Korrelációs kapcsolatok elemzése
|
|
- Benedek Papp
- 6 évvel ezelőtt
- Látták:
Átírás
1 Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek
2 Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az Y szerinti hovatartozásról. Sztochasztikus: Az egyik ismérv hatással van a másikra, de nem határozza meg egyértelműen annak értékeit/változatait. Függvényszerű (determinisztikus): A vizsgált egységek X szerinti hovatartozásának ismeretében egyértelműen megmondható azok Y szerinti hovatartozása is.
3 A kapcsolat mérőszámai Két nominális változó közötti kapcsolatot az asszociációs mérőszámokkal jellemezzük. Ordinális típusú változók összefüggését a rangkorrelációs mutatók mérik. Arány skála típusú változók összefüggését korreláció- és regresszió-analízissel elemezzük. Intervallum/arány és nominális skálán mért változók közötti összefüggést H;
4 Sztochasztikus kapcsolatok fajtái Asszociáció (mindkét ismérv minőségi/területi ismérv, nominális skálán mérve). Vegyes (egyik ismérv mennyiségi, másik területi/minőségi, intervallum/arány és nominális skálán mérve. Korreláció (mindkét ismérv mennyiségi, intervallum/arány skálán mérve). Rangkorreláció (mindkét változó sorrendi skálán mérhető).
5 Korrelációs kapcsolat elemzése Van-e összefüggés az ismérvek között? Milyen irányú az összefüggés? Mennyire szoros a kapcsolat? Az egyik ismérv változása milyen hatással van a másik ismérv változására?
6 Alapfogalmak I. A mennyiségi ismérvek közötti kapcsolatot korrelációnak nevezzük. A korrelációszámítás: a mennyiségi ismérvek közötti kapcsolat szorosságának mérése. A regressziószámítás: a mennyiségi ismérvek egymásra gyakorolt hatásának számszerűsítésével, e hatások irányának és mértékének megállapításával foglalkozik.
7 Alapfogalmak II. Ha a korreláció mögött egyirányú okozati összefüggés állapítható meg: az ok szerepét betöltő ismérvet tényezőváltozónak, magyarázó-, független változónak (X), az okozat szerepét játszó ismérvet pedig eredményváltozónak, függő változónak (Y) nevezzük.
8 A korreláció fontosabb típusai
9 Korreláció hiánya A regresszió-függvény bármely X helyen azonos (közel azonos) értéket vesz fel. A függvény képe vízszintes vonal. ( Y független X-től, X nem befolyásolja Y értékét.)
10 A korreláció hiánya Y = E X 3 R - S q = 3. 4 % N i n c s k o r r e lá c i ó
11 Függvényszerű kapcsolat A korreláció hiányának logikai ellentéte a függvényszerű kapcsolat. Egy adott X értékhez csupán egyetlen Y érték tartozhat. Ilyenkor a pontdiagram pontjai a regresszió-vonalhoz illeszkednek, azaz a regresszióvonal körül nincs szóródás.
12 Pozitív korreláció Általában a regressziógörbe körül van szóródás. A regressziógörbe alakja a korreláció tartalmát fejezi ki. Ha nagyobb X értékekhez általában nagyobb Y értékek tartoznak, vagyis a tényezőváltozó növelése az eredményváltozó nagyságát növeli.
13 Pozitív korreláció Y = E X 3 R -S q = 6. 5 % P o z i t ív k o r r e l á c i ó
14 Negatív korreláció Az előbbi kapcsolat ellentéte természetesen a negatív korreláció, amelyet a regressziófüggvény ugyancsak szemléletesen jelez.
15 Negatív korreláció Y = E X 3 R - S q = % N e g a t ív k o r r e lá c i ó
16 Görbevonalú kapcsolat A lineáristól eltérő típust görbe vonalú (nemlineáris) kapcsolatnak nevezzük. A nemlineáris kapcsolatok egy részénél továbbra is van értelme pozitív, vagy negatív irányzatról beszélni, feltéve, hogy a görbe monoton növekvő, illetve csökkenő irányzatot mutat az értelmezési tartományon belül. Nem lehet azonban pozitív vagy negatív irányról beszélni, ha a regresszió irányt változtat.
17 Görbevonalú kapcsolat Y = X X * * 4 0 R - S q = % N e m l i n e á r i s k o r r e lá c i ó
18 A kapcsolat szorosságának mérőszámai
19 A kovariancia Az X és Y mennyiségi változók közötti kapcsolat irányát mutatja meg. A megfelelő átlagtól vett ( x - x) és ( y - y) eltéréseken alapszik. C = d x d n -1 y = xy n -1 - x y C r s x s y
20 Kovariancia tulajdonságai A kovariancia nulla, ha a pozitív és a negatív előjelű eltérésszorzatok összege kiegyenlíti egymást. Kovariancia előjele a kapcsolat irányát mutatja. A kovariancia abszolút mértékének nincs határozott felső korlátja. A kovariancia a két változóban szimmetrikus, X és Y szerepe a formulában felcserélhető.
21 Dolgozó Egy vállalat dolgozóinak keresete és havi megtakarítása Bér (Ft/fő) Havi megtakarítás (Ft/hó) d x d y d x d y d x d y Összesen
22 Kovariancia C = d x d n -1 y = xy n -1 - x y ,8 Értelmezés: a dolgozók keresete és a havi megtakarított összege közötti kapcsolat pozitív irányú.
23 A korrelációs együttható A korrelációs együttható a lineáris korreláció szorosságának legfontosabb mérőszáma. A kapcsolat hiányát (korrelálatlanság) az r = 0 érték jelzi. Az r előjele a korreláció irányát mutatja. Tökéletes (függvényszerű) lineáris kapcsolatnak - az iránytól függően - az r = +1, illetve r = -1 értékek felelnek meg. A szélsőséges helyzetek között az együttható abszolút értéke a kapcsolat szorosságáról tájékoztat.
24 Korrelációs együttható d d = xy - n x y x y d = x n x x d = y n y y ) )( ( y x y x y x y n y x n x y x xy- n d d d d C = r s s
25 Korrelációs együttható Dolgozó Bér (Ft/fő) Havi megtakarítás (Ft/hó) d x d y d x d y d x d y Összesen r = s x C dxd y s y dx d y ,954 Értelmezés: a dolgozók keresete és a havi megtakarított összege közötti kapcsolat pozitív irányú és erős.
26 Determinációs együttható A determinációs együttható megmutatja, hogy a magyarázóváltozó hány %-ban befolyásolja az eredményváltozó szóródását. Jele: r A determinációs együttható jellemzi: A regressziós függvény illeszkedését, A modell magyarázó erejét.
27 Determinációs együttható r 0,954 0, ,98% Értelmezés: a dolgozók keresete 90,98%- ban befolyásolja a havi megtakarított összeg szóródását.
28 A rangkorreláció Létezhetnek a statisztikai sokaság egységeinek olyan kvantitatív jellegű tulajdonságai, amelyek számszerűen egyáltalán nem, vagy csak nehezen mérhetők. A mutatószám értéke r-hez hasonlóan természetesen -1 és 1 között helyezkedik el. Ha a kétféle rangsorszám rendre megegyezik, akkor = 1, ha a sorszámok a két ismérv szerint következetesen ellentétesen alakulnak, akkor = -1. 6di = 1- n(n 1)
29 Rangkorreláció Egy régió vállalatainak gazdálkodására vonatkozó adatok Régió Árbevétel (MFt) Nyereség (MFt) 16 10, x y d d di 646 = 1-1 0,71 n(n 1) Értelmezés: a vállalatok árbevétele és nyeresége között közepesnél szorosabb, pozitív irányú kapcsolat van.
30 A korrelációs hányados A görbevonalú kapcsolatok szorosságának mérőszáma. A mutatószám kialakításának gondolatmenete: csoportosítjuk a megfigyelt értékeket a tényezőváltozó értékei vagy osztályközei szerint, és kiszámítjuk az eredményváltozó részátlagait az egyes csoportokban. S K (y) B (y) 1 1 S K(y) y/x (y) (y) ( y) S S B (y) (y)
31 A korrelációs hányados A korrelációs hányados négyzetét definiáltuk, mivel az csupán a kapcsolat intenzitását jelzi, irányát nem. Megoszlási viszonyszám jellegénél fogva a korrelációs hányados négyzete mindig nulla és egy közé esik. Előjelét nem értelmezzük, megállapodásszerűen pozitív számként kezeljük. A korrelációs hányadost nem szokták százalékos formában kifejezni. Általában y/x x/y tehát nem szimmetrikus az X és Y változókban. X csupán mint csoportképző ismérv szerepel.
32 Köszönöm a figyelmet strolsz@uni-miskolc.hu
Kvantitatív statisztikai módszerek
Kvantitatív statisztikai módszerek 1. konzultáció tárgyjegyző Dr. Szilágyi Roland Mérési skálák Számok meghatározott szabályok szerinti hozzárendelése jelenségekhez, bizonyos tulajdonságokhoz. 4 féle szabály
Korreláció számítás az SPSSben
Korreláció számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi
Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr.
Korrelácó-számítás 1. előadás Döntéselőkészítés módszertana Dr. Varga Beatr Két változó között kapcsolat Függetlenség: Az X smérv szernt hovatartozás smerete nem ad semmlen többletnformácót az Y szernt
Bevezetés a Korreláció &
Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv
Függetlenségvizsgálat, Illeszkedésvizsgálat
Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata
Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység
KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:
GVMST22GNC Statisztika II.
GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Regresszió számítás az SPSSben
Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól
Statisztikai alapfogalmak
Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt
Kvantitatív elemzési módszerek
Kvantitatív elemzési módszerek Dr. Szilágyi Roland Dr. Varga Beatrix Bevezetés 2 A statisztika fogalma gyakorlati tevékenység, amelynek eredményeképpen statisztikai adatokhoz jutunk; e tevékenység eredményeképpen
III. Kvantitatív változók kapcsolata (korreláció, regresszió)
III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Matematikai statisztikai elemzések 5.
Matematikai statisztikai elemzések 5. Kapcsolatvizsgálat: asszociáció, vegyes kapcsolat, korrelációszámítás. Varianciaanalízis Prof. Dr. Závoti, József Matematikai statisztikai elemzések 5.: Kapcsolatvizsgálat:
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
Sztochasztikus kapcsolatok
Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.
Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
Többváltozós Regresszió-számítás
Töváltozós Regresszió-számítás 3. előadás Döntéselőkészítés módszertana Dr. Szilágyi Roland Korreláció Célja a kacsolat szorosságának mérése. Regresszió Célja a kacsolatan megfigyelhető törvényszerűség
Lineáris regressziószámítás 1. - kétváltozós eset
Lineáris regressziószámítás 1. - kétváltozós eset Orlovits Zsanett 2019. február 6. Adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó
VIZSGADOLGOZAT. I. PÉLDÁK (60 pont)
VIZSGADOLGOZAT (100 pont) A megoldások csak szöveges válaszokkal teljes értékűek! I. PÉLDÁK (60 pont) 1. példa (13 pont) Az egyik budapesti könyvtárban az olvasókból vett 400 elemű minta alapján a következőket
Mérési adatok illesztése, korreláció, regresszió
Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,
2. előadás. Viszonyszámok típusai
2. előadás Viszonyszámok típusai Mérési skálák Nominális /névleges skála: kötetlen hozzárendelése a számoknak Sorrendi / Ordinális skála: sokaság egyedeinek egy közös tulajdonság szerinti sorbarendezése
Korreláció és Regresszió
Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat
Korreláció és lineáris regresszió
Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
Segítség az outputok értelmezéséhez
Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró
Többváltozós lineáris regressziós modell feltételeinek tesztelése II.
Többváltozós lineáris regressziós modell feltételeinek tesztelése II. - A magyarázó változóra vonatkozó feltételek tesztelése - Optimális regressziós modell kialakítása - Kvantitatív statisztikai módszerek
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
Matematikai statisztikai elemzések 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 6. MSTE6 modul Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós
STATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása
A változók mérési szintjei STATISZTIKA I. 3. Előadás Az adatok mérési szintjei, Viszonyszámok A változók az alábbi típusba tartozhatnak: Nominális (kategorikus és diszkrét) Ordinális Intervallum skála
Nem Fő (f) % (g) -160 100 161-180 150 181-200 50 Z 300. Férfi 180 60% Nő 120 40% Z 300 100%
IX. 08. előadás Statisztikai sokaság: amire a megfigyelés irányul. Statisztikai ismérv: vizsgálati szempont, tulajdonság. Van közös (körülhatárolja a sokaságot) és megkülönböztető: területi {pl: születési
Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör
Korreláció- és regresszió-analízis Az X és Y véletlen változók között az alábbi ábrákon pozitív összefüggés nem lineáris összefüggés negatív összefüggés van Előfordulhat, hogy X és Y között van kapcsolat,
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba
TANTÁRGYI ÚTMUTATÓ. Statisztika 1.
I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Statisztika 1. TÁVOKTATÁS Tanév 2014/2015 II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Statisztika 1. Tanszék: Módszertani Tantárgyfelelős neve: Sándorné Dr. Kriszt
Matematikai statisztikai elemzések 5.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések. MSTE modul Kapcsolatvizsgálat: asszociáció vegyes kapcsolat korrelációszámítás. Varianciaanalízis
Statisztika. Dr Gősi Zsuzsanna. Egyetemi adjunktus. Sportmenedzsment Tanszék
Statisztika Dr Gősi Zsuzsanna Egyetemi adjunktus Sportmenedzsment Tanszék Kötelező irodalom - Számonkérés Pintér József Ács Pongrác Bevezetés a sportstatisztikába Dialóg Campus Kiadó 2007 Honlap: www.dialog-kiado.hu
4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
STATISZTIKA. Fogalom. A standard lineáris regressziós modell mátrixalgebrai jelölése. A standard lineáris modell. Eredménytáblázat
Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése
A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015
A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel
Bevezető Mi a statisztika? Mérés Csoportosítás
Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető
Van-e kapcsolat a változók között? (példák: fizetés-távolság; felvételi pontszám - görgetett átlag)
, rangkorreláció Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
A sokaság/minta eloszlásának jellemzése
3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,
Módszertani Intézeti Tanszéki Osztály
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012. Név:... Kód:...... Eredmény:..... STATISZTIKA I. VIZSGA; NG KM ÉS KG TQM SZAKOKON MINTAVIZSGA Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető
1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő
Figyelem! A példasor nem tartalmazza valamennyi típuspéldát. A dolgozatban az órán leadott feladatok közül bármely típusú előfordulhat. A példasor már a második dolgozat anyagát gyakorló feladatokat is
A leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
Statisztika I. 2. előadás: Statisztikai táblák elemzése. Kóczy Á. László. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem
Statisztika I 2 előadás: Statisztikai táblák elemzése Kóczy Á László koczylaszlo@kgkuni-obudahu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Eddig statisztikai alapfogalmak
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
[GVMGS11MNC] Gazdaságstatisztika
[GVMGS11MNC] Gazdaságstatisztika 1. előadás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.uni-obuda.hu)
Diszkriminancia-analízis
Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független
Változók közötti kapcsolat III.: a folytonos eset. Regresszió és korreláció.
http://statisztika.szoc.elte.hu/tarsstat Társadalomstatisztika, 003/004 I. félév. November 5. Mai tematika: Változók közötti kapcsolat III.: a folytonos eset. Regresszió és korreláció. Bevezetés Együttes
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért november 15.
Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért 2018. november 15. PÉNZ a boldogság bitorlója? A jövedelemegyenlőtlenség természetes határa A boldog ember gondolata a
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?
Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
Méréselmélet és mérőrendszerek
Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
A statisztika oktatásáról konkrétan
A világ statisztikája a statisztika világa ünnepi konferencia Esztergom, 2010.október 15. A statisztika oktatásáról konkrétan Dr. Varga Beatrix PhD. egyetemi docens MISKOLCI EGYETEM Üzleti Statisztika
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
Khi-négyzet eloszlás. Statisztika II., 3. alkalom
Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként
Fogalom STATISZTIKA. Alkalmazhatósági feltételek. A standard lineáris modell. Projekciós mátrix, P
Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése
ELEMZŐ SZOFTVEREK. A tanárok elemző munkáját támogatja három, egyszerűen használható, minimális alkalmazói ismereteket igénylő Excel állomány.
ELEMZŐ SZOFTVEREK A tanárok elemző munkáját támogatja három, egyszerűen használható, minimális alkalmazói ismereteket igénylő Excel állomány. FELADAT-ITEMELEMZÉS munkalap A munkalapon a feladatok, feladatelemek
Számítógépes döntéstámogatás. Statisztikai elemzés
SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre
A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9
A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9 Név: Pitlik László Mérés dátuma: 2014.12.04. Mérőtársak neve: Menkó Orsolya Adatsorok: M24120411 Halmy Réka M14120412 Sárosi
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
Adatelemzés SAS Enterprise Guide használatával. Soltész Gábor solteszgabee[at]gmail.com
Adatelemzés SAS Enterprise Guide használatával Soltész Gábor solteszgabee[at]gmail.com Tartalom SAS Enterprise Guide bemutatása Kezelőfelület Adatbeolvasás Szűrés, rendezés Új változó létrehozása Elemzések
Statisztikai alapfogalmak
i alapfogalmak statisztikai sokaság: a megfigyelés tárgyát képező egyedek összessége 2 csoportja van: álló sokaság: mindig vmiféle állapotot, állományt fejez ki, adatai egy adott időpontban értelmezhetők
Viszonyszám A B. Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a. viszonyítadóadat
Viszonyszámok Viszonyszám Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a viszonyítandó adat Viszonyítás tárgya (viszonyítandó adat) B: a viszonyítás alapja V viszonyítadóadat
Gyakorló feladatok a kétváltozós regresszióhoz 2. Nemlineáris regresszió
Gyakorló feladatok a kétváltozós regresszióhoz 2. Nemlineáris regresszió 1. A fizetés (Y, órabér dollárban) és iskolázottság (X, elvégzett iskolai év) közti kapcsolatot vizsgáljuk az Y t α + β X 2 t +
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész
Közgazdaságtan alapjai. Dr. Karajz Sándor Gazdaságelméleti Intézet
Közgazdaságtan alapjai Dr. Karajz Sándor Gazdaságelméleti 4. Előadás Az árupiac és az IS görbe IS-LM rendszer A rövidtávú gazdasági ingadozások modellezésére használt legismertebb modell az úgynevezett
Microsoft Excel 2010. Gyakoriság
Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Közgazdaság- és Gazdálkodástudományi Kar 1.3 Intézet Közgazdaság- és Gazdálkodástudományi
1. A vállalat. 1.1 Termelés
II. RÉSZ 69 1. A vállalat Korábbi fejezetekben már szóba került az, hogy különböző gazdasági szereplők tevékenykednek. Ezek közül az előző részben azt vizsgáltuk meg, hogy egy fogyasztó hogyan hozza meg
A MEGÚJULÓ ENERGIAPOTENCIÁL EGER TÉRSÉGÉBEN A KLÍMAVÁLTOZÁS TÜKRÉBEN
A MEGÚJULÓ ENERGIAPOTENCIÁL EGER TÉRSÉGÉBEN A KLÍMAVÁLTOZÁS TÜKRÉBEN Mika János 1, Wantuchné Dobi Ildikó 2, Nagy Zoltán 2, Pajtókné Tari Ilona 1 1 Eszterházy Károly Főiskola, 2 Országos Meteorológiai Szolgálat,
Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
GYAKORLÓ FELADATOK KORRELÁCIÓ- ÉS REGRESSZIÓ-SZÁMÍTÁS
GYAKORLÓ FELADATOK KORRELÁCIÓ- ÉS REGRESSZIÓ-SZÁMÍTÁS 44. feladat Egy strandbüfében úgy találták, hogy összefüggés van az üdítőital fogyasztás mennyisége és az átlagos napi hőmérséklet között. Ezért 20
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Függvények 1. oldal Készítette: Ernyei Kitti. Függvények
Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
Monitoring adatelemzés. Dr. Csoknyai Tamás
Monitoring adatelemzés Dr. Csoknyai Tamás Tartalom Audit és fogyasztási adatok Fogyasztói számlák értékelésének korlátai Idősoros elemzések Statisztikai elemzések 2 Energiaaudit során alkalmazott módszerek
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
A statisztika alapjai - Bevezetés az SPSS-be -
A statisztika alapjai - Bevezetés az SPSS-be - Kvantitatív statisztikai módszerek Petrovics Petra, Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program
Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z
STATISZTIKA. Mit nevezünk idősornak? Az idősorok elemzésének módszertana. Az idősorelemzés célja. Determinisztikus idősorelemzés
Mit nevezünk idősornak? STATISZTIKA 10. Előadás Idősorok analízise Egyenlő időközökben végzett megfigyelések A sorrend kötött, y 1, y 2 y t y N N= időpontok száma Minden időponthoz egy adat, reprodukálhatatlanság