óra menete. 1. Mikor eredményes egy vállalkozás készletgazdálkodása?
Osztály 10A. Tantárgy Üzleti tevékenység tervezése gyakorlat Téma: A készletek elemzésének tervezésének, valamint a leltáreredmény mutatószámai Tanítási egység Forgási sebesség mutatói Felhasznált irodalom
A lánc viszonyszám: A lánc viszonyszám számítási képlete:
A lánc viszonyszám: Az idősor minden egyes tagját a közvetlenül megelőzővel osztjuk, vagyis az idősor első évének, vagy időszakának láncviszonyszáma nem számítható. A lánc viszonyszám számítási képlete:
Matematikai geodéziai számítások 7.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 7. MGS7 modul Súlyozott számtani közép számítása és záróhibák elosztása SZÉKESFEHÉRVÁR 2010 Jelen
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek
1. Felületi érdesség használata Felületi érdesség A műszaki rajzokon a geometria méretek tűrése mellett a felületeket is jellemzik. A felületek jellemzésére leginkább a felületi érdességet használják.
TANMENET. a matematika tantárgy tanításához 10. E.osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 10. E.osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
Elemi statisztika fizikusoknak
1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok
Vizsgafeladatok. 1. feladat (3+8+6=17 pont) (2014. január 7.)
Vizsgafeladatok 1. feladat (3+8+6=17 pont) (2014. január 7.) Az elmúlt négy év a 2010. I. és a 2013. IV. negyedéve között csapadék mennyiségének alakulásáról az alábbiakat ismerjük: Időszak Csapadék mennyiéség
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak
Készletgazdálkodás. TÉMAKÖR TARTALMA - Készlet - Átlagkészlet - Készletgazdálkodási mutatók - Készletváltozások - Áruforgalmi mérlegsor
Készletgazdálkodás TÉMAKÖR TARTALMA - Készlet - Átlagkészlet - Készletgazdálkodási mutatók - Készletváltozások - Áruforgalmi mérlegsor KÉSZLET A készlet az üzletben lévı áruk értékének összessége. A vállalkozás
A azonosító számú Gazdálkodás megnevezésű szakmai követelménymodulhoz tartozó Szakmai számítások tantárgy
A 10045-12 azonosító számú Gazdálkodás megnevezésű szakmai követelménymodulhoz tartozó Szakmai számítások tantárgy 1 1. A 10045-12 azonosító számú, Gazdálkodás megnevezésű szakmai követelménymodulhoz tartozó
352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm
5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88
Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások
Függetlenségvizsgálat, Illeszkedésvizsgálat
Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata
matematikai statisztika
Az újságokban, plakátokon, reklámkiadványokban sokszor találkozunk ilyen grafikonokkal, ezért szükséges, hogy megértsük, és jól tudjuk értelmezni őket. A második grafikon ismerős lehet, hiszen a függvények
EPIDEMIOLÓGIA I. Alapfogalmak
EPIDEMIOLÓGIA I. Alapfogalmak TANULJON EPIDEMIOLÓGIÁT! mert része a curriculumnak mert szüksége lesz rá a bármilyen tárgyú TDK munkában, szakdolgozat és rektori pályázat írásában mert szüksége lesz rá
Egyenletek, egyenlőtlenségek IX.
Egyenletek, egyenlőtlenségek IX. Szöveges feladatok megoldása: A szöveges feladatok esetén írjunk fel egyenletet a korábban tanultak alapján, majd a kapott másodfokú egyenletet oldjuk meg a megoldóképlet
Készletek: Készletek jellemzői: 1. nagyrészük a raktárakban, az értékesítőhelyen, illetve kisebb részük a termelőhelyen található
Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 1464-06 Előkészítés Vizsgarészhez rendelt vizsgafeladat megnevezése: 1464-06/1 Gazdálkodási számítások, veszteségszámítás, kapacitásszámítás
OKM ISKOLAI EREDMÉNYEK
OKM ISKOLAI EREDMÉNYEK Statisztikai alapfogalmak Item Statisztikai alapfogalmak Átlag Leggyakrabban: számtani átlag Egyetlen számadat jól jellemzi az eredményeket Óvatosan: elfed Statisztikai alapfogalmak
Mérhető a védőnői munka objektíven? A védőnői munka értékelése kontrolling módszertannal.
Mérhető a védőnői munka objektíven? A védőnői munka értékelése kontrolling módszertannal. Szerzők: Dr. Kóti Tamás, Domján Péter, Hamarné Debreczeni Rita Gyógyír XI. Nonprofit Kft. Budapest Balatonfüred
A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015
A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
18. modul: STATISZTIKA
MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret
MUNKAANYAG. Bernáth Julianna. Alapvető statisztikai módszerek a vállalkozás tevékenységét érintő javaslatok előkészítéséhez
Bernáth Julianna Alapvető statisztikai módszerek a vállalkozás tevékenységét érintő javaslatok előkészítéséhez A követelménymodul megnevezése: A beszerzés és az értékesítés előkészítése, megszervezése
Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat
Szent István Egyetem Gazdaság- és Társadalomtudományi Kar Statisztika I. Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat Boros Daniella OIPGB9 Kereskedelem és marketing I. évfolyam BA,
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
Statisztika példatár
Statisztika példatár v0.02 A példatár folyamatosan b vül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a letölthet példatárak közt. Országh Tamás Budapest, 2006 Mottó: Ki kéne vágni minden
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar. Villamos Energetika Tanszék. Világítástechnika (BME VIVEM 355)
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Villamos Energetika Tanszék Világítástechnika (BME VIVEM 355) Beltéri mérés Világítástechnikai felülvizsgálati jegyzőkönyv
A konfidencia intervallum képlete: x± t( α /2, df )
1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,
Statisztika a hétköznapokban
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. (: 27-317 - 077 (/fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Statisztika
Statisztika összefoglalás
Statisztika összefoglalás 1 / 18. oldal 1. Alapfogalmak Statisztika: a tömegesen előforduló jelenségek vizsgálatával foglalkozik, ezekre vonatkozóan adatokat gyűjt, feldolgoz, elemez és közzé tesz. o a
Korrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja
Megoldások 1. feladat A sokaság: 2007. szeptember 12-én a Miskolci Egyetem GT-204-es tankör statisztika óráján lévő tagjai az A 1 épület III. em. 53-as teremben 8-10-ig. Közös ismérv Megkülönböztető ismérv
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,
9.3. Külkereskedelmi statisztika...77 9.4. Pénzügystatisztika, az államháztartás információs rendszere...77 9.5. Agrárstatisztikai információs
Kovács Péter Statisztikai alapismeretek Tartalomjegyzék BEVEZETÉS...4. A STATISZTIKA ALAPFOGALMAI...5.. A statisztika tárgy, tudományági besorolása...5.. Alapfogalmak...6.3. A statisztikai munka fázisai...8.4.
STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
STATISZTIKA 10. Előadás Megbízhatósági tartományok (Konfidencia intervallumok) Sir Isaac Newton, 1643-1727 Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
A GDP hasonlóképpen nem tükrözi a háztartások közötti munka- és termékcseréket.
FŐBB MUTATÓK A regionális GDP adatok minősége alapvetően 3 tényezőtől függ: az alkalmazott számítási módszertől a felhasznált adatok minőségétől a vizsgált területi egység nagyságától. A TERÜLETI EGYENLŐTLENSÉGEK
TÁRKI ADATFELVÉTELI ÉS ADATBANK OSZTÁLYA. Változás SPSS állomány neve: Budapest, 2002.
TÁRKI ADATFELVÉTELI ÉS ADATBANK OSZTÁLYA Változás 2002 SPSS állomány neve: F54 Budapest, 2002. Változás 2002 2 Tartalomjegyzék BEVEZETÉS... 3 A SÚLYOZATLAN MINTA ÖSSZEHASONLÍTÁSA ISMERT DEMOGRÁFIAI ELOSZLÁSOKKAL...
Idősorok elemzése [leíró statisztikai eszközök] I
Leíró és matematikai statisztika Matematika alapszak, matematikai elemző szakirány Zempléni András Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem
Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I.
Statisztika I. 1. előadás: A statisztika alapfogalmai Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem A kurzusról A kurzus célja